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Abstract

In this thesis, we study the phase structure of the Abelian Higgs model and determine
regions of the parameter space that exhibit first-order phase transitions. For this
purpose, we construct the thermal effective potential up to one-loop order and examine
its thermal evolution for the emergence of a thermal barrier. Furthermore, we compute
the stochastic gravitational wave spectra and draw conclusions if such signals are
detectable by future space-based gravitational wave observatories and pulsar timing
arrays.
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Chapter 1

Introduction

If we look deeper and deeper into space it is well known that we also look back in
time. However, we eventually reach a natural barrier: the cosmic microwave back-
ground (CMB). The early universe – being of particular interest for high-energy par-
ticle physics – would therefore remain hidden to us if light was our only way to make
observations. That is when gravitational waves (GWs) come into play. Analogous
to the CMB, the superposition of many independent GW generating processes in the
early universe results in a stochastic gravitational wave background (SGWB)
observable today. Predicted by Albert Einstein in 1916 [13][14], the first GW signal
was detected a century later [20], marking the emergence of a new field of research.
To this day, GWs offer the opportunity to study problems involving energy scales
predominant in the early universe but inaccessible to laboratories on earth. These
problems include Baryogenesis, Dark Matter, the Flatness and the Horizon problem,
along with the Hierarchy problem, amongst others. The Standard Model of par-
ticle physics (SM) fails to explain these phenomena which is why researchers are
looking for extensions.

In this thesis, we extend the SM by a new Abelian U(1) gauge symmetry, known as
the Abelian Higgs model [35][38]. The theory introduces a dark photon, behaving
like a massive particle when interacting with a singlet Higgs-like scalar field. We will
investigate if the thermal effective potential enables a first order phase transition
(FOPT) and compute the corresponding GW spectrum. We compare our data with
the detection range of various planned (or proposed) space-based observatories: the
Laser Interferometer Space Antenna (LISA) [3][21], the Big Bang Observer (BBO)
[31], µAres [19] and the Einstein Telescope (ET) [23]. We also check if our results
could potentially be registered with pulsar timing arrays (PTAs) which are a set of
millisecond pulsars whose deviations from their proper frequency are used to detect
spacetime curvatures. Therefore, we compare our results with the recent data from
the NANOGrav 15-year Data Set [18].



Chapter 2

Theory and Background

2.1 Cosmology

The following introduction is based on the lecture notes of Daniel Baumann [4, 5]. It
should be noted that we use natural units in this thesis, i.e. ℏ = c = 1.

2.1.1 Geometry and dynamics of spacetime

The assumption that the universe is homogeneous and isotropic on large scales is called
the cosmological principle. In agreement with this, the 4-dimensional spacetime
can be foliated into time-ordered 3-dimensional hypersurfaces, which are also homo-
geneous and isotropic. Taking into account the expansion of the universe, we obtain
the Friedmann-Robertson-Walker (FRW) metric. In polar coordinates, it reads

ds2 = −dt2 + a2(t)
[ dr2

1− kr2/R2
0

+ r2dΩ2
]
, (2.1)

where R0 is the curvature scale and dΩ2 ≡ dθ2 + sin2(θ)dϕ2. In particular, the scale
factor a(t) is introduced as well as the curvature parameter k ∈ {0,+1,−1} for flat,
positively (spherical) and negatively (hyperbolic) curved space, respectively.

Fig. 2.1: Curvature of spacetime for k = 0 (left), k = +1 (center), k = −1 (right).

Proceeding from the metric, we now want to analyze the dynamics of spacetime. For
this we examine how the scale factor a(t) evolves with time. We apply the Einstein
equation,

Gµν = 8πGTµν , (2.2)
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to the FRW metric. The above expression is actually a set of ten nonlinear differential
equations. It states the principle of spacetime curvature under the influence of energy
and matter. It comes with the metric-dependent Einstein tensor Gµν , the gravitational
constant G and the energy-momentum tensor Tµν . The latter is a perfect fluid in the
FRW metric1:

Tµν = diag(ρ, P, P, P ) , (2.3)

with energy density ρ and pressure P .

The zeroth component of the Einstein equation yields the Friedmann equation.
It provides a differential equation for the scale factor a(t) whereas the second Fried-
mann equation yields an acceleration equation for a(t) and results from the spatial
components of the Einstein equation:

G00 = 8πGT00 ⇒
( ȧ
a

)2
=

8πG

3
ρ− k/R0

a2
, (2.4a)

Gij = 8πGTij ⇒ ä

a
= −4πG

3
(ρ+ 3P ) . (2.4b)

In the literature, the Hubble parameter:

H ≡ ȧ

a
, (2.5)

denotes the expansion rate of the universe. Today’s expansion rate is given by the
Hubble constant H0 ≈ 70km/sec/Mpc [25]. Additionally, one can define the critical
energy density today (for a flat universe [25], cf. Fig. 2.1, left):

ρcrit,0 ≡
3H3

0

8πG
. (2.6)

Information about the evolution of density ρ and pressure P provides the continuity
equation ∇µT

µν = 0. When formulated in the FRW metric, it looks as follows:

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0 . (2.7)

The constant equation of state,

w =
P

ρ
, (2.8)

provides a relation between density ρ and pressure P . Then, using Eq. (2.7), we obtain
the three forms of energy in the ΛCDM-model [36]:

ρ̇

ρ
= −3(1 + w) ⇒ ρ =

ρ0

a3(1+w)
∝


a−3 pressureless matter,

a−4 radiation,

a0 dark energy,

(2.9)

1We assume the fluid to be in rest in the considered frame of the universe.
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Fig. 2.2: Three different stages of evolution: First, the radiation dominated era (ρ ∝
a−4) during which Big Bang nucleosynthesis (BBN) occurs and which lasts until the
formation of the CMB, followed by the matter dominated era (ρ ∝ a−3). Nowadays,
the energy density of the universe is dark energy dominated (ρ ∝ a0). Figure adopted
from [5]

where the integration constant ρ0 is the energy density today when we set a(t0) ≡ 1
by convention. In the case of dark energy, the energy density remains constant with
an expanding universe, resulting in a negative pressure.

Often times, in order to differ between the different forms of energy in the universe,
Eq. (2.4a) is expressed the following way:

H2

H2
0

=
Ωm

a3
+

Ωr

a4
+ΩΛ , (2.10)

with

Ωi ≡
ρi
ρcrit

, i =


m matter,

r radiation,

Λ dark energy.

(2.11)

The values are [24][25]

Ωm = 0.32 , Ωr = 8.99× 10−5, ΩΛ = 0.68 , (2.12)
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where Ωm= 0.05, 0.27 for visible and dark matter, respectively. Thus, the question
about the nature of dark matter and dark energy is also a fundamental question about
the nature of the universe as they make up 95% of the total energy.
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2.1.2 Gravitational radiation

Analogous to electromagnetic waves as solutions of the Maxwell equations, ∂µF
µν =

Jν , GWs solve the Einstein equations (cf. Eq. (2.2)). They are to be understood as
ripples in space-time, which propagate unhindered in space with the speed of light.

Linearized theory in vacuum

We consider a small perturbation |hµν | ≪ 1 around the flat Minkowskian metric
ηµν = diag(−1,+1,+1,+1),

gµν = ηµν + hµν , (2.13)

and are free to lower and raise indices with ηµν instead of gµν since all quadratic or
higher order terms can be neglected [42]. Moreover, we introduce the trace-reversed
metric perturbation:

h̄µν ≡ hµν −
1

2
hηµν , (2.14)

where h = ηµνh
µν . The Einstein equations are gauge invariant and do not change un-

der infinitesimal coordinate transformations. Thus, nothing prevents us from choosing
a convenient gauge. Just as Lorentz gauge simplifies the Maxwell equations in such
a way that they reduce to wave equations, we want to achieve the same in linearized
gravity by introducing the de Donder gauge:

∂µhµν −
1

2
∂νh = 0 . (2.15)

With this gauge and using the trace-reversed metric perturbation, Eq. (2.2) simplifies
to a series of decoupled linear wave equations that read in vacuum (Tµν = 0) [42]:

□h̄µν = 0 . (2.16)

Their solutions are plane waves [5]:

h̄µν = Re
(
Hµνe

ikλx
λ)

, (2.17)

with the complex polarization matrix Hµν and the wavevector kµ = (ω,k) with
frequency ω and three-dimensional wavevector k. In order to solve Eq. (2.17), GWs
need to propagate with the speed of light.2

We will now present a common way to reduce the number of independent polar-
izations from 10 to 2: The de Donder gauge requires transverse polarization to the
direction of propagation since it indicates that

kµHµν = 0 , (2.18)

reducing the polarizations from 10 to 6.

2That is because □h̄µν = −(kµk
µ)h̄µν ⇔ kµk

µ = 0 ⇒ ω
!
= ±|k|.
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Considering a second gauge transformation,

h̄µν → h̄µν + ∂µξν + ∂νξµ − ∂σξσηµν , (2.19)

and demanding

□ξµ = 0 ⇒ ξµ = λµe
ikλx

λ
(2.20)

yields the following shift in the polarization matrix while still describing the same GW
[5]:

Hµν → Hµν + i(kµλν + kνλµ − kσλσηµν) . (2.21)

This leads to the transverse traceless gauge (TTG), where

H0µ = 0 , Hµ
µ = 0 and h̄µν = hµν . (2.22)

We are now left with 2 independent polarizations. For a GW that propagates in
z-direction, the polarization matrix looks as follows [5]:

Hµν =


0 0 0 0
0 H+ H× 0
0 H× −H+ 0
0 0 0 0

 , (2.23)

for +- and ×-polarization.

How these polarizations affect particles becomes clear when one considers a ring of
particles under the influence of a GW. For this, the dynamics of a vector Bµ which
reaches from the center of the ring to any particle of the considered system is relevant.

The geodesic deviation equation

d2Bµ

dt2
=

1

2

d2hµρ
dt2

Bρ (hµ0 = 0) , (2.24)

yields two equations of motion for B1 and B2 whose solutions (for small H+ and H×,
respectively) read [5]:

B1(t) = B1(0)
(
1 +

1

2
H+e

iwt + . . .
)
, (2.25a)

B2(t) = B2(0)
(
1− 1

2
H+e

iwt + . . .
)
, (2.25b)

where B1(0)2 + B2(0)2 = R2 is the radius of the particle ring which is periodically
distorted to an ellipse at +-polarization (see Fig. 2.3).

Considering small H× yields [5]:

B1(t) = B1(0) +
1

2
B2(0)H×e

iωt + . . . , (2.26a)

B2(t) = B2(0) +
1

2
B1(0)H×e

iωt + . . . , (2.26b)
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which can be rewritten as

B1(t)±B2(t) = [B1(0)±B2(0)]
(
1± 1

2
H×e

iωt + . . .
)
, (2.27)

resulting in a similar distortion as in the case of +-polarization but rotated by 45◦.
The resulting deformation of the considered particle ring under the influence of a GW
with different polarizations is illustrated in Fig. 2.3.

Fig. 2.3: Deformation of a particle ring in the x-y-plane for a GW propagating in
z-direction. Left: +-polarization. Right: ×-polarization.
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Detection of gravitational waves

In 1887, A. A. Michelson and E. W. Morley performed an experiment to confirm the
dependence of the speed of light on the earth’s direction of motion, based on the as-
sumption that it moves through a so-called luminiferous ether [37]. The measurements
were made using an Michelson interferometer which is a construction of two crossing,
orthogonal arms of the same length. A monochromatic laser beam is split so that
both light beams pass simultaneously through one of the arms and are reflected at
its end. The returning beams hit a detector which will register interference in case of
varying runtimes. Michelson and Morley expected to observe an interference pattern
resulting from an anisotropy of the speed of light. However, they could not register
any directional variations that could be attributed to a relative motion of the earth
and the ether.3

Today, Michelson interferometers are applied for the detection of phenomena
that seem to influence light in such a way that one could believe it is due to a
direction-dependent speed. However, it is spacetime itself that is affected by the
passage of a GW, resulting in a runtime difference of two light beams.

For simplicity, assume that one GW interfereometer arm lies on the x-axis with
length L = x and the GW moves with +-polarization in z-direction. The time treturn
taken by the returning light beam can be easily calculated in flat Minkowskian metric
in the following way [42]:

treturn = t+ L+
1

2

[ ∫ L

0
h+(t+ x)dx︸ ︷︷ ︸

variations before reflection

+

∫ L

0
h+(t+ x+ L)dx︸ ︷︷ ︸

variations after reflection

]
, (2.28)

where h+ = AH+e
−iω(t−z) with amplitude A and the start time t. Temporal fluctua-

tions therefore occur with the rate [42]

dtreturn
dt

= 1 +
1

2

[
h+(t+ 2L)− h+(t)

]
. (2.29)

In general, the changes in length δL of the interferometer arms are [5]:

δL

L
≈ H+,×

2
. (2.30)

3That is, of course, because such an ether does not exist.
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Linearized theory in matter

Next, we consider the so-called inhomogeneous wave equation for GWs resulting from
a source of matter in a certain region Σ,

□h̄µν = −16πGTµν . (2.31)

The solution is given by [5]

h̄µν(t,x) = 4G

∫
Σ
d3y

Tµν(tr,y)

|x− y|
, (2.32)

where tr = t − |x − y| denotes the ”retarded time” which takes into account that
the influence of matter at location y on the gravitational field h̄µν(t,x) cannot
instantaneously affect a location x since GWs propagate at the speed of light.

Let d be the size of the source at large distance r = |x| ≫ d. The divisor in the
integral from Eq. (2.32) then changes as shown below:

|x− y| = r − x · y
r

+ . . . ⇒ 1

|x− y|
=

1

r
+

x · y
r3

+ . . . . (2.33)

This also affects the energy-momentum tensor:

Tµν(tr,y) = Tµν(t− r,y) +
d

dr
Tµν(t− r,y)

x · y
r

+ . . . . (2.34)

The gravitational field at large distance from the source then reads (keeping only
linear terms of Tµν) [5]:

h̄µν(t,x) ≈
4G

r

∫
Σ
d3y Tµν(t− r,y) . (2.35)

The spatial solutions reveal the second-order derivative of the source’s energy
quadrupole moment Iij :

h̄ij(t,x) =
2G

r

d2Iij
dt2

(tr) , (2.36)

with

Iij(tr) ≡
∫
Σ
d3y T 00(tr,y)yiyj . (2.37)

Hence, Gws are generated by the energy quadrupole moment of the source changing
with time.
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2.2 Cosmological phase transitions

Cosmological phase transitions (PTs) occur between states of true (stable) and
false (metastable) vacuum and have profound effects on the dynamics of the universe
as well as on particle physics. However, their concept is similar to that of conven-
tional phase transitions, e.g. the transition from liquid to gas. In the case of FOPT,
bubbles of the new stable phase form and then expand, somewhat like boiling water4.

Fig. 2.4: The SM phase diagram.
Taken from [30]

The phase diagram of the SM is given in Fig. 2.4
and will be briefly discussed at this point in prepa-
ration for the discussions in the sections below.

For Higgs masses below mH ∼ 75 GeV, the
SM exhibits a first-order phase transition. At
some critical temperature Tc, the scalar field ϕ
tunnels to the Higgs phase. Bubbles of the new
stable phase (ϕ ̸= 0) form and expand into the
metastable symmetric phase (ϕ = 0). Their colli-
sion will generate a series of events that result in
a stochastic GW signal (see Sec. 2.2.4).

The SM undergoes a second-order PT for
Higgs masses aroundmH ∼ 80 GeV. In that case,
no latent heat is required and consequently no
GWs are generated. For larger Higgs masses, the
SM has no PT but a cross-over and the symmet-
ric phase smoothly changes to the Higgs phase.
The latent heat is zero.

2.2.1 Phase transitions in thermal field theory

The following overview on perturbative thermal field theory follows [33].

At zero temperature, relativistic quantum mechanics is mathematically described by
quantum field theory5 (QFT). One important object of this theory is the Lorentz
invariant Lagrangian density L which contains the kinetic terms and interactions of a
system. When integrating the Lagrangian density, we obtain the action S:

S =

∫
L(x) d4x . (2.38)

The principle of least action δS = 0 states that small variations of the quantum
fields do not affect S. This leads to the equations of motion in QFT, similarily as in

4Where in our case, bubbles of the stable phase appear and grow through cooling, see Sec. 3.1.
Moreover, latent heat is released during the cooling whereas in the case of boiling water, latent heat
is converted into the kinetic energy of the molecules.

5Here, a quantum field is represented by an infinite set of harmonic oscillators.
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classical mechanics. It also means that, for the ground state (vacuum), the potential
V is minimal.

At finite temperature, the partition function Z is of particular interest since it
contains all the thermodynamic information needed such as the free energy F and the
free energy density f . We consider a canonical ensemble without chemical potentials:
A system of constant volume V in contact with a heat reservoir6 of temperature T .
The corresponding free energy and free energy density read

F (T,V, N) =
1

β
lnZ(T,V) = T lnZ(T,V) , (2.39)

f(T,V, N) =
1

βV
lnZ(T,V) = T

V
lnZ(T,V) , (2.40)

where β = T−1. We notice that, in the context of thermal quantum field theory
(TQFT), the temperature has the unit of energy. Energy E and entropy S can be
derived from the free energy via Legendre transformation as

F (T,V, N) = E(T,V, N)− TS(T,V, N) . (2.41)

The partition function is:

Z(T ) = Tr
[
e−βH

]
, (2.42)

where H denotes the Hamiltonian and the trace spans the entire Hilbert space. After
performing a Wick rotation τ ≡ it and setting τ = T−1, the operator e−βH in Eq.
(2.42) equals the time evolution operator e−iHt in classical quantum mechanics. The
path-integral representation in imaginary-time formalism [12] of the partition function
is given by:

Z =

∫
ϕ(β,x)=ϕ(0,x)

Dϕ(τ, x) exp

{
−
∫ β

0
dτ

∫
d3x LE(ϕ, ∂ϕ)︸ ︷︷ ︸
SE

}
, (2.43)

where we integrate over all possible configurations of the field ϕ and introduce the
Euclidian Lagrangian density LE(ϕ, ∂ϕ) as well as the Euclidean action SE .

We consider ϕ to be a real scalar field and express it as a sum of its zero- and non-
zero-momentum modes (denoted as ϕ̄ and ϕ′, respectively) [33]. The zero-momentum
mode represents the lowest energy and consequently a minimum of the potential V .

The partition function then reads [33]

Z =

∫ +∞

−∞
dϕ̄

∫
P ̸=0

Dϕ′ exp
(
SE(ϕ = ϕ̄+ ϕ′)

)
(2.44)

6The thermal bath of the universe, in our research.
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≡
∫ +∞

−∞
dϕ̄ exp

[
−V
T
Veff(ϕ̄, T )

]
, (2.45)

where we first encounter the thermal effective potential Veff. It includes in addition
to the classical potential (now referred to as tree-level potential Vtree) also quantum
corrections at zero temperature and thermal corrections at finite temperatures7. We
perform a Taylor expansion of Veff around its minimum ϕ̄min:

Veff(ϕ̄, T ) ≈ Veff(ϕ̄min, T ) +
1

2
V ′′
eff(ϕ̄min, T )(ϕ̄− ϕ̄min)

2 . (2.46)

Inserting Eq. (2.46) in Eq. (2.45), we obtain the following integral:

Z(T,V) ≈
∫ +∞

−∞
dϕ̄ exp

[
−V
T
Veff(ϕ̄min, T )

]
exp

[1
2
V ′′
eff(ϕ̄min, T )(ϕ̄− ϕ̄min)

2
]
. (2.47)

The first term can be pulled in front of the integral. We integrate the Gaussian and
obtain the following solution:

Z(T,V) ≈

√
2πT

V ′′
eff(ϕ̄min, T )V

exp
[
−V
T
Veff(ϕ̄min, T )

]
. (2.48)

In the thermodynamic limit V → ∞, Eq. (2.40) yields the following relationship
between free energy density f and thermal effective potential [33]:

lim f(T )
V→∞

= Veff(ϕ̄min, T ) +O
( lnV

V

)
. (2.49)

We make the following conclusion: In the thermodynamic limit, the free energy
density is represented by the minimum of the thermal effective potential. Since a
FOPT is characterized by a discontinuity in df(T )

dT |T=Tc at a critical temperature Tc,
the same behaviour is expected from Veff(ϕ̄min, Tc). In that case, the discontinuity
results from the emergence of a second minimum separated from the first one by
a thermal barrier (see Fig. 2.5). One refers to the second minimum as vacuum
expectation value (VEV) ⟨ϕ⟩ ≠ 0 of the scalar field.

2.2.2 Bubble nucleation

We already introduced the false vacuum as the metastable phase of the universe before
undergoing a PT. Usually, when the scalar tunnels to the true vacuum one speaks of
false vacuum decay (see Calan and Coleman [8][9] for zero temperature and Linde
[34] for finite temperatures). Let us consider the temperature-dependent nucleation
rate per unit volume for bubbles of true vacuum [34]:

Γ(T )

V
⋍ T 4

( S3

2πT

)3/2
e−S3/T , (2.50)

7Details on the construction of Veff can be found in [6].
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Fig. 2.5: Temperature evolution of an exemplary thermal effective potential in the
Abelian Higgs model (cf. Eq. 3.12 – 3.17). At critical temperature Tc, a thermal
barrier separates two degenerate generate minima representing two distinct, coexisting
phases.

where the four-dimensional Euclidean action S4 (an integral over β = T−1 for O(4)-
symmetric bubbles at zero temperature) has now simplified to S4 = S3

T . Note that
in the considered case, the false vacuum decays due to thermal fluctuations. The
three-dimensional Euclidean action is

S3 =

∫
d3x
[1
2

(
∇ϕ
)2

+
(
Veff(ϕ, T )− Veff(0, T )

)]
, (2.51)

and leads to the following equation of motion [34]:

d2ϕ

dr2
+

2

r

dϕ

dr
=

dVeff

dϕ
, (2.52)

where r =
√
x2 + t2 is the three-dimensional bubble radius that grows with time t.

We refer to Eq. (2.52) as the O(3)-symmetric bounce equation.
The bounce solution can be obtained with the following boundary conditions:

ϕ → 0 at r → ∞ , (2.53a)

dϕ

dr
= 0 at r = 0 . (2.53b)

For a method to numerically determine the bounce solution, see chapter 4. A plot of
the bubble wall profile for various temperatures can be found in Fig. 2.6.
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Fig. 2.6: Bubble wall profile for various temperatures in the Abelian Higgs model.
The bubble wall expands for decreasing temperatures.

The probability that the false vacuum has not yet decayed into true vacuum at a
given point is determined by P = e−I(T ), where [16]

I(T ) =
4π

3

∫ Tc

T

dT ′Γ(T ′)

T ′4H(T ′)

(∫ T ′

T

dT̃

H(T̃ )

)3

, (2.54)

with the Hubble parameter [16]

H2 =
ρvac + ρrad

3M2
pl

=
1

3M2
pl

(
∆V +

π2

30
g∗T

4
)
. (2.55)

We notice that H(T ) is proportional to the vacuum energy density ρvac ≡ ∆V =

Veff(0, T )−Veff(ϕtrue, T ) and the radiation energy density ρrad ≡ π2

30 g∗T
4. Furthermore,

the effective number of relativistic dofs g∗ is introduced. In the following, we assume
g∗ = 100 for simplicity.8

2.2.3 Bubble collisions

At critical temperature Tc, stable and metastable phase coexist, allowing thermal
tunneling to happen. The PT, however, only takes place when bubbles of true vacuum
form fast enough to overcome the expansion of the universe. This is possible for
Γ(T = Tn)/H

4(T = Tn) ∼ 1 at nucleation temperature Tn. The expansion is then

8Note that in the SM this value is g∗ = 106.75.



18 CHAPTER 2. THEORY AND BACKGROUND

driven by an effective pressure due to the potential difference between true and false
vacuum.

When solving Eq. (2.54) for I(T ) = 0.34 [15], we obtain the percolation temperature
T = T∗ of the PT. There are many important quantities that can be evaluated at
T∗ such as the PT strength α, the average bubble radius R∗ at percolation or the
inverse PT duration β. These quantities will help us to understand the further bubble
dynamics up until their collision and the corresponding generation of GWs.

The PT strength α is a measure of how much latent heat is released during the phase
transition. It reflects the amount of released energy that will go into the expansion of
true vacuum bubbles and how much thermal energy will go into the reheating of the
symmetric phase.9 Therefore, it reads [21]:

α =
ρvac(T∗)

ρrad(T∗)
=

∆V

π2g∗T 4
∗ /30

. (2.56)

The average bubble radius at percolation R∗ is [16]:

R∗ =

[
T∗

∫ Tc

T∗

dT ′Γ(T ′)

T ′2H(T ′)
e−I(T ′)

]− 1
3

. (2.57)

It can be used to calculate the inverse PT duration [16]:

β =

(
8π
) 1

3

R∗
. (2.58)

What is often done in the literature is to normalize Eq. (2.58) to the Hubble
parameter. Then, β

H provides information on the inverse duration of the PT with

respect to the expansion rate of the universe. For larger β
H , the PT proceeds more

slowly and more bubbles of true vacuum can nucleate and collide.

2.2.4 Gravitational waves from bubble collisions

We are interested in GWs generated as a consequence of cosmological FOPTs and
the corresponding collision of true vacuum bubbles. We will therefore compute the
stochastic GW spectrum h2ΩGW with its various contributions to the observable
SGWB. The following mechanisms generate GWs and add to the spectrum:

1. Collisions of vacuum bubbles h2Ωϕ

2. Propagation of sound waves in the thermal bath of the primordial plasma
h2Ωsw

3. Magnetohydrodynamic (MHD) turbulences h2Ωturb .

9Concretely, reheating happens for the thermal bath of the false vacuum where ⟨ϕ⟩ = 0.
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Fig. 2.7: A simplified scheme of the GW generation from bubble collision (black),
sound waves in the plasma (red), and turbulences (blue). Figure adopted from [39]

The collision of bubbles results in anisotropies in the energy momentum tensor and
GWs are generated as a result of a quadrupole moment that changes with time (cf.
Sec. 2.1.2) . This contribution to the GW spectrum depends exclusively on the scalar
field’s dynamics (hence the index ϕ). We will use the envelope approximation [32]
assuming that most of the energy is deposited in a thin shell surrounding the walls of
uncollided bubbles. We therefore set h2Ωϕ ≡ h2Ωenv [21].

The bubble collisions create sound waves in the primordial plasma which for their
part shape into sound bubbles that eventually collide and generate GWs. Furthermore,
they represent a longer-lasting source of GWs in comparison to the initial bubble wall
collisions and contribution to the GW spectrum are amplified by a factor β

H [6].
Consequently, sound wave collisions typically dominate the GW spectrum.

Another result of sound wave propagation is the induction of vortical motions in the
ionized primordial plasma [39]. These MHD turbulences also produce GWs. However,
we will neglect the conversion into turbulent motion since it affects only a fraction of
the sound wave energy budget [7].

The GW spectrum is the sum of its contributions:

h2ΩGW ⋍ h2Ωenv + h2Ωsw . (2.59)

An important ingredient for the computation of h2ΩGW are the efficiency factors κv
for the amount of latent heat converted into bulk motion and κϕ for the energy fraction
that goes into the bubble wall acceleration [21]:

κv ⋍ α
(
0.73 + 0.083

√
α+ α

)−1
(vw ∼ 1) , (2.60)

κϕ ≡ α− α∞
α

, (2.61)
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with the model-dependent parameter α∞. It can be calculated via [21]:

α∞ ⋍
30

24π2

∑
a na∆m2

a(ϕ)

g∗T 2
∗

, (2.62)

where na denotes the dof of particle species a and ∆m2
a(ϕ) incorporates all particle

masses that change during the PT.

Finally, we are able to compute the GW spectrum. The contribution from bubble
collisions in the envelope approximation is [21]:

h2Ωenv(f) = 1.67× 10−5

(
H(T∗)

β

)2(
κϕα

1 + α

)2(
100

g∗

) 1
3
(

0.11v3w
0.42 + v2w

)
Senv(f) , (2.63)

with frequency f and spectral shape Senv(f) of the GW signal. The latter is given by

Senv(f) =
3.8(f/fenv)

2.8

1 + 2.8(f/fenv)3.8
. (2.64)

The corresponding peak frequency fenv depends on the inverse PT duration β. At
percolation, it is [21]:

f∗ = β

(
0.62

1.8− 0.1vw + v2w

)
. (2.65)

Red-shifted, the peak frequency develops to [21]

fenv = 16.5× 10−3mHz

(
f∗
β

)(
β

H(T∗)

)(
T∗

100GeV

)(
g∗
100

) 1
6

, (2.66)

considering a radiation-dominated era after the FOPT and a subsequent adiabatic
expansion of the universe until today.

The GW signal resulting from the sound wave contribution reads [21]

h2Ωsw(f) = 2.65× 10−6

(
H(T∗)

β

)(
κvα

1 + α

)2(
100

g∗

) 1
3

vwSsw(f) , (2.67)

with the spectral shape

Ssw(f) = (f/fsw)
3

(
7

4 + 3(f/fsw)2

) 7
2

. (2.68)

We adopt the peak frequency in [21] f ′
sw = (2/

√
3)(β/vw) which reads after red-

shifting:

fsw = 1.9× 10−2mHz
1

vw

(
β

H(T∗)

)(
T∗

100GeV

)(
g∗
100

) 1
6

. (2.69)
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2.2.5 Computation of the power-law integrated sensitivity curves

We will check whether the computed GW spectrum overlaps the enclosed regions by
the power-law integrated (PLI) sensitivity curves [43] of the considered planned
space-based interferometers.10 If a GW spectrum has a large enough signal-to-noise
ratio (SNR), it will intersect the enclosed region and consequently be detected. We
obtain the PLI sensitivity curve using the SNR via the following steps:

The SNR ρ is given by [7]

ρ2 = 2tobs

∫ fmax

fmin

df

[
h2ΩGW(f)

h2Ωeff(f)

]2
, (2.70)

with the observation time tobs, the detector frequency band (fmin, fmax) and the ef-
fective noise energy density h2Ωeff . One can assume the following power law:

h2ΩGW(f) = h2Ωb

(
f

f̄

)b

, (2.71)

where b is the spectral index and h2Ωb the GW density at a reference frequency f̄ .
The power law signal can be detected if h2Ωb is larger than at a certain threshold
value ρthr:

h2Ωb > h2Ωthr
b (f) ≡ ρthr√

2tobs

[∫ fmax

min

df

(
(f/f̄)b

h2Ωeff(f)

)2 ]− 1
2

. (2.72)

The PLI sensitivity curve is then given as follows [7]:

h2ΩPLI(f) = max
b

[
h2Ωthr

b

(
f

f̄

)b ]
. (2.73)

10All PLI curves in this thesis were provided by Daniel Schmitt.
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2.3 The Higgs mechanism

In the 1960s, six physicists published their theory on the unknown origin of particle
masses: François Englert, Robert Brout [17], Peter Higgs [29], Gerald Guralnik, Carl
R. Hagen and Tom Kibble [28]. The Higgs mechanism was born. Its concept is
the spontaneous breaking of a given symmetry as the Higgs field (a complex doublet
with hypercharge Y = 1

2 , referred to as the Higgs multiplet) acquires a VEV.
The corresponding Higgs boson was discovered at CERN in 2012 [22] which finally
confirmed the Higgs field’s existence predicted by the theory.

In the context of Sheldon L. Glashow’s electroweak unified theory [26], Steven
Weinberg [45] and Abdus Salam [41] applied in 1967 the Higgs mechanism to the
electroweak symmetry resulting in a spontaneous breakdown into electromagnetism11:

SU(2)L × U(1)Y −→ U(1)EM , (2.74)

where SU(2)L denotes the weak isospin and U(1)Y the weak hypercharge symmetry
group. The W± and Z boson obtain their masses through the Higgs mechanism.
However, instead of explaining the details of the Higgs mechanism in the electroweak
theory, we will illustrate it in the next chapter on the simpler Abelian Higgs model.

11This will later lead to the Glashow-Weinberg-Salam (GWS) Standard Model of particle physics.



Chapter 3

The Model

We consider an Abelian, U(1)-gauge extension of the Standard Model: The Abelian
Higgs model. The following introduction is inspired by Kien Nguyens [38] and Laura
Reinas [40] lecture notes. Afterwards, I will derive the thermal effective potential,
following [6]

At this point, it should be noted that we initially dealt with the model of a real,
massive scalar field that only couples to itself. After we found that such a model has
no FOPT, we moved on to the Abelian Higgs model. Details on the first model can
be found in Appendix A but are not focus of this thesis.

3.1 The Abelian Higgs model

Let us first consider the U(1) gauge invariant kinetic term of the photon

Lkin = −1

4
FµνF

µν , (3.1)

with the electromagnetic tensor

Fµν = ∂µAν − ∂νAµ . (3.2)

Suppose we want to have a theory that describes a massive photon and therefore
simply add a mass term m2:

Lkin = −1

4
FµνF

µν +
1

2
m2AµA

µ . (3.3)

However, the mass term violates the local U(1) gauge symmetry, meaning that the
Lagrangian density is no longer invariant under the transformation

Aµ(x) → Aµ(x)− ∂µη(x) , (3.4)

for any η and x. There is still a way we can extend the model to provide us with a
massive photon: We introduce a charged, self-coupling complex scalar field that also
couples to the vector field Aµ. The new Lagrangian density reads in Minkowskian
metric [38]

L = −1

4
FµνF

µν + (Dµϕ)
†(Dµϕ)− V (ϕ) , (3.5)
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with the gauge covariant derivative Dµ = ∂µ − igAµ (where g denotes the charge of
the vector field) and the following potential:

V (ϕ) = −µ2

2
ϕ†ϕ+

λ

4
(ϕ†ϕ)2 . (3.6)

The new Lagrangian density is invariant under Eq. (3.4) and under

ϕ(x) → eiqη(x)ϕ(x) . (3.7)

The parameter µ2 of the potential V (ϕ) is now of special interest for us since its
sign is crucial for which theory we describe: That of a massless or a massive photon.
For µ2 < 0, the potential has one global minimum at ϕ = 0. The photon remains
massless. In that case, the theory describes quantum electrodynamics (QED) with a
massive scalar field. For µ2 > 0, we observe the appearance of two degenerate minima

⟨ϕ⟩ = ±
√

µ2

λ
, (3.8)

leaving us with a Mexican hat potential. After choosing one ground state, the U(1)
symmetry is spontaneously broken.

Next, we want to express the Lagrangian density in a form that appears more
intuitive to us. For that, we choose the following parametrization for our complex
scalar field ϕ:

ϕ =
v + h√

2
ei

χ
v , (3.9)

where v =
√

µ2

λ is our VEV, h denotes the Higgs boson and χ the Goldstone boson.
Both bosons are real scalar fields. The Goldstone boson, however, is massless. We use
our parametrization in Eq. (3.9) and end up with the new Lagrangian density [40]

L = −1

4
FµνF

µν +
g2v2

2
AµA

µ︸ ︷︷ ︸
massive vector field

+
1

2
(∂µh ∂µh− 2µ2h2)︸ ︷︷ ︸
massive real scalar field

+
1

2
∂µχ ∂µχ− gvAµ∂

µχ︸ ︷︷ ︸
massless Goldstone Boson

.

(3.10)
Applying the unitary gauge Aµ → A′

µ = Aµ− 1
gv∂µχ will make the Goldstone boson

disappear:

L = −1

4
FµνF

µν +
g2v2

2
A′

µA
′µ︸ ︷︷ ︸

massive vector field

+
1

2
(∂µh ∂µh− 2µ2h2)︸ ︷︷ ︸
massive real scalar field

. (3.11)

Now our theory describes a dark photon with effective mass mZ = gv and a Higgs
boson with mass mh =

√
2µ =

√
2λv. The degrees of freedom (dof) before and

after spontaneous symmetry breaking (SBB) are equal. Initially, we have 4 dof:
2 dof from the massless photon and 2 dof from the complex scalar field. In the end,
we have a massive photon with 3 dof and a real scalar field with 1 dof, leaving us
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particle a effective mass ma(ϕ) dof Ca thermal mass Π(ϕ)

ϕ −µ2 + 3λϕ2 1 3/2 λT 2/4

Z g2ϕ2 3 5/6 g2T 2/4

Tab. 3.1: Thermal and effective masses of the respecitve particle inclduing their de-
grees of freedom along with their respective constants appearing in the thermal effec-
tive potential (Eq. 3.12 – 3.17)

again with 4 dof. Hence, one says: In unitary gauge, the Goldstone boson gets eaten
by the gauge boson through the Higgs mechanism.

In Sec. 2.2.1 we established that, for V → ∞, the thermal effective potential
Veff(ϕ, T ) resembles the free energy density f(T ). In the Abelian Higgs model, the
individual contributions are [6]

Veff(ϕ, T ) ≈ Vtree(ϕ) + VCW(ϕ, T = 0) + VT(ϕ, T ) + Vdaisy(ϕ, T ) , (3.12)

with the temperature independent tree-level potential Vtree(ϕ) introduced in Eq. (3.6)
and the zero-temperature Coleman-Weinberg potential [6]

VCW(ϕ, T = 0) =
∑
a

ηana
m4

a(ϕ)

64π2

[
log
(m2

a(ϕ)

Λ2

)
− Ca

]
, (3.13)

where we sum over the different particle types a ∈ {ϕ,Z}. The parameter η is 1 (-1)
for bosons (fermions). We encounter more new parameters: The field-dependent mass
ma(ϕ), the renormalization scale Λ for which we take the (positive) tree-level VEV in
Eq. (3.9), the particles dof na and the particle dependent constant Ca. The values for
our model are listed in Tab. 3.1.

The temperature-dependent contribution to the effective potential is [6]

VT(ϕ, T ) =
T 4

2π2

∑
a

ηanaJb/f

(m2
a(ϕ)

T 2

)
, (3.14)

with the thermal function [11]

Jb/f (x
2) ≡

∫ ∞

0
dy y2 log {1∓ exp

[
−
√
y2 + x2

]
} , (3.15)

where x ≡ ma(ϕ)
T . For a better unterstanding of the thermal evolution, we expand

the above integral in the high-temperature limit (x → 0). As our model contains no
fermions, we will only mention the expansion for bosons: [11]

Jb(x
2)

x→0
≈ −π4

45
+

π2

12
x2 − π

6
x3 + ... . (3.16)
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We notice a positive quadratic term, meaning that at high temperatures a parabolic
shape with just one minimum at ϕ = 0 is to be expected. The negative cubic term
enables the occurrence of a thermal barrier at decreasing temperatures.

At high temperatures (T ≫ µ) [11], thermal mass corrections Π(T ) have to be
taken into account in order to restore the symmetry that is broken at Tc [2]. They
are added to the effective mass in the daisy potential [6]

Vdaisy(ϕ, T ) = − T

12π

∑
a

[(
m2

a(ϕ) + Π(T )
)3/2 − (m2

a(ϕ)
)3/2]

. (3.17)

Fig. 3.1: Thermal effective potential Veff(ϕ, T ) (see Eq. 3.12 – 3.17) with m =
√
10

GeV, g = 0.8 and λ = 10−9.

Now we have all our ingredients for the thermal effective potential (up to one-
loop correction). From Fig. 3.1, we draw the following conclusions: In the hot early
universe the field settles in the minimum at ϕ = 0 and all symmetries are preserved.
As temperatures drop, the symmetry-breaking minimum appears at ϕ ̸= 0. It is
separated from the old minimum by a thermal barrier. As the Universe continues
to cool down, the thermal barrier decreases until, at a critical temperature Tc, the
minima are degenerate. Now both states are equally likely. At lower temperatures,
the second minimum deepens, becoming energetically preferred and triggering a first
order phase transition as the field tunnels into the deeper minimum. Finally, at zero
temperature, ϕ = 0 becomes the local maximum.
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Numerical implementation

For all numerical calculations, we used the language Python. Besides its standard
packages for scientific applications and visualization of data, like scipy, numpy and
matplotlib, we used the toolkit CosmoTransitions1 [44], which was specifically de-
signed for analyzing cosmological PTs in the framework of this thesis, i.e. when con-
sidering a scalar field that is under the influence of an effective potential at some finite
temperature. All notebooks created while working on this thesis can be found here:
https://github.com/DMGW-Goethe/Rebeccas-BA/tree/master

4.1 Solving the bounce equation

As mentioned in Sec. 2.2.2, we have to find solutions to a particular second-order differ-
ential equation to find the critical bubble profile that minimizes the three-dimensional
Euclidean action S3. We have (cf. Eq. 2.52)

d2ϕ

dr2
=

dVeff(ϕ, T )

dϕ
− 2

r

dϕ

dr
, (4.1a)

dϕ

dr

∣∣∣∣
r=0

= 0, lim
|r|→∞

ϕ(r) = 0 , (4.1b)

where Eq. (4.1a) is the so-called bounce equation. To solve this boundary-value
problem (BVP), we follow the analogy given by Coleman in [9] and notice that Eq.
(4.1a) can be identified with the equation of motion of a particle ϕ, which moves
with time r in a potential −Veff and a damping force proportional to 1

r . With this
observation, we can transform the BVP into an initial-value problem (IVP): The
unknown initial value ϕ(0) = ϕ0, which is expected to be close to the true vacuum,
has to be chosen so that ϕ(r) is strictly decreasing and asymptotically approaching
0 at the local maximum of the inverted effective potential −Veff . An effective way to
solve this IVP is the shooting method: If ϕ0 is chosen too high, then it overshoots
the correct solution which means that it reaches 0 after some finite time and proceeds
to move further away, approaching the negative thermal barrier ϕ−. Similarly, if ϕ0

is chosen to low, then it undershoots the solution, never reaching 0 and approaching
the positive thermal barrier ϕ+. Now, for every guess of ϕ0, we can numerically solve

1https://github.com/clwainwright/CosmoTransitions

https://github.com/DMGW-Goethe/Rebeccas-BA/tree/master
https://github.com/clwainwright/CosmoTransitions
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the system of differential equations

y′1 = y2 , y1(0) = ϕ0, (4.2a)

y′2 =
dVeff

dϕ
− 2

r
y2 , y2(0) = 0, (4.2b)

with y1(r) := ϕ(r) and y2(r) :=
dϕ(r)
dr , e.g. using the Finite Difference method or, in

practice, a function like scipy.integrate.solve_ivp, where we choose the interval
of integration to be [r = 0, r = R] with some large R. Based on how the solution
behaves for different initial values, i.e. if ϕ(R;ϕ0) is moving further from or closer
to 0 (also taking changes in sign into account), we can adjust the initial value ϕ0

accordingly. This process is equivalent to numerically computing a root of ϕ(R;ϕ0)
to some finite precision and can thus be automated by a root-finding algorithm such
as the bisection method that can be aborted when the desired accuracy is achieved.
However, since the second boundary condition in Eq. (4.1b) involves infinity and R
cannot be made arbitrarily large without expecting performance issues, we can always
only make initial guesses that either over- or undershoot the correct solution.

In this thesis, however, we use the above method as implemented in
the CosmoTransitions class SingleFieldInstanton with the member function
findProfile [1]. It should be noted at this point that Daniel Schmitt provided
me with his code for finding the bubble profile and determining the bounce action.
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Results

In the following, we present the GW spectra computed with Eqs. (2.63) and (2.67)
and compare them with the power law integrated curves (shaded regions) of differ-
ent planned space-based GW detectors along with the gray violins from Fig. 4 of
the NANOGrav 15-year data set (Search for Signals from New Physics) [18] which
correspond to the NANOGrav signal.1 In doing so, we evaluate the GW spectra for
different masses µ, gauge couplings g and self couplings λ of the Abelian Higgs model
(see Eq. 3.11) and examine the corresponding dependence of the peak frequency fpeak
and the peak amplitude h2Ωpeak

GW .

Below, we always fix two parameters and vary the third one. The peak frequencies
and peak amplitudes along with the values for the PT strength α and the inverse PT
timescale β

H are listed in tables associated with the respective GW spectrum.

Varying self couplings λ ∈ {10−17, 10−9, 10−7} for mass µ =
√
7 GeV and gauge

coupling g = 0.3.

Here, fpeak and h2Ωpeak
GW show a weak dependence on the self coupling λ (cf. Tab.

5.1). We observe lower peak frequencies with lower self coupling, but the magnitudes
of fpeak only vary slightly. All peak frequencies lie in the frequency range of LISA and
µAres (cf. Fig. 5.1).

The peak amplitudes increase for smaller self couplings. The GW signals cross the
PLI curves of LISA, µAres, and BBO and therefore could be detected by each of them.

We notice that α remains roughly the same for all peak amplitudes and self
couplings. Also, the PT proceeds much more slowly for larger self couplings.

λ fpeak h2Ωpeak
GW α β

H

10−17 ∼ O(10−4 Hz) ∼ O(10−7) ∼ 4 ∼ 20

10−9 ∼ O(10−3 Hz) ∼ O(10−8) ∼ 4 ∼ 85

10−7 ∼ O(10−3 Hz) ∼ O(10−8) ∼ 4 ∼ 9 · 1020

Tab. 5.1: Values of fpeak, h
2Ωpeak

GW , α and β
H for λ ∈ {10−17, 10−9, 10−7}, µ =

√
7 GeV

and g = 0.3.

1These violins were provided by Carlo Tasillo.



30 CHAPTER 5. RESULTS

Fig. 5.1: GW spectra for various self couplings λ ∈ {10−17, 10−9, 10−7} for fixed mass
µ =

√
7 GeV and fixed gauge coupling g = 0.3.

Varying masses µ ∈ {
√
0.25 GeV,

√
2 GeV,

√
15 GeV} for gauge coupling g = 0.8

and self coupling λ = 10−10.

We notice an increase of fpeak for bigger masses (cf. Tab. 5.2). All three peak
frequencies fall within the frequency range of µAres, although for µ =

√
0.25 GeV, it

lies exactly at the limit (cf. Fig. 5.2).

A rise in the peak amplitude happens for smaller masses. The GW signals for
µ ∈ {

√
0.25 GeV,

√
2 GeV} might be detectable with the NANOGrav signal as they

intersect the gray violins. For µ =
√
15 GeV, the peak amplitude is smaller. We can

assume that the corresponding GW signal as well as the other two signals for smaller
masses could be captured by µAres. In addition, the GW signal for µ =

√
15 GeV

crosses a small part of the LISA PLI curve therefore could possibly also be registered
by LISA.

µ fpeak h2Ωpeak
GW α β

H√
0.25 GeV ∼ O(10−7 Hz) ∼ O(10−5) ∼ 6185 ∼ 0.3√
2 GeV ∼ O(10−6 Hz) ∼ O(10−6) ∼ 130 ∼ 4 · 1020√
15 GeV ∼ O(10−5 Hz) ∼ O(10−7) ∼ 3 ∼ 8 · 1020

Tab. 5.2: Values of fpeak, h
2Ωpeak

GW , α and β
H for µ ∈ {

√
0.25 GeV,

√
2 GeV,

√
15 GeV},

λ = 10−10 and g = 0.8
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Fig. 5.2: GW spectra for various masses µ ∈ {
√
0.25 GeV,

√
2 GeV,

√
15 GeV}, for

fixed self coupling λ = 10−10 and for gauge coupling g = 0.8.

The GW singal with the highest peak amplitude has the largest α. Hence: For
decreasing masses, α becomes larger. Moreover, the slowest PT happens for the largest
mass.

Varying gauge couplings g ∈ {0.3, 0.5, 0.8} for mass µ =
√
7 GeV and self coupling

λ = 10−10.
We notice a strong dependence on the gauge coupling in general (cf. Tab. 5.3). The

peak frequencies increase with g. For g = 0.3, fpeak lies in the middle of the frequency
range of LISA (cf. Fig. 5.3). For stronger gauge couplings g ∈ {0.5, 0.8}, the peak
frequencies leave the range covered by LISA but still fall within the frequency range
of µAres.

While the peak frequency increases for stronger gauge couplings, the peak ampli-
tude decreases. The largest amplitudes are for gauge coupling g ∈ {0.5, 0.8}. Their
GW signals intersect the PLI curve of µAres. The GW signal for g = 0.5 might also

g fpeak h2Ωpeak
GW α β

H

0.3 ∼ O(10−3 Hz) ∼ O(10−8) ∼ 27 ∼ 448

0.5 ∼ O(10−5 Hz) ∼ O(10−6) ∼ 131 ∼ 2 · 1020
0.8 ∼ O(10−6 Hz) ∼ O(10−6) ∼ 185 ∼ 0.6

Tab. 5.3: Values of fpeak, h
2Ωpeak

GW , α and β
H for g ∈ {0.3, 0.5, 0.9}, µ =

√
7 GeV and

λ = 10−10.
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Fig. 5.3: GW spectra for various gauge couplings g ∈ {0.3, 0.5, 0.8} for fixed mass
µ =

√
7 GeV and for fixed self coupling λ = 10−10.

be detectable by LISA, since it overlaps with a small part of the PLI curve. Further-
more, the signal for g = 0.8 intersects the gray violins from NANOGrav and can thus
presumably be registered with PTAs. The smallest amplitude is for g = 0.3. Still,
the corresponding GW signal lies in the PLI curves of LISA, µAres and BBO and has
good chances to be detected by at least one of them.

The GW signal with the highest peak amplitude also has the largest PT strength
α (cf. Tab. 5.3). We notice a decrease of h2Ωpeak

GW for smaller α. Furthermore, the
smaller the gauge coupling, the smaller the PT strength. Additionally, for larger g,
the PT proceeds more slowly. However, for g = 8 the inverse time scale is very small
compared to the other values and does not correspond to the previous behavior. The
unusual value for β

H could result from the fact that large gauge coupling values are no
longer perturbative.

We summarize our findings in the following:

1. An increase of the self coupling λ results in higher fpeak without a strong decrease

of h2Ωpeak
GW while α remains approximately the same. The PT proceeds more

slowly for larger self couplings.

2. With smaller masses µ, fpeak drops while h2Ωpeak
GW increases. For smaller masses,

the corresponding PT strength is larger and the PT happens faster.

3. For smaller gauge couplings g, fpeak shifts to higher frequencies while h2Ωpeak
GW

decreases. Furthermore, smaller g result in weaker and faster PTs.
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Finally, the following behavior from α and β
H can be observed: Stronger PTs can

be associated with larger peak amplitudes and lower peak frequencies in the GW
spectrum (cf. Tabs. 5.1–5.3). More slowly proceeding PTs tend to smaller peak
amplitudes and higher peak frequencies (cf. Tabs. 5.1–5.2).



Chapter 6

Summary and Outlook

The aim of this thesis was to compute various GW spectra resulting from the after-
math of a FOPT in the Abelian Higgs model and to investigate whether these could
potentially be detected by PTAs or future GW experiments. For this purpose, we
have discussed the role of the thermal effective potential Veff(ϕ, T ) in a FOPT (see
Sec. 2.2.1) and introduced the mechanism of the false vacuum decay with the involved
bubble nucleation, bubble collision and sound wave propagation in Sec. 2.2.2 – 2.2.4.

A numerical analysis of the bounce solution was discussed in chapter 4, explain-
ing the shooting method which is used in the member function findProfile of the
CosmoTransitions class SingleFieldInstanton [1].

We constructed the thermal effective potential Veff(ϕ, T ) up to one-loop order in
Sec. 3.1 and studied its temperature dependence. The scalar field ϕ is trapped in the
symmetric phase at high temperatures in the early universe. For lower temperatures,
a thermal barrier emerges and a second, degenerate minimum appears, becoming the
new global minimum. Due to thermal fluctuations, ϕ tunnels into the true vacuum,
rendering a FOPT.

In chapter 5, we showed three plots (see Figs. 5.1–5.3) of the computed stochastic
GW spectra for different masses µ, gauge couplings g, and self couplings λ. We
fixed two parameters in each plot and varied the remaining parameter to analyze the
behavior of peak frequency fpeak, peak amplitude h2Ωpeak

GW , PT strength α and inverse

PT timescale β
H for different parameter values. The GW signals depend strongly on

the gauge coupling since we observe significant changes in peak frequency and peak
amplitude for rather small changes in g (cf. Tabs. 5.1–5.3). Furthermore, we found
that peak frequency, peak amplitude and PT strength were comparatively small
affected by variations in self coupling and that the PT happens more slowly for lager
λ. Faster PTs take place for small masses and small gauge couplings. Moreover,
we also noticed that PTs are stronger for smaller masses and for larger gauge couplings.

So far none of the computed GW signals reaches into the PLI curve of the Einstein
Telescope. One possible next step would be to find parameter values for µ, g and λ
such that the GW signal falls within the ET detection range. Furthermore, it would
be interesting to investigate the found parameter space for perturbativity and whether
α and β are suitable to enable such PTs.

Since with daisy resummation (cf. Eq. 3.17), large uncertainties enter the GW spec-
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tra, a more robust perturbative approach should be chosen in using high-temperature
effective theories for thermal resummation [10].



Appendix A

A minimal model

We consider a pure, real scalar field model with positive mass parameter µ2 that only
couples to itself. The Euclidean Lagrangian density reads [33]

LE =
1

2
∂µϕ ∂µϕ− µ2

2
ϕ2 +

λ

4
ϕ4 , (A.1)

with the same tree-level potential as in Eq. (3.6). The thermal effective potential is
constructed as described in Eqs. (3.12) – (3.17) with the parameter values listed in
the first column of Tab. 3.1. However, as mentioned in [27], a cubic term in Vtree(ϕ)
is required to generate a tree-level barrier.

The temperature-dependent evolution of the thermal effective potential is displayed
in Fig. A. No barrier is generated due to radiative or thermal corrections. As tem-

Fig. A.1: Thermal effective potential Veff(ϕ, T ) (cf. Eq. 3.12 – 3.17) in a pure, real
scalar field model with m =

√
10 GeV and λ = 10−9.

peratures drops, the global minimum slowly transforms into a local maximum with
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no thermal barrier being created in the process. During this continuous transition,
the scalar field immediately acquires a VEV at critical temperature Tc and smoothly
”rolls down” the potential. As no thermal barrier has to be overcome, no latent heat
is released in this process. In that case, the PT is of second or higher order1 and there
will be no bubble formation and consequently no generation of GWs through their
collision, sound wave propagation or MHD turbulences.

1For second-order PTs, the discontinuity of the free energy density at critical temperature occurs
in the second-order derivative, and so forth.
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[30] M. Hindmarsh, M. Lüben, J. Lumma, and M. Pauly, Phase transitions in the
early universe, SciPost Phys. Lect. Notes (2021), 24.

[31] J.Crowder and N. J. Cornish, Beyond LISA: Exploring future gravitational wave
missions, Physical Review D 72 (2005), no. 8.

[32] A. Kosowsky, M. S. Turner, and R. Watkins, Gravitational radiation from collid-
ing vacuum bubbles, Physical Review D 45 (1992), 4514–4535.

[33] M. Laine and A. Vuorinen, Basics of Thermal Field Theory, Springer Interna-
tional Publishing, 2016.

[34] A. D. Linde, Decay of the False Vacuum at Finite Temperature, Nuclear Physics
B 216 (1983), no. 2, 421–445.
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