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1 INTRODUCTION 3

1 Introduction

1.1 A brief history of cosmology

Humans have always wondered about the universe and their place in it. The
very �rst pseudosciences tried to �nd patterns in the stars and planets seen in
the night sky and extract truths and information from their behavior. Mod-
ern cosmology does basically the same thing, but in a more scienti�c way,
trying to �gure out the laws of physics governing our universe that can't be
tested here on earth. Gravity in particular is a phenomenon that has only
really been understood once its e�ects on larger scales were observed.

The �rst model for the universe was a geocentric one, with a stationary
earth as the center of the universe and the sun, moon, stars and other plan-
ets revolving around it in circles. However, the retrograde motion of planets
was already observed early on, contradicting this idea. Sometimes, the plan-
ets seem to move in the opposite direction for a few days. Claudius Ptolemy
proposed a geocentric model where some planets followed epicycles, explain-
ing their retrograde motion. This model was widely accepted for a very long
time.

Around the 1510s to 1530s Nicolas Copernicus pursued a di�erent solution,
however he refrained from publishing his results until just before his death
in 1543 [1]. He proposed a heliocentric model that placed the sun at the
center of the solar system with the earth and other planets orbiting the sun
along circles. Although this model was arguably more elegant than the one
proposed by Ptolemy, it still was unable to predict the behavior of planets
until Johannes Kepler corrected it.

Kepler postulated elliptical orbits instead of circular ones. He formulated
two laws of planetary motion in 1609:

1. The orbit of a planet is an ellipse with the Sun at one of the two foci.

2. A line segment joining a planet and the Sun sweeps out equal areas
during equal intervals of time.

In 1619 he added a third law:

3. The square of a planet's orbital period is proportional to the cube of
the length of the semi-major axis of its orbit.

This model was a lot better at accurately predicting the planetary motion
than any of the previous models. An orbit following these laws is called a
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Kepler orbit (KO). If the gravitational �elds are su�ciently weak and the
relative speeds small enough, two massive objects orbit their common center
of mass following a KO. If one of the objects has much more mass than the
other, as is the case with the sun and planets, that center of mass can be
approximated to be at the center of the more massive object. This results in
the observed orbital dynamics where the planets seem to orbit a stationary
sun.

In a more general approach KOs can be modeled as cone sections [2]. This
means they don't necessarily form ellipses or circles, but can also follow a
parabolic or hyperbolic trajectory. This will be explored further in subsec-
tion 2.2.

Later Isaac Newton laid the foundation of modern physics with his book
"Philosophiæ Naturalis Principia Mathematica" (Mathematical Principles
of Natural Philosophy) �rst published in 1687. In there he established a
mathematical formulation for the laws of motion and the gravitational in-
teractions between massive objects, called Newtonian dynamics (ND). His
model for describing gravity is called Newtonian gravity (NG). With those
mathematical tools he was able to derive Kepler's laws of planetary motion,
proving its accuracy for systems like our solar system.

However, ND and by extension NG is still incomplete. Firstly ND assumes
the possibility of in�nite velocity. In ND, if the velocity v⃗rel between two
reference frames Σ and Σ′ as well as the velocity v⃗ of an object in Σ is
known, the velocity v⃗′ of the same object in Σ′ can be calculated simply by
adding the two velocity vectors together (v⃗′ = v⃗ + v⃗rel). Also, when ac-
celerating an object with an acceleration a⃗ for some time t, the change in
velocity can be calculated with ∆v⃗ = a⃗ · t. Both these facts in theory allow
arbitrarily high velocities for any object in any reference frame. Today it is
known that the universe actually has a �nite speed limit, the speed of light c.

Secondly that speed limit c was observed to be the same in all rest frames,
which is also not possible in ND. To account for these phenomena, Einstein
introduced his theory of special relativity (SR) in 1905 [3]. At the time he was
only concerned with electrodynamics, and SR wasn't able to handle gravity.
In order to achieve that, in 1915 he generalized SR, leading to the theory
of general relativity (GR). In GR, gravity is not modeled as a force like in
NG, but instead arises from the curvature of space-time. This space-time is
mathematically described by a 4-dimensional Lorentz-manifold, and its cur-
vature is caused by massive objects, causing it to appear like gravitational
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�elds generated by these objects.

GR is very successful at describing the orbital mechanics in our solar sys-
tem, including Mercury's orbit. As mentioned before, the assumption that
massive bodies follow a KO is only su�ciently accurate if the gravitational
�elds are weak enough. Being the closest planet to the sun, the gravitational
in�uence of the sun on Mercury is already too high for that approximation,
causing the elliptical orbit to shift over time. While NG can't explain this
phenomenon, GR indeed can.

GR also predicted black holes (BHs), gravitational waves (GWs) and grav-
itational lensing, all of which have since been observed. When considering
gravity inside an object with uniform density, the gravitational pull on a test
mass towards the center gets weaker the closer to the center it's located. In
NG this can be explained by the acting forces, as di�erent volume elements
of the massive body pull the test mass in di�erent directions. As the volume
that's closer to the center than the test mass scales with r3 and gravity scales
with 1/r2, the total force decreases once the test mass moves inside the ob-
ject. This means gravity is the strongest on the surface of massive objects.
BHs are objects with such high densities that nothing can escape their grav-
itational attraction. To our current knowledge, they are the densest possible
objects in the universe.

As the speed limit c includes information itself, it is a reasonable guess that
the in�uence of masses on space-time also propagates with some �nite speed.
A periodic movement of a massive object also results in a periodic deforma-
tion of space-time which propagates as a wave away from the object with
that �nite speed. Being just the result of the behavior of space-time, these
GWs don't require a medium.

In GR light cannot be accelerated and thus always traces a straight line,
or geodesic, through space-time. In a curved space-time this means that
light should bend according to the curvature, causing light itself to be ef-
fected by gravity. This causes gravitational lensing, where light is focused by
the space-time curvature caused by great accumulations of masses like galax-
ies or giant gas clouds. Today gravitational lensing is often used to analyze
the content of mass in certain regions.

In short, GR is the most successful theory of gravity to date and can ex-
plain a lot of observed phenomena very accurately. Regardless, GR still has
its limits. Since the discovery of quantum physics it is clear that GR is incom-
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plete as the two theories are incompatible. But even regarding gravity some
more modern observations pose a challenge to our existing models including
GR.

1.2 The problem with galaxies

While studying di�erent galaxy clusters, Fritz Zwicky in 1933 discovered that
the galaxies in the Coma cluster were moving so fast that the mass of visible
matter in the cluster wasn't enough to hold the cluster together [4]. He ob-
served the redshift of the galaxies to determine their velocities and used the
virial theorem to calculate the total mass needed to hold the cluster together,
which was about 400 times larger than the summed-up mass of all the visi-
ble matter present in the cluster. At the time this was simply attributed to
unseen mass from di�used gas, planets, asteroids etc.

In 1951 Edward Purcell and Harold Ewen discovered the 21 cm hydrogen line
[5], making it possible to �nd cold hydrogen between the stars and galaxies.
Around 1962 the �rst extra-solar X-rays were observed. X-rays are mostly
absorbed by the atmosphere which requires detectors like satellite probes out-
side the atmosphere to pursue X-ray astronomy in a meaningful way. With
that hot hydrogen could also be observed. Even with all the hydrogen now
being observable, the observed total mass of the Corona cluster was still too
small to �t observations.

Figure 1: A qualitative sketch of the
discrepancy between the expected ve-
locity distribution (A) and the ob-
served distribution (B), taken from [6].

Additionally Vera Rubin ran into
the same problem in 1970 when
she mapped out the distribution of
mass in several galaxies [7]. Sim-
ilar to the galaxies in the Coma
cluster the individual stars in the
outer regions of most galaxies were
moving way to fast to be held to-
gether by the observed mass. Close
to the center of the galaxies the
measured velocity distribution still
matched the expectations relatively
well. For higher radii, however, the
mass density of the observable mat-
ter reduced, which should result in
a steep drop in velocity with higher
distances from the galaxy's center.
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However, the measured velocity distribution curve didn't drop nearly enough,
instead it was almost homogeneous for the outer regions of the galaxy.

One possibility to address these observations is to introduce modi�ed grav-
ity (MG). Since GR is not needed to describe galaxies and clusters at large,
most MG models start with NG and modify the distance dependency of the
gravitational force. The most well-known MG model is modi�ed Newtonian
dynamics (MOND) [8], but other approaches exist, some of which also mod-
ify GR, like f(R) gravity [9]. As the two models work so well for smaller
scales like the solar system, all MG models try to keep NG and GR con-
sistent for these scales, only postulating deviations for high distances. This
means MG's e�ects accumulate for large scale structures, but should never
be observed for relatively small systems.

However, there is another, almost trivial way to explain the unusually high
velocities. If there has to be more mass than can be seen to explain the
rotation curves of galaxies, then perhaps it's just the case that there exists
some form of massive matter that simply cannot be seen. This is similar to
Zwicky's explanation for the velocity distribution of the Coma cluster. But
instead of planets or di�use gas, which are still composed of baryonic mat-
ter, this unseen matter could also be something entirely di�erent that simply
doesn't interact electromagnetically. This would explain why, even with the
21 cm hydrogen line and X-ray cosmology, not enough mass was detected.

Even though baryons are particles with an odd number of valence quarks
and thus only make up a tiny part of the standard model of particle physics,
all matter that's part of the standard model is called baryonic matter. Neu-
trinos have too little mass and move too fast to be responsible for the unseen
mass, and all other baryonic particles are either unstable or interact electro-
magnetically. Thus the unseen matter has to be non-baryonic and is called
dark matter (DM).

The simplest model for DM is cold dark matter (CDM). Cold refers to the fact
that its velocity relative to its host galaxy is much smaller than the speed
of light. It is also assumed to be collisionless, which means DM particles
don't interact with eath other. With the addition of the cosmological con-
stant Λ to explain the expansion of the universe with dark energy, this leads
to the ΛCDMmodel, the currently most widely accepted model of cosmology.

Galaxies containing a cloud of DM, a so-called DM halo, now have the ad-
ditional mass needed to explain the observed velocities. Almost all galaxies



1 INTRODUCTION 8

are expected to have a DM halo [10]. Comparing N-body simulations of
CDM with the observed missing masses in galaxies leads to the core-cusp-
problem [11]. While the simulations with collisionless DM result in higher
halo densities for lower radii, called a "cusp", the rotation curves of galaxies
suggest a �at density pro�le for that region, called a "core". This core can
be achieved by assuming self-interacting dark matter (SIDM) [12]. Fig. 2
shows the density pro�les for di�erent coupling strength of SIDM compared
to the collisionless model.

Figure 2: The density pro�le of a DM halo for di�erent cross sections over
unit mass σ, taken from [13].

1.3 Probing dark matter

Since DM does interact neither electromagnetically nor via the strong force,
our best bet to �nd out about its properties is via the gravitational interac-
tion. Since DM is very spread out and the gravitational interaction by far
the weakest, this endeavor is not easy. Luckily, BHs can help us out. When a
BH slowly accretes dark and baryonic matter and grows adiabatically, it can
accumulate a lot of DM into a DM spike of relatively high density. This not
only ampli�es the observable e�ects of the DM, but also allows for a clear
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distinction between DM e�ects and e�ects that could be explained by MG,
as MG should not take e�ect at such low scales.

When a dense object moves through this DM spike, it interacts gravita-
tionally with it. The nature of this interaction o�ers information about the
DM's properties. A prime candidate for such an object could be a second
BH. This however poses a problem as BHs cannot be observed directly.

When two very massive objects orbit each other, they periodically curve
the space-time around it in di�erent ways, which results in the generation
of GWs. Denser objects can get closer to each other, which greatly boosts
the strength or amplitude of the GW. This means that the denser the or-
biting objects are, the more pronounced is the GW signal produced. This
signal contains information about the movement of the bodies relative to
each other. Analyzing the GWs emitted from a BH binary thus allows an
indirect observation of the BHs.

Additionally, the emission of GWs result in a �ux of energy away from the
system. This results in a loss of orbital energy, which in turn causes the two
objects to get closer to each other over time until they eventually coalescent.
This process is called inspiral.

There are three main groups of BHs in our universe that are de�ned by
the order of magnitude of their masses. Stellar BHs have masses comparable
to the solar mass, having around 2− 102M⊙. An intermediate mass BH has
around 104 − 105M⊙ and a supermassive BH upwards of 106M⊙. A stellar
mass object inspiraling into a intermediate mass BH is called intermediate
mass ratio inspiral (IMRI). For a supermassive BH it is called extreme mass
ratio inspiral (EMRI). This thesis will focus on IMRIs as information sources
for DM.

The evolution of the GW signal produced by an IMRI in general only depends
on the involved masses and the shape of the initial orbit. However, it can
be in�uenced by both an accretion disk of baryonic matter and a DM spike.
Thus analyzing the signal evolution can reveal valuable information about
the DM density distribution which in turn can be related to its properties
like whether or not DM is actually self-interacting.

In order to detect GWs there already exist some ground-based GW detectors
like LIGO [14] or the Virgo interferometer [15]. However for the detection of
GWs produced by I/EMRIs, space-based detectors like LISA [16] are needed.
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The �rst gravitational waves were measured in 2015 by the LIGO and Virgo
collaboration [17].

This thesis will assume DM particles to exist and gravity to work accord-
ing to GR for the regarded distances, thus ignoring MG.

2 Theory

In this section all the pieces of our DM probe will be built up step-by-step.
Firstly BHs are needed, which will be discussed in subsection 2.1. while
the focus of this work is more on the DM and GWs, it is advantageous to
�rst introduce the line element, and BHs o�er a great opportunity for that.
Next a basic understanding of orbital mechanics is needed. In subsection 2.2
orbits under the assumption of NG are analyzed and the innermost stable
circular orbit as well as the escape velocity are introduced. Furthermore, the
non-relativistic orbital frequency as a function of distance will be derived.
Introduce in subsection 2.3, GWs will act as the signal carriers allowing for
the analysis of the binary system. The characteristic strain will be intro-
duced, one of the observables of interest. Once the BH binary with GWs as
the signal is set up, the DM can �nally be added into the picture, which will
be brie�y discussed in subsection 2.4. Lastly, it is important to understand
how this DM e�ects our system in order to interpret the information received
through the GW signal. For that, in subsection 2.5 the interaction between
the DM and the BH binarym is analyzed and the last observables that will
be investigated in this thesis are introduced.

2.1 Black holes

In order to approach BHs and later GWs, we need to understand the basics
of GR. As mentioned, GR describes space-time as a 4-dimensional mani-
fold. The corresponding metric tensor is denoted by gµν , from which the line
element

ds2 = gµνdx
µdxν (1)

can be de�ned. It describes distances on the manifold, which will become
important later. Additionally, the metric allows us to analyze the curvature
of a manifold. One needs to be careful in doing so, as the choice of a curved
coordinate system will also appear as curvature in the metric. To distin-
guish purely mathematical from physically signi�cant curvature, the Ricci
tensor Rµν is de�ned in [18], from which the Ricci scalar R = gµνRµν can
be calculated. They are partial derivatives of the metric tensor and contain
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information about the nature of its curvature. GR now describes gravity as a
consequence of the physical curvature of space-time, which in turn is caused
by the energy content of the universe described by the energy-momentum
tensor Tµν . Solving this for a universe with a homogeneous non-zero energy
density everywhere, which is a relatively good approximation for the matter
distribution in the universe at very large scales, yields a constant space-time
curvature throughout the universe, which means it cannot be static. Since
at the time it was still believed that the universe is static, Einstein in [19]
introduced the cosmological constant Λ. Today we know that the universe
is not static, but instead expanding. However, Λ is still needed to account
for the acceleration of that expansion, as seen in [20]. For any given energy
distribution Tµν , the space-time manifold can then be described by a solution
of the Einstein �eld equations

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν . (2)

Since G and c are universal constants, we can use geometrized units where
G = c = 1.[1] Additionally, for this work's purposes Λ can be neglected. This
simpli�es the �eld equations to

Rµν −
1

2
Rgµν = 8πTµν . (3)

This is now a set of 16 equations, one for each possible con�guration of
µ, ν ∈ {0, 1, 2, 3}. However, all the involved tensors are symmetric, which
reduces (3) to 10 independent equations. Since Rµν and R are partial deriva-
tives of gµν , the �eld equations themselves are a set of partial di�erential
equations for a given Tµν . Thus, if the energy content of the universe and its
�ux is known, one could in theory solve for the corresponding metric tensor
and thus �nd the line element. However since this requires solving 10 inde-
pendent non-linear di�erential equations, in practice this is unfeasible.

Two trivial solutions can be found for vacuum where Tµν = 0. These so-
lutions are

gµν =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 and gµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (4)

[1]Note that geometrized units will be used for the remainder of this thesis, which impacts
not only the Einstein �eld equations, but other equations and values of observables as well.
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with the corresponding line elements

ds2 = −dt2 + dx2 + dy2 + dz2 and ds2 = dt2 − dx2 − dy2 − dz2. (5)

The two solutions are physically equivalent, and both lead to special relativ-
ity. This solution duality exists for all solutions of the �eld equations, and
it's up to convention which one to use. For further explanation I will use the
�rst solution where the time component is negative.

Aside from this trivial one, Einstein himself didn't yet �nd another solu-
tion when he published his theory. Instead, it was Karl Schwarzschild who
discovered the �rst non-trivial solution in 1916 [21]. He assumed spheri-
cal symmetry and used spherical coordinates for space, which lead to the
Schwarzschild metric

gµν =


−
(
1− rS

r

)
0 0 0

0 1

(1− rS
r )

0 0

0 0 r2 0
0 0 0 r2 sin2 θ

 (6)

with corresponding line element

ds2 = −
(
1− rS

r

)
dt2 +

1

(1− rS
r
)
dr2 + r2dθ2 + r2sin2θdφ2 (7)

where rS is a free parameter and called the Schwarzschild radius. One can
immediately see that this equation has two singularities, one with spatial
dimension 0 at r = 0 and one with spatial dimension 2 at r = rS. The
physical curvature of the manifold depends on rS and is generally non-zero,
which means there has to be some energy or mass, which is assumed to
be concentrated in the �rst singularity. This �rst singularity is a physical
one, which means it will be present in all coordinate systems. The second
singularity on the other hand is a mathematical one and can be removed with
the appropriate coordinate system. However, this singularity sill has physical
signi�cance which becomes clear when we look at the regime r < rS. Here,
(1 − rS

r
) becomes negative, which means the signs of dt2 and dr2 in eq. (7)

�ip:

ds2 = κdt2 − 1

κ
dr2 + r2dθ2 + r2sin2θdφ2 (8)

where κ = −(1 − rS
r
) is positive. This means all time-like distances now

have to involve a change in r, and in turn all paths where r doesn't change
(enough) are space-like. This means in this regime the future light cone
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is rotated towards negative r and thus towards the physical singularity in
the center, and all paths inevitably end up there [22]. This includes the
path of light itself, so not even light or other kinds of radiation can escape
this regime, which is why objects which ful�ll the Schwarzschild solution are
called "black holes". Since the second (mathematical) singularity cuts o� all
events inside this regime from the outside, it is also referred to as the event
horizon of the BH.

In general, BHs can have charge, momentum, angular momentum and energy.
The energy can be expressed as mass through the mass-energy equivalence
E = mc2 and which is concentrated in the central singularity. Since the en-
ergy content and thus the mass of the BH dictate the curvature of space-time
around it and the same curvature in eq. (7) is solely described by rS, we can
relate the mass and the Schwarzschild radius with rS = 2m[2]. Eq. (7) only
describes static, non-rotating and uncharged BHs. To get a moving BH and
thus momentum, one can simply boost the system. It should be intuitively
obvious that a moving BH behaves in the same way as a stationary one. For
a BH with Schwarzschild radius rS and angular momentum L we need the
Kerr metric [23], which leads to the line element

ds2 =−
(
1− rSr

Σ

)
dt2 +

Σ

∆
dr2 + Σdθ2

+

(
r2 +

(
2L

rS

)2

+
rSra

2

Σ
sin2θ

)
sin2θdφ2 − 4rLsin2θ

Σ
dtdφ

(9)

where Σ = r2 +
(

2L
rS

)2
cos2 θ and ∆ = r2 − rsr +

(
2L
rS

)2
. For a charged BH

the Reissner�Nordström metric [24] and for a rotating and charged BH the
Kerr�Newman metric [25] is needed, both of which won't be discussed as all
considered BHs can be assumed to have negligible charge.

2.2 Kepler orbits

Now that we have the �rst component for our DM probe, we want to take
two BHs and let them orbit each other. Even at quite some distance away
from the event horizon of a BH, the space-time curvature is still so large
that NG breaks down pretty drastically. Nevertheless, KOs can be useful
as we can look at the masses and momenta of the binary system at any
given time, look at what KO they would follow in NG and then analyze

[2]Mind the use of geometrized units. To get from geometrized units to SI units, take

r
[SI]
S = (G/c2)r

[gu]
S
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the change of that hypothetical orbit during the inspiral. As mentioned,
KOs take the form of cone sections, which can be circles, ellipses, parabo-
las or hyperbolas. Ellipses are a good starting point for a generalized de-
scription of KOs, as they can easily transition into circles and parabolas.

Figure 3: A sketch of an elliptical orbit
with the focal points being F and the
position of the primary of mass m1,
the semi-major axis a, semi-minor axis
b and linear eccentricity c.

Figure 3 shows a simple visualiza-
tion of a primary object of mass m1

(in the following just called primary)
that is orbited by a secondary ob-
ject of mass m2 (in the following
just called secondary). To be more
precise, the two objects orbit each
other, so they will both follow a KO
around their shared center of mass.
If we have m2 ≪ m1, which is the
case for an IMRI, we can however
approximate the center of mass to be
at the position of the primary and
the primary itself to be stationary.
The trajectory of the secondary then
forms an ellipse with one of its focal
points being the primary. The other
one is some point F in space. The
midpoint M can be de�ned between
F and the primary. The semi-major

axis a is the maximal, the semi-minor axis b the minimal distance from M to
the ellipse. The distance from M to either one of the foci is called the linear
eccentricity c, from which the eccentricity e = c

a
can be de�ned. While the

linear eccentricity c depends on the shape and size of the ellipse, the eccen-
tricity e only depends on the shape. Since both a and c are de�ned positive
for circles and ellipses and negative for hyperbolas, e can only ever be pos-
itive. e = 0 means that the foci have no distance and both lie in point M ,
which describes a circle with radius r = a = b. The cases 0 < e < 1 describe
ellipses of di�erent shapes. The larger the eccentricity gets, the less circular
the orbit becomes, and the closer the foci and the ellipse get compared to
a. In the extreme case of e = 1, this results in either a straight line where
b = 0 or an in�nite distance between the foci where a = ∞. The second case
describes a parabola.

Now e can also be greater than 1, which describes hyperbolic trajectories,
which will become relevant later in subsection 2.5. These trajectories are
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running between M and one of the foci, are curved toward the focus and
asymptotically approach a straight line along which they run towards in�n-
ity. This means all orbits with e ≥ 1 eventually reach in�nity, don't close
in on themselves and are thus called open orbits. Orbits with e < 1 on the
other hand are called closed orbits. Since there exists a maximal distance for
the two objects in a closed orbit, they can be said to be bound together, so
that closed orbits are also called bound orbits. Conversely, open orbits are
also called unbound orbits.

Since NG is a classical theory, we can de�ne a gravitational potential similar
to the electric potential in electrodynamics and thus easily �nd the potential
energy due to gravity

U = −m1m2

r
, (10)

where r is the distance between primary and secondary. If we use the ap-
proximation from earlier and de�ne the primary to be static, the total energy
of the binary system is given by the potential energy and the kinetic energy

K =
m2v

2

2
(11)

of the secondary. The total energy of an orbit is thus given by E = K + U .
In a circular orbit the gravitational or centripetal force towards the primary
must be just as strong as the �ctional centrifugal force away from the primary.
This condition gives us

K =
m1m2

2r

E = K + U =
m1m2

2r
− m1m2

r
= −m1m2

2r
,

(12)

which can be generalized for elliptical orbits [26] to

E = −m1m2

2a
. (13)

Furthermore, for any given r we can calculate the exact velocity vcirc required
to form a circular orbit[3], as

m2v
2
circ

2
=

m1m2

2r

vcirc(r) =

√
m1

r
.

(14)

[3]Note that for a circular orbit the direction of the velocity is also important and needs
to be perpendicular to a straight line connecting the two objects, which does not become
apparent from eq. (14).
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E is equivalent to the kinetic energy the secondary would have at an in�nite
distance away from the primary. Since for an ellipse this energy is negative
as all values in (13) are positive, the absolute value of E is the energy that's
required to be put into the system so that the secondary could theoretically
reach in�nity with zero velocity. Then this case of E = 0 is the energy of an
parabolic orbit. At any distance, for such an orbit the kinetic and absolute
value of the potential energy are the same, so

K = U

m2v
2
esc

2
=

m1m2

r

vesc(r) =

√
2m1

r
,

(15)

where vesc is called the escape velocity of m1 at the distance r. Sitting at
a distance r away from the primary, vesc(r) is the minimal velocity that
the secondary needs to eventually get arbitrarily far away from the primary.
Comparing this to eq. (14), we can see that this velocity is exactly

√
2 times

the velocity needed to form a circular orbit at the same distance.

If we de�ne a to be negative for hyperbolic orbits, this formula even holds
for those orbits; in this case E is positive and equal to the kinetic energy
at an in�nite distance. However, once the secondary has reached a distance
rinf where K ≫ U , the velocity won't change much any more and we can
approximate vinf ≈ v∞. The relative velocity of a secondary outside a sphere
of radius rinf around the primary can thus simply be used to calculate the
total orbital energy. Together with the direction of the velocity vector com-
pared to the position of the primary, the energy will dictate the shape of
the hyperbolic trajectory if the two objects gravitationally interact. If the
secondary stays outside this sphere, the interaction between the two objects
can be neglected; in such a case one could say the primary didn't in�uence
the secondary at all. rinf is thus called the radius of in�uence and the corre-
sponding sphere around the primary the sphere of in�uence of the primary.

Of course the choice of rinf is to some extent arbitrary and up to de�ni-
tion. This de�nition is adapted to a considered problem, depending on how
accurate the approximation of neglecting the interaction is. If there are other
objects around, like stars in a galaxy, the interaction between the secondary
and the stars can at some point dominate the interaction with the primary.
If we don't have a well-de�ned star distribution, all the gravitational inter-
actions can be seen as some sort of random noise, in which the comparably
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small interaction with the primary drowns.

Going to the other extreme of placing the objects very close to each other, we
eventually reach the point where the space-time curvature gets so extreme
that no stable circular orbits are possible any more. The closest stable cir-
cular orbit at distance risco is called the innermost stable circular orbit and
given by [27]

risco = m1

(
3 + Z2 ±

√
(3− Z1) (3 + Z1 + 2Z2)

)
Z1 = 1 +

3

√
1−

(
a

m1

)2
(

3

√
1 +

(
a

m1

)
+ 3

√
1−

(
a

m1

))

Z2 =

√
3

(
a

m1

)2

+ Z2
1 ,

(16)

where a in this case is the angular momentum per unit mass. For a non-
rotating BH where a = 0 this simpli�es to

risco = 6m1 = 3rS. (17)

In this thesis I will ignore the regime of less distance to the primary than
the innermost stable orbit, so everything relevant will happen in the regime
risco < r < rinf .

Since for a closed orbit the secondary travels through the same points peri-
odically, we can look at the time T between two instances in which it has
the exact same position. For a circular orbit this is easy to do as speed and
distance don't change throughout the orbit, and we have

vcirc(r) =

√
m1

r
=

2πr

T

T (r) =
2πr

√
r

√
m1

=
2π

√
m1

r
3
2 .

(18)

From that the mean orbital frequency F and mean circular frequency ω

F(r) = T−1(r) =

√
m1

2π
r−

3
2

ω(r) = 2πF(r) =
√
m1r

− 3
2

(19)

of the orbit can be calculated. Once again, the same equations can be used
for elliptical orbits if we replace r with the more semi-major axis a, as seen
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in [28]. For completion I want to mention that for a general case where both
objects actually orbit the common center of mass, the total massm = m1+m2

has to be used. Since the mass ratio is pretty large if we compare the BHs
of an IMRI or the mass of a DM particle to the solar mass, in both cases our
approximation from before is accurately enough. Using the total mass and
an elliptical orbit however yields the most general expression for the mean
orbital frequencies of closed orbits:

F(a) =

√
m

2π
a−

3
2

ω(a) =
√
ma−

3
2 .

(20)

2.3 Gravitational waves

Now that we have a BH binary system and understand how they orbit each
other under the assumption of NG, we want to actually receive information
from them. As mentioned, a good way to do that is through GWs which
we will now examine more closely. This deviation doesn't follow any speci�c
literature but is instead put together using all the referenced sources. To
approach GWs, we need to go back to GR and the metric tensor gµν . We
can always �nd oscillating solutions for the Einstein �eld equations in vari-
ous circumstances, e.g. simply with an oscillating energy-momentum tensor.
What we're interested in however are propagating GWs, so they should also
exist in vacuum. To approach that we can start with the metric tensor for
special relativity, the Minkowski metric ηµν and apply a small perturbation
hµν ≪ 1:

gµν = ηµν + hµν

ds2 = (ηµν + hµν)x
µxnu.

(21)

To make things more compact we can calculate the trace reversed hµν of hµν

with

hµν = hµν −
1

2
ηµνh

σ
σ. (22)

Now since we want something wave-like it is a good guess to let hµν be some
amplitude tensor Aµν multiplied by a wave equation

hµν = Aµν cos(kσx
σ) (23)

where kσ = (−ω, kx, ky, kz) is the wave vector of the GW. Now we can make
some guesses and check if they are compatible with eq. (3), which, since
we are in vacuum, demands that the Ricci tensor vanishes. That means not
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every con�guration of Aµν is possible. If we set A11 = 1 and all other com-
ponents to 0 for example, not all components of Rµν vanish, which shows
hµν cannot only oscillate in the x-direction alone. Since the choice of coordi-
nates is arbitrary this means hµν cannot only oscillate in any direction alone
in general. Another guess would be to combine two di�erent directions of
oscillation, which for a wave moving in the z-direction could be the x- and
y-directions. That leads to

Aµν =


0 0 0 0
0 α 0 0
0 0 α 0
0 0 0 0

 or Aµν =


0 0 0 0
0 α 0 0
0 0 −α 0
0 0 0 0

 . (24)

For the �rst result the Ricci tensor also doesn't vanish, however it does for
the second one. Using the second result and rotating the frame of reference
around the z-axis yields

Aµν =


0 0 0 0
0 0 α 0
0 α 0 0
0 0 0 0

 (25)

as another possibility.

Before we continue, we should check if there are any more independent de-
grees of freedom for a GW. We already know that gµν is symmetric, which
immediately reduces the possible degrees of freedom from 16 to 10. To fur-
ther decrease them we can make use of the right gauge conditions. First we
can apply the Lorentz gauge which demands

∂νh
µν

= 0, (26)

giving 4 additional constrains as we have 4 independent equations, one for
each µ ∈ {0, ..., 3}. The Lorentz gauge is a group of di�erent coordinate
systems, so we can narrow it down even more by choosing the appropriate
subset of the Lorentz group. Secondly we can choose a coordinate system
where the components of Aµν are orthogonal to an observers four-velocity
Uµ, so we get the constraint

UµAµν = 0. (27)

As the wave amplitude is now orthogonal to Uµ and the GW can thus be
seen as a transverse wave, the gauge is called transverse gauge. This appears
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to also give 4 constraints, which is correct, but only 3 of them are new
independent constrains. If we go into the rest frame of the observer where
only the time component of Uµ is non-zero, eq. (27) requires A0µ to be zero
for all µ, which in matrix notation would leave a 3 by 4 block of non-zero
components, leaving only 3 meaningful equations for eq. (26), so it produces
only 3 new constraints. This means that from the remaining 6 independent
components still 3 remain. We can get one last constraint by making Aµν

traceless, which means
Aµ

µ = 0. (28)

This makes one component of the main diagonal of the tensor dependent on
the other three, reducing the amount of independent components to 2. Since
in the gauge our wave is now transverse and Aµν traceless, this gauge is called
transverse-traceless (TT)-gauge.

As Aµν is constant, the derivative in ∂νh
µν

only applies to the cosine, which
gives

∂νh
µν

= Aµνkν sin(kσx
σ) (29)

which in the Lorentz gauge (26) has to be zero, which implies

Aµνkν = Aµνk
ν = 0. (30)

Using the TT-gauge we can now stay in the rest frame of Uµ and analyze
a GW traveling in the z-direction. We then have kµ = (−ω, 0, 0, kz) and
Uµ = (U t, 0, 0, 0)T which together with eq. (30) and eq. (27) reduces Aµν to

Aµν =


0 0 0 0
0 α β 0
0 γ δ 0
0 0 0 0

 . (31)

The tensor symmetry demands β = γ, and eq. (28) demands α + δ = 0, so

Aµν =


0 0 0 0
0 α β 0
0 β −α 0
0 0 0 0

 (32)

which is very similar to eqs. (24) and (25) which we know to be solutions
that are independent from each other. This means we can split Aµν into a
sum of two tensors that are also solutions to the �eld equations themselves.
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2.3.1 Impact on the line element

We then have two di�erent line elements

ds2α = −dt2 + (1 + A)dx2 + (1− A)dy2 + dz2

ds2β = −dt2 + dx2 + dy2 + dz2 + 2B dxdy

A = α cos(−ωt+ kzz + φ0,α)

B = β cos(−ωt+ kzz + φ0,β).

(33)

As time is not curved here, we can just use it as a parameter like in classical
physics and concentrate on the spacial coordinates. Now let O be the origin
of our spacial coordinate system and consider a point P in the x − y-plane
with spacial coordinates (xP , yP , 0). The distance sα =

∫
dsα between O and

P is then given by
s2α = (1 + A)x2

P + (1− A)y2P (34)

which can be split up into two separate distances, one for each direction:

sα,x =
√
1 + AxP

sα,y =
√
1− AyP

s2α = s2α,x + s2α,y.

(35)

sα,x then describes the distance of P to the y-axis and sα,y the distance to
the x-axis. When A now oscillates, both distances change opposite to each
other, so whenever sα,x increases, sα,y decreases and vice versa. For any given
A these distances can be compared to the distances sα,x,0 and sα,y,0 in the
case A = 0, and a displacement vector D⃗P,α for P can be de�ned as

D⃗P,α =

sα,x − sα,x,0
sα,y − sα,y,0

0

 =

(
√
1 + A− 1)xP

(
√
1− A− 1)yP

0

 . (36)

Taylor expanding this as a function of A yields

D⃗P,α =

(
A

2
+O

(
A2
)) xP

−yP
0

 (37)

where O(A2) can be neglected since

hµν ≪ 1 =⇒ Aµν ≪ 1 =⇒ α ≪ 1 =⇒ A ≪ 1.

That means P stays in the x − y-plane but is periodically shifted by D⃗P,α

when the GW passes. Doing all that for dsβ =
∫
dsβ as well seems a little
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more di�cult because of the mixed dxdy term. Remember however that we
got from eq. (24) to (25) through a simple rotation around the z-axis, namely
a 90◦ right-handed rotation. Applying the same rotation to the displacement
vector and transforming A into B yields

D⃗P,β =

(
B

2
+O

(
B2
))yP

xP

0

 , (38)

where O(B2) can once again be neglected. The two solutions are independent
from each other and can stack, so the total displacement P experiences is
given by D⃗P = D⃗P,α + D⃗P,β. Since the selection of P was arbitrary the
displacement vectors can be expanded to displacement �elds

D⃗α(x, y, A) ≈
A

2

 x
−y
0


D⃗β(x, y, B) ≈ B

2

y
x
0


D⃗(x, y, A,B) ≈ A

2

 x
−y
0

+
B

2

y
x
0

 .

(39)

The two di�erent displacement e�ects can now be seen as the polarizations
of the GW. Since D⃗α(x, y, A) stretches and compresses the distances along
a plus-shaped �eld, it is called the plus-polarization (+-polarization), while
D⃗β(x, y, B) stretches and compresses it along a cross-shaped �eld and is thus
called the cross-polarization (×-polarization). Figure 4 shows the displace-
ment �eld for each of the polarizations around O. It's important to keep in
Mind that D⃗α(x, y, A) and D⃗β(x, y, B) are proportional to A and B which in
turn oscillate, which means the displacement itself and thus also the point P
oscillate.

Considering the discovery of the two polarizations the notation can be changed
accordingly:

α → h+; β → h×

sα → s+; sβ → s×

φ0,α → φ0,+; φ0,β → φ0,×

Dα → D+; Dβ → D×.
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Figure 4: A graphical representation of the displacement vector �elds
D⃗α(x, y) (on the left) and D⃗β(x, y) (on the right) around the origin O for
some given values A and B, created with WolframAlpha. The x-axis is hori-
zontal and points to the right and the y-axis is vertical and points upwards.

Figure 5: The exaggerated e�ects of a +-polarized GW traveling in the z-
direction on a ring in the x−y-plane in the TT-gauge, created with GeoGebra.
Here φ0,+ = −π

2
, with the x-axis being horizontal and pointing to the right

and the y-axis being vertical and pointing upwards.
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Let's now consider a collection of points around O in the x− y-plane where
x2+ y2 is the same constant value for every point. For A = B = 0 this forms
a circle around O. A GW now causes all the points to oscillate according to
eq. (39), which is depicted in �g. 5 for +-polarization.

Figure 6: Visual representation of the transformation of the polarizations
with rotation around the z-axis, created with GeoGebra. The two extreme
cases of the deformation of a circle around the z-axis are shown to represent
the e�ect of the GW on the line element. The x-axis is horizontal and points
to the right and the y-axis is vertical and points upwards.

The +-polarization was turned into a ×-polarization using a 90◦ rotation of
the individual displacement vectors. When looking closely at �g. 4 however,
it becomes apparent that due to the �eld's symmetry one can also switch
between the polarizations by rotating the entire �eld by 45◦. Rotating it
by 90◦ results in the same polarization, but with the arrows �ipped, which
corresponds to a 180◦ phase shift. This can also be seen in �g. 6. This
is similar to the x- and y-polarizations of electromagnetic waves. There, a
180◦ rotation of the entire wave around its direction of propagation results
in the same polarization, but with the �eld vectors �ipped. It takes a full
360◦ rotation to completely return to the starting state, which can be related
to the photon's spin of 1. The spin determines how often a particle returns
to its exact initial state during a 360◦ rotation. Since the GW returns to its
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initial state after only a 180◦ rotation with no phase shift, it acts similarly
to something with spin-2[4].

Also, similar to light the two polarizations are completely independent from
each other. A relative phase shift of either 0◦ or 180◦ between the polariza-
tions results in a linearly polarized GW, which causes a periodic compression
and stretching of the circle in one direction similar to the pure polarizations.
Other relative phase shifts, where A and B are both non-zero, on the other
hand describe elliptically polarized GWs. The special cases where A = B and
the relative phase shift is either 90◦ or 270◦ describes a circularly polarized
GW.

2.3.2 Impact on matter and the BH binary

Now that it's clear how coordinate points are e�ected by GWs, the question
remains what the interaction with matter looks like. Placing test particles
along the previously de�ned circle doesn't immediately show that e�ect, as so
far only the oscillation of the coordinate system itself was considered. If the
particles also gain coordinate velocity from the GW, this could counteract
the coordinate oscillation and result in the particles not actually moving,
rendering GWs to be just a mathematical artifact. To analyze this for a
+-polarized GW the changes of rate of the coordinate velocities uµ were
calculated using Maxima[5]:

dux

dt
= ux(ut − uz)

dA

dt
duy

dt
= −uy(ut − uz)

dA

dt
.

(40)

It can be seen that, if the particles have no coordinate velocity in the x− y-
plane at any point, then their coordinate acceleration in the same plane is
also 0, even under the in�uence of a GW moving in the z-direction, thus the
coordinate velocity will stay 0 inde�nitely. This means the ring of test par-
ticles will move along with the deformation of the coordinate system; GWs
can impact matter. This is great news as this means it is indeed possible
to detect GWs and thus analyze the behavior of the BH binary. This also
means that GWs carry energy.

[4]If the graviton exists, as a carrier particle it should have integer spin. However, it
should neither be Higgs-like nor photon-like, so neither have spin-0 nor spin-1, with the
next-simplest case being a spin-2 graviton.

[5]https://maxima.sourceforge.io

https://maxima.sourceforge.io
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As the two BHs orbit each other, they emit GWs with the frequency f =
ωGW/2π being a harmonic of the orbital frequency F with

f (n) = nF (41)

for the n-th harmonic. Thus when analyzing the frequency of the GW, the
evolution of the orbital frequency of the binary can be deduced, from which
a lot can be learned about the system. The GWs produced by the BH binary
are not perfect spherical waves, but they still radiate in all directions away
from the binary. This means that similar to a spherical wave the energy
density and thus also the amplitude or "strength" of the wave is inversely
proportional to the square of the distance from the binary. So all the GWs we
will receive near earth from such binaries are relatively weak which conforms
with the de�nition of the perturbation hµν of the metric being very small.
This also means that the e�ects these GWs have on matter here are tiny,
which makes them very hard to detect. To analyze the detectability of the
GW signal, the characteristic strain can be de�ned as [29]

hc(f)
2 = 4f 2|h̃(f)|2 (42)

where h̃(f) is the Fourier transform of the GW signal. To analyze the de-
tectability of a signal with a given characteristic strain with a given detector,
hc can be compared to the noise amplitude

hn(f)
2 = fSn(f) (43)

of the detector. Sn(f) is a function speci�c to the detector under considera-
tion that yields the strength of the background noise of a given frequency in
the detector, e.g. caused by random �uctuations. With hc and hn the signal
to noise ratio can be calculated with [29]

ϱ2 =

∫ ∞

∞
d ln(f)

∣∣∣∣hc(f)

hn(f)

∣∣∣∣2 . (44)

Not all GW detectors can detect all kinds of frequencies. Earth-based de-
tectors like LIGO and VIRGO have a frequency range of around 10− 104Hz
[29]. IMRIs however emit GWs primarily below 10Hz [30]. To make them de-
tectable as well, LISA and eLISA are needed, which can theoretically detect
signals with a frequency of around 10−5− 1Hz [29]. Realistically however, as
we will see later when comparing hc of an IMRI with hn of LISA, the detec-
tor might only pick up the signal at around 10−4 − 10−2Hz. The frequency
evolution of the signal in this range can still give valuable information about
the system and, by extension, about the DM.
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It is often unpractical or sometimes even impossible to observe an inspi-
ral in its entirety. However, a lot of information can also be gained from
looking at the evolution of the orbital frequency. With that evolution the
braking index nb can be de�ned as [31]

nb =
FF̈
Ḟ2

. (45)

Relating this to eq. (20) gives an expression for the braking index as a func-
tion of the semi-major axis:

nb =
5

3
− 2aä

ȧ2
(46)

Since the GWs carry away energy and angular momentum from the binary
and those can only come from the orbital energy and orbital angular momen-
tum, over time the secondary will assume less energetic orbits. Looking at
eq. (13) makes it clear that this means the secondary and primary are getting
closer together over time. Eventually they get so close together that their
event horizons merge, which means the BHs coalesce. This of course hap-
pens continuously, causing the secondary to fall into the primary following a
spiral form, which is why this phenomenon is called "inspiral". An IMRI is
a special case of a solar mass BH inspiraling into a intermediate mass BH,
like in our case.

The mean orbital frequency F expresses how many cycles the secondary goes
through in a given time, thus the number of cycles in a given time interval
[ti, tf ] can be calculated with

Norb(ti, tf ) =

∫ tf

ti

F(t)dt. (47)

For the n-th harmonic and setting tf = tc at the time of coalescence, this
can be related to the number of cycles of the GW signal until the end of the
signal with [32]

NGW (t) =

∫ tc

t

f(t)dt = nNorb(t, tc) = n

∫ tc

t

F(t)dt. (48)

So GWs are not only a source of orbital energy loss for the binary. They also
act as information carriers from whom all the relevant information needed to
make statements about the nature of the inspiral and thus the DM halo can
be obtained.
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2.4 Dark matter and DM spikes

Now the DM can be added. DM can be modeled as particles that either do
or don't interact with each other. As discussed, SIDM is needed to solve the
core-cusp problem. If DM indeed self-interacts, it could behave in a similar
way as baryonic matter, i.e. follow similar thermodynamic laws.

The most popular model to analyze this is the gravothermal �uid model.
Here the attraction through gravity and the thermal interactions that statis-
tically act as a repulsion e�ect can cancel each other with the right density
and temperature. This causes the DM to exert an outward pressure on itself
which dissolves the cusp and forms a core in the inner region of the DM
cloud instead. A DM halo is expected for nearly every galaxy, as the struc-
ture formation of these clouds are expected to be linked with the structure
formation of baryonic matter throughout the lifespan of the universe [33].

Massive objects such as BHs can accumulate more DM by capturing DM
particles, causing a higher density of DM around them. The great gravita-
tional attraction of the massive object changes the equilibrium state of the
DM cloud, causing the formation of a mini-spike that can have a cuspy den-
sity distribution very locally without violating the core-cusp problem. The
formation of such a spike requires a relatively slow accretion of mass of the
BH as to maintain the adiabatic invariants.

The density distribution of a spherical symmetric halo around the primary
as a function of the distance to it can be modeled using a simple power law
ρ ∝ r−α. To characterize the spike, a reference density ρspike and reference
distance rspike are needed, so that the density can be expressed as [34]

ρDM(r) = ρspike

(rspike
r

)α
. (49)

As discussed, only the regime risco < r < rinf is of interest. The sphere of
in�uence can in this case be de�ned as the sphere where the DM is twice the
mass of the primary.

The power law dependence α on r is correlated with the initial density dis-
tribution of the DM halo before the adiabatic growth of the primary. The
same power law can be applied to that initial distribution with the exponent
0 < αini < 2 for CDM. The exponent of the spike is then given by [35]

α =
9− 2αini

4− αini

(50)
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which implies 2.25 < α < 2.5. For a uniform initial distribution where
αini = 0 this means the exponent is α = 9/4. For a Navarro�Frenk�White
(NFW) pro�le the initial distribution is αini = 1, which means α = 7/3.
The NFW pro�le comes from N-body simulations of cold DM [36]. SIDM on
the other hand leads to α = 7/4 [37]. Other exponents are possible under
di�erent circumstances, however this work will focus on

α = 7/3, α = 7/4 and α = 9/4 . (51)

For the trajectory and energy of the orbit the simple two-body-problem needs
to be expanded as now the mass of the DM has to be taken into account as
well. So instead of m1 the total massM(r) = m1+MDM(r) needs to be used,
where MDM(r) is the mass of the DM inside the sphere of radius r around
the primary. This mass can be calculated by integrating over the DM density
in the considered region

MDM(r) = 4π

∫ r

risco

ρDM(r) r2 dr. (52)

Evaluating this integral in the whole regime of interest gives

MDM(rinf ) = 4π

∫ rinf

risco

ρspike

(rspike
r

)α
r2 dr = 2m1 (53)

which gives a relation between ρspike, rspike, α and m1 [34]

rspike =

[
(3− α)0.23−αm1

2πρspike

] 1
3

. (54)

2.5 Dynamical friction

The secondary can now interact gravitationally with the DM particles as it
moves through the spike. To understand how, we will take a closer look at
open orbits, as mentioned in subsection 2.2. When considering the inter-
action between the secondary and individual DM particles, the secondary
will assume the role of the primary object, while the DM particle becomes
the secondary object. To not make the notation and jargon unnecessarily
confusing, in the following the secondary will just be called BH (with mass
mBH) and the DM particle DMP (with mass mDM).

Fig. 7 shows such a hyperbolic trajectory. In the rest frame of the BH
the DMP has some initial momentum p⃗i while outside the BH's sphere of
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Figure 7: A hyperbolic orbit of a single DM particle around the secondary
BH with midpoint M , linear eccentricity c, semi-major axis a and angle θ
between the directions of the initial and �nal momentum p⃗i and p⃗f of the
DM particle.

in�uence. After interacting with the BH and leaving the sphere of in�uence
again, it has some �nal momentum p⃗f . Since the conservation of momentum
has to hold true, the di�erence in these momenta has to be transferred to the
BH, so it picks up some momentum ∆p⃗ = p⃗i − p⃗f . Since we consider a solar
mass BH as the secondary and a DMP is much lighter than a solar mass,
the approximation that the center of mass is at the position of the BH and
the BH is stationary throughout the encounter can once again be applied. In
that approximation the absolute values of p⃗i and p⃗f are the same p0, so the
vectors are just rotated versions of each other, which leads to

p⃗f =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
p⃗i (55)

in the orbital plane. Using this, ∆p can be calculated, however for later usage
it's more convenient to split up ∆p⃗ into two components, one parallel and
one vertical to p⃗i. This results in the simple expressions

∆p⊥ = p0|sin(θ)| (56)

∆p∥ = p0(1− cos(θ)) (57)
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where the direction of ∆p⃗ points towards the intersection point of the two
asymptotes, which is the midpoint M .

Expanding this to a constant stream of particles along the same trajectory
gives a continuous exchange of momentum i.e. a force F⃗ acting on the BH.
This is a dissipative force. To calculate this force, the rate of interactions
Ω needs to be known, which can be determined if the initial speed v of
the DMPs and their one dimensional number density n1D are known, from
which the time τ between interactions can be calculated. For the parallel
component of F⃗ we then have

F∥ = Ω∆p∥ =
1

τ
∆p∥

= n1D v p0(1− cos(θ))

= n1D mDM v2(1− cos(θ)),

(58)

while the vertical component won't be important for further consideration.
As mentioned in subsection 2.2, the shape of the orbit and by extension θ
also just depend on the initial velocity and direction of motion compared
to the position of the BH. To keep track of the position, the o�set o can
be de�ned as the distance between the asymptote of the incoming particle
and a line parallel to that asymptote that goes through the BH. This is the
closest distance the DMP would have to the BH without gravity. Through
the de�nition of a hyperbola we can �nd that a and c are related to the angle
ϕ between the asymptotes and the connecting line between the foci like

cos(ϕ) =
a

c
=

1

e
. (59)

As 2ϕ+ θ = π, this relates θ to the eccentricity:

1

e2
= cos2(ϕ)

=
1

2
(cos(2ϕ) + 1)

=
1

2
(cos(π − θ) + 1)

=
1

2
(1− cos(θ))

(60)

which for the parallel component of the force means

F∥ = n1D mDM v2
2

e2
. (61)
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Since the angular momentum L of the orbit is directly correlated with o,
mDM and v, it can be used to �nd the correlation between e, o and v. The
eccentricity as function of the angular momentum and energy of the system
is given by [38]

e =

√
1 +

2EorbL2
orb(mBH +mDM)

(mBH mDM)3
. (62)

And since the BH is initially static, both the orbital energy and the angular
momentum are solely determined my the DMP. As v is the velocity of the
DMP outside the sphere of in�uence where Epot ≪ Ekin, the orbital energy
can be approximated as the initial kinetic energy of the DMP, while the
angular momentum is given classically by r⃗ × p⃗DM where r⃗ is the vector
pointing from the BH to the DMP. We then have

Eorb =
1

2
mDMv2

Lorb = mDMv o.
(63)

Also mDM ≪ mBH , so mDM +mBH ≈ mBH , which simpli�es eq. (62) to

e =

√
1 +

mDMv2(mDMv o)2mBH

(mBH mDM)3

=

√
1 +

o2v4

m2
BH

.

(64)

Plugging this into eq. (61) results in an expression for the parallel component
of the force that only involves the initial parameters of the DMP:

F∥ = n1D mDM v2
2m2

BH

m2
BH + o2v4

. (65)

Now we can expand this further by considering all possible constant streams
of DMPs that have the same o�set o. How close together these streams are
can be expressed by a second one-dimensional number density nst which,
together with the number density n1D of the DMPs in each steam, de�nes
the two-dimensional number density n2D = n1D · nst of the DM. To get
the total interactions per second all the streams have to be added up, or
in the continuous case integrated over all possible directions. The rate of
interactions is then
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Ω =

∫ 2π

0

n2Dv o dφ = 2πn2Dv o (66)

which for the force means

F∥ = 4πn2D mDM v2
om2

BH

m2
BH + o2v4

. (67)

Figure 8: A visualization of
the orthogonal components of
the DF force canceling for a
uniform density distribution,
created with GeoGebra.

Since the con�guration is now rotationally
symmetric, all the orthogonal components
of the force cancel each other, which makes
clear why they don't need to be taken into
account.

Fig. 8 shows how for every DMP with o�set
o and velocity v in one direction there exists
another DMP with the same velocity and
o�set in the opposite direction. The �rst or-
bit results in a change of ∆p1, the second
results in ∆p2. Assuming the same initial
velocity v for both DMPs, both the parallel
and orthogonal components are the same,
with the orthogonal components pointing in
opposite directions. This results in the total
change of momentum ∆pres = ∆p1 + ∆p2
where the orthogonal components cancel
and the parallel components add up. Ex-
panding this to DMP streams and assuming the same number density for
both streams, the same is true for the force acting on the BH, so the DF
force is parallel to v⃗.

Eq. (67) can be expanded further to a case of a uniform three-dimensional
DM cloud by integrating the force over all the relevant o�sets o. To do
that, the third and last number density no of the DMPs along the direction
of increasing o is needed. Together with n2D this gives the overall three-
dimensional DMP number density n3D = n2D ·no, and the force is then given
by
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F∥ = 4πn3D mDM v2
∫ omax

0

om2
BH

m2
BH + o2v4

do.

= 4πρ v2
m2

BH

2v4
ln

(
o2maxv

4

m2
BH

+ 1

)
=

4πρm2
BH

v2
ln (Λ)

(68)

where the uniform DM density ρ = n3DmDM was introduced and the
Coulomb logarithm log(Λ) was de�ned as

Λ =

√
o2maxv

4

m2
BH

+ 1. (69)

Since the integral in eq. (68) diverges for omax → ∞, some other value needs
to be chosen depending on the considered case. For IMRIs, some values in
the literature for ln(Λ) are 3, 10 and ln(m1/m2) [32, 39, 40]. Here the latter
de�nition Λ = m1/m2 is used.

As clearly can be seen in eq. (68), unlike a typical friction force the DF does
not increase, but instead decreases with higher relative velocities v. This
also becomes clear when considering another viewpoint on DF: If a massive
object moves through a �eld of stars or in this case DMPs, it will attract
them, which causes them to bunch together behind the massive object. This
results in a higher gravitational force antiparallel to the direction of motion
than parallel to it. The faster the object moves, the less time it has to ac-
cumulate stars or DMPs behind it, and at the same time it moves further
away quicker from the bunched together wake, resulting in less gravitational
attraction. Both these e�ects cause the antiparallel force to be weaker the
faster the object is moving relative to the �eld.

2.5.1 DF in the BH binary

As the secondary moves through the DM spike of the primary, it experiences
DF. Until now only DMPs that share the same velocity were considered,
which is not the case for the spike. When considering a cloud of DMPs with
di�erent velocities it's not enough to just calculate the mean velocity and use
that as v in eq. (68). Instead the velocity distribution needs to be taken into
account completely, which can be done by expanding the DM density [32]:

F∥ =
4πρ ξ(v)m2

BH

v2
ln (Λ) . (70)
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For IMRIs, ρ is just the DM density ρDM(r) dependent on the distance
between secondary and primary, and v the velocity of the secondary through
the DM spike. ξ(v) can be estimated like in [41] and [31] with

ρDM(r)ξ(v) = 4π

∫ v

0

v′2f

(
Ψ(r)− 1

2
v′2
)
dv′ (71)

with the relative potential Ψ(r). This accounts for the DM moving slower
than the secondary, which in some circumstances can be a good enough
approximation. To also include higher velocities of DMPs, the following
equation needs to be used [42]:

F∥ =
4πρ(r)m2

BH

v2
[α(v) ln (Λ) + β(v) + δ(v)] (72)

with

α(v) = 4π

∫ v

0

f(v′)v′2dv′

β(v) = 4π

∫ vesc

v

f(v′)v′2
[
ln

(
v′ + v

v′ − v

)]
dv′

δ(v) = 4πv

∫ vesc

v

f(v′)(−2v′)dv′.

(73)

Again, α just accounts for the slower moving DM, while including higher
velocities requires β(v) and δ(v). Assuming α(v) = mBHξ(v) and β(v) =
δ(v) = 0 leads to eq. (70) again. Since v⃗ now describes the motion of the BH
instead of that of the DMPs, the direction of the force is now antiparallel to
v⃗. Putting all this together gives three approximations for the DF force:

F⃗DF = −4πρ ξ(v)m2
BH

v2
ln (Λ)

v⃗

v
(I)

F⃗DF = −4πρ(r)m2
BH

v2
α(v) ln (Λ)

v⃗

v
(II)

F⃗DF = −4πρ(r)m2
BH

v2
[α(v) ln (Λ) + β(v) + δ(v)]

v⃗

v
(III)

Since the DF force is antiparallel to the secondary's velocity, some of the
secondary's kinetic energy is transferred to the DM spike which can be seen
as an overall loss of orbital energy for the BH binary. The power can be
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calculated with the simple relation of energy being a force over a distance
E = F · s, hence

ĖDF = ḞDF · s+ FDF · ṡ ≈ FDF v (74)

assuming the change of force is small compared to the velocity. This adds
up with the energy loss due to the GW emission itself:

dE

dt
= Ėtot = ĖGW + ĖDF . (75)

This higher energy loss causes a faster inspiral, which means the DM has
an impact on the frequency evolution of the BH and thus also of the GW
signal. The DF interaction with the DM causes a change ∆N in the number
of cycles in eq. (48) compared to a case without DM [31]:

∆N(t) = Nvacuum(t)−Ntot(t) (76)

This phenomenon is called dephasing. From that the dephasing index can
be de�ned as [31]

nd =
d ln(∆N)

d ln(Ftot)
(77)

Additionally, both GWs and DF can change the shape of an orbit. With DF
involved this tends to make the orbit more circular, decreasing the eccentric-
ity [41].

The comparison of the relative di�erences between eqs. (I) and (II) as well
as between eqs. (II) and (III) and their impact on hc, ∆N , nd and nb under
di�erent conditions is the goal of this thesis.

3 Implementation

To compare the di�erences, the IMRIpy[6] simulation by Niklas Becker was
used to model an IMRI under di�erent conditions and numerically produce
some observables. The exponent α, the spike density ρspike, primary mass
m1, secondary mass m2, initial radius R0, eccentricity e and the distance
D to the system have to be de�ned. From α, m1 and ρspike, rspike can be
calculated using eq. (??) [34]. Using all these values the host system with
DM spike and the initial KO can be de�ned. From there, the system can be
evolved with

[6]https://github.com/DMGW-Goethe/imripy

https://github.com/DMGW-Goethe/imripy
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imripy.inspiral.Classic.Evolve(hs, ko_initial, opt=options);

Here, options is an object specifying the functionality of di�erent functions
and classes in the code. With is, the

imripy.inspiral.forces.DynamicalFriction()

class can be speci�ed to use or not use the phase space description, as well as
ignoring or not ignoring higher velocities. This can be used to specify which
of the eqs. (I)-(III) ought to be used my the code.

After setting up the system, the n-th harmonic GW signal can be simulated
with

imripy.waveform.h_n(n, hs, ev);

This work will be restricted to n = 2. This function returns three arrays,
one containing the frequencies, tho other two containing h̃+(f) and h̃×(f)
respectively. From these arrays, the characteristic strain can be calculated
with eq.(??).

To calculate ∆N , the time evolution is simulated with and without the DM
spike. The numbers of cycles until the coalescence can be obtained with

imripy.waveform.N_cycles_n(n, hs, ev);

from which ∆N can be calculated with eq. (??). To calculate from that the
dephasing index with eq. (??), the

np.gradient()

function can be used. The braking index can be obtained with

imripy.waveform.BrakingIndex(hs, ev);

Most plots look very similar for the di�erent equations (I)-(III). For that
reason, I decided against showing curves for di�erent equations in the same
plots, as they would just mostly overlap. To get a feeling for the di�erences
of these observables when using the di�erent equations, they were instead
simply subtracted and plotted. The absolute values of the observables and
their di�erences are plotted, so that logarithmic axes can be used. To com-
pare the equations, hs and ev as well as all other relevant objects were turned
into arrays with the index indicating a corresponding equation.

To analyze what values in�uence this di�erence the most, all the previously
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de�ned starting values were varied. For the base con�guration similar val-
ues to [39] were taken with ρspike = 226M⊙/pc

3, m1 = 103M⊙, m2 = 1M⊙,
R0 = 100risco and e = 0. The distance D from the observer to the binary
was set to 500Mpc and not varied. Deviating from these base values, two
additional values for each of the parameters were de�ned. Tab. 1 lists all the
de�ned values.

ρspike m1 m2 R0 e
0.027M⊙/pc

3 1 · 103M⊙ 1M⊙ 1000risco 0
226M⊙/pc

3 1 · 104M⊙ 20M⊙ 100risco 0.4
2 · 106M⊙/pc

3 5 · 104M⊙ 100M⊙ 30risco 0.8

Table 1: All the used values to analyze their e�ect on the di�erences eqs. (I)-
(III) make for the simulated observables.

The values cannot be subtracted by simply subtracting the arrays, as in
general the corresponding frequency values are di�erent. Thus, the interval
where both frequency arrays overlap was determined, and the value functions
interpolated over that interval. The di�erence of the frequency arrays also
means that a standard interpolation causes the distance of the two functions
for di�erent frequency values to vary. This is shown in �g. 9.
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Figure 9: Here the e�ect of linear interpolation on the di�erence of two
numerical functions is seen. The green vertical lines show the x-values of one
of the functions, the red ones the x-values of the other one. It can be seen
that the spikes are exactly at the position of these x-values, showing that
this behavior is due to the x-value arrays not being continuous.

To mitigate this e�ect as much as possible, the

scipy.interpolate.interp1d()

function was used with the kind="cubic" option. This also acts as a kind
of �tting, predicting the behavior of the values in-between the values of the
frequency arrays. Note that this does not entirely get rid of all the numerical
errors, as seen in the results.
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4 Results

The code can plot a lot of di�erent quantities relevant for the system. To
prevent excessive length of this work, some plots will only be shown for
varying ρspike, and will be left out later except if something interesting can
be seen. Additionally, the base eccentricity of 0 means that there is no
di�erence between +- and ×-polarization and thus only the characteristic
strain of the +-polarization is shown.

4.1 Varying ρspike

Figure 10: The density pro�le for the di�erent values for ρspike. This plot is
rather trivial, as a higher ρspike means a higher density at every point in the
spike, thus an increase in ρspike corresponds to a upward shift in the plot.
The slope of the curve is simply given by α. A NFW pro�le is included for
comparison.
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Figure 11: Here the temporal evolution of the radius is shown for eq. (I) on
the left, (eq. II) in the middle and eq. (III) on the right. It can be seen that,
not surprisingly, higher DM densities result in a faster inspiral. At the same
time, higher values of α seem to favor faster inspirals as well.

Figure 12: The characteristic strain for eq. (I) on the left, eq. (II) in the mid-
dle and eq. (III) on the right. Since the eccentricity is 0, the wave is polarized
circularly, thus both polarizations have the same characteristic strain. The
shape of the curves is relatively the same, but shifted towards lower frequen-
cies for lower densities. As can be seen in the following, the same is true for
most of the other plots as well. The LISA SNR curve is included as well, and
it can be seen that GWs from the modeled system could indeed be detected.
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Figure 13: The relative di�erences in the characteristic strain caused by
using the di�erent equations (on the left the comparison between eqs. (I)
and (II), on the right between eqs. (II) and (III)). As to be expected, a
lower density results in less di�erence, as in this case DF is in general less
signi�cant for the signal compared e.g. the orbital energy loss caused by
the GWs themselves. Interestingly, the di�erences appear to be capped at
around 12% for eqs. (I) and (II) and 10% for eqs. (II) and (III). A downward
trend for higher frequencies is apparent. At around 7 · 10−2 this trend seems
to reverse. However, the very strong numerical errors starting at around the
same frequency have to be noted, making the meaningfulness of this reversal
questionable.

Figure 14: The dephasing for eq. (I) on the left, eq. (II) in the middle and
eq. (III) on the right. Again, it is no surprise that higher densities result in
stronger dephasing.



4 RESULTS 43

Figure 15: The relative di�erence of the dephasing when comparing eq. (I)
with (II) on the left, and eq. (II) with (III) on the right. As the absolute value
is plotted, the spike-like valleys correspond to sign changes, thus marking the
frequencies where the dephasing is the same for both equations. Also, the
vast magnitude of the di�erence has to be noted, with some curves reaching
up to 1000% di�erence. Especially the di�erences between eqs. (I) and (II)
seems to tend to very high values at higher frequencies.

Figure 16: The dephasing indes for eq. (I) on the left, eq. (II) in the middle
and eq. (III) on the right. As with the dephasing itself, lower densities lead
to smaller dephasing indices.
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Figure 17: The relative di�erence of the dephasing index when comparing
eq. (I) with (II) on the left, and eq. (II) with (III) on the right. Ignoring the
errors around f = 10−3Hz, the curves again seem very similar, but shifted
towards lower frequencies for smaller α and ρspike.

Figure 18: The braking index for eq. (I) on the left, eq. (II) in the middle
and eq. (III) on the right.
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Figure 19: The relative di�erence of the braking index when comparing eq. (I)
with (II) on the left, and eq. (II) with (III) on the right. One again, the
similarities of the curves can be seen, and curves with lower α or ρspike seem
to be shifted towards lower frequencies. The curves where the maximum can
be seen have that maximum at around 10% di�erence.

4.2 Varying m1

Figure 20: The evolution of the radius for eq. (I) on the left, eq. (II) in the
middle and eq. (III) on the right. Varying m1 also varies risco. R0 had to
be modi�ed as well to make the simulation work, and is 100 times risco for
m1 = 5 · 104M⊙.
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Figure 21: The characteristic strain for eq. (I) on the left, eq. (II) in the
middle and eq. (III) on the right. It can be seen that the GW signal is more
pronounced for higher primary masses. All signals are still detectable.

Figure 22: The di�erences in the characteristic strain when comparing eq. (I)
with (II) on the left, and eq. (II) with (III) on the right. Again, the curves
seem to tend towards a maximum for lower frequencies, this time it's about
70% for eqs. (I) and (II), and 10% for eqs. (II) and (III). Higher masses
result in higher di�erences, and at the same time the the shift towards lower
frequencies for lower α and m1 can be seen.
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Figure 23: The di�erences in the dephasing when comparing eq. (I) with (II)
on the left, and eq. (II) with (III) on the right. Di�erences of up to 100%
are reached. Some weird behavior can be seen at around f = 1.5 · 104Hz,
which is probably caused by numerical issues, as m1 = 5 ·104M⊙ caused some
issues in general. Aside from that, higher masses for the most part resulted
in higher di�erences.

Figure 24: The di�erences in the dephasing index when comparing eq. (I)
with (II) on the left, and eq. (II) with (III) on the right. The di�erences seem
to be capped at around 75%, with the spikes of up to 10000% most likely
stemming from numerical errors. It's di�cult to be sure, but higher masses
seem to result in higher di�erences. Once again, the shapes of the curves are
similar but shifted towards lower frequency for lower masses.
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Figure 25: The di�erences in the braking index when comparing eq. (I) with
(II) on the left, and eq. (II) with (III) on the right. The cueves have a
maximum at around 10%, and a shift towards lower frequencies for smaller
masses can be seen.

4.3 Varying m2

Figure 26: The di�erences in the characteristic strain when comparing eq. (I)
with (II) on the left, and eq. (II) with (III) on the right. Again, there seems
to be a cap at around 12% on the left, and 10% on the right side. Higher
masses result in lower di�erences. This could mean that m2 is more relevant
for DF than it is for the GW energy �ux.
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Figure 27: The di�erences in the dephasing when comparing eq. (I) with (II)
on the left, and eq. (II) with (III) on the right. Most of the di�erences reach
up to about 70%, with only two curves surpassing this value to up to 120%.
Here, higher masses mostly result in higher di�erences.

Figure 28: The di�erences in the dephasing index when comparing eq. (I)
with (II) on the left, and eq. (II) with (III) on the right. The left side
reaches up to about 10%, the right side roughly 7%. Here, the frequency
shift for α = 9/4 and α = 7/3 can be seen pretty nicely. At the same
time there is not frequency shift for α = 7/4 here. On the left side, higher
masses result in curves shifted towards lower frequencies while simultaneously
causing lower di�erences. On the right side, all masses result in roughly the
same di�erences, but at slightly di�erent frequencies.
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Figure 29: The di�erences in the braking index when comparing eq. (I) with
(II) on the left, and eq. (II) with (III) on the right. Higher masses result
in lower di�erences. Here, the curves behave in exactly the same manner as
for the dephasing index.The cap is at just over 10% for the left, and around
8-9% on the right side.

4.4 varying R0

Figure 30: The characteristic strain for eq. (I) on the left, eq. (II) in the
middle and eq. (III) on the right. It can be seen, that the evolution for
di�erent R0 is the same, just with di�erent starting points, as is expected.

As only the dephasing is in�uenced by di�erent initial radii, it will be the
only observable shown here. For the characteristic strain and braking index
the curves are equivalent to the curves of the base con�guration in all the
other plots shown.
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Figure 31: The di�erences in the dephasing when comparing eq. (I) with
(II) on the left, and eq. (II) with (III) on the right. The di�erences stay
just below 80% on the left and 20% on the right side. For α = 7/4 and
α = 9/4, higher radii result in slightly smaller di�erences, while for α = 7/3
the opposite seems to be the case.

Figure 32: The di�erences in the dephasing index when comparing eq. (I)
with (II) on the left, and eq. (II) with (III) on the right. The di�erences are
bigger for higher values of R0, and at the same time a shift towards lower
frequencies can be seen for higher radii as well as for lower values of α.

4.5 Varying e

For the eccentricity I ran into some issues that I sadly wasn't able to fully
resolve, partly due to the very long simulation times for non-zero eccentric-
ities. Thus still only the plus-polarization will be shown here, even though
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for an eccentric orbit the di�erent polarizations could become relevant.

Figure 33: The characteristic strain for eq. (I) on the left, eq. (II) in the
middle and eq. (III) on the right. Here, a change in sign can be seen. It is
interesting to see that more accurate equations seem to focus the point of
that change for di�erent α.

Figure 34: The di�erences in the characteristic strain when comparing eq. (I)
with (II) on the left, and eq. (II) with (III) on the right. For lower frequencies,
smaller e correlate to smaller di�erences, however for higher frequencies that
relation reverses. With non-zero eccentricity, the caps of 12 and 10% are
�nally exceeded.
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Figure 35: The di�erences in the dephasing when comparing eq. (I) with (II)
on the left, and eq. (II) with (III) on the right. Here as well the eccentrici-
ties increase the di�erences, reaching up to 100% di�erence on the left, and
around 30% on the right side.

Figure 36: The di�erences in the dephasing index when comparing eq. (I)
with (II) on the left, and eq. (II) with (III) on the right. The di�erence is
greater for higher eccentricities.
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Figure 37: The di�erences in the braking index when comparing eq. (I) with
(II) on the left, and eq. (II) with (III) on the right. For low frequencies, lower
eccentricities seem to cause higher di�erences, but once again this relation
reverses for higher frequencies.

Figure 38: The eccentricity evolution for eq. (I) on the left, eq. (II) in the
middle and eq. (III) on the right. With eq. (I), an eccentri�cation is expected
for the outer regions, while the newer equations predict a circularization of
the orbit.
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5 Conclusion

The goal of this thesis was to quantize the e�ects that di�erent DF modula-
tions have on some observable quantities of GWs generated by IMRIs with
DM spikes. These observables are a good (or perhaps the only) way to probe
DM and its properties, including the question weather DM is self-interacting.
Extracting information about the DM from GWs is a delicate endeavor, rais-
ing the importance of very precise models. In this work it was shown that
the di�erences between eqs. (I), (II) and (III) are indeed substantial for the
considered system.

In summary, the di�erences for the characteristic strain are noticeably bigger
for high values of ρspike, m1 and e and low values of m2.

For ∆N , the di�erences are big for high values of m1, m2 and e and low
values of ρspike.

The di�erences of the dephasing idex are big for high values of ρspike, m2

and e and low values of R0.

Lastly, the braking index di�erence is big for high values of ρspike and e
and low values of m2.

The di�erence between the observables for eq.(I) and eq.(II) are in general
larger than the ones for eq.(II) and eq.(III). However, the latter are still rel-
atively signi�cant. Especially the di�erences for ∆N are substantial. The
dephasing index however, which is arguably the more important or useful
observable, is not so �uctuant despite it's direct connection to the dephasing.

For the observables other than ∆N the di�erences rarely seem to become
greater than 12%. As mentioned, the code broke down for higher values of
m2 than the used ones, but there is a clear trend towards smaller di�erences,
meaning the newer equations should be less relevant when considering EM-
RIs instead.

As mentioned in the results, some of the curves look similar but are shifted
along the x-axis. For non-constant functions, this automatically results in
some di�erence compared to the unaltered version. Which in this case most
likely boosts the di�erences for a lot of the values. This would also be com-
patible with the many instances of swaping signs. Analyzing the severity of
of the frequency shifts could make for interesting future work. If the shift is
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known and the curves indeed are very similar otherwise, simulations could be
calculated with the simpler equations and then just shifted in the frequency.
It has to be noted however, that it is possible for the similar shape of the
curves to appear due to some numerical artifacts that elude direct notice.
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