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Zusammenfassung

In dieser Masterarbeit wird die Entwicklung eines selbst-wechselwirkenden dunkle Materie
(SIDM) Halos um ein Schwarzes Loch (BH) mittels des Gravothermal fluid Modells nu-
merisch untersucht.

Der Kern dieser Arbeit ist es, den GravothermalSIDM Code durch die Auswirkungen
des BHs auf den Halo, insbesondere durch Akkretion, zu erweitern und die Entwick-
lung des Systems zum Gleichgewicht zu untersuchen. Wihrend der Implementierung
hat sich gezeigt, dass die Simulation empfindlich auf rein numerische Parameter reagiert.
Diese Probleme wurden allerdings behoben und der richtige Steigungsindex wird im Gle-
ichgewicht erreicht. Es wurden verschiedene Geschwindigkeitsabhingigkeiten des Selbst-
wechselwirkungsquerschnitts der Dunklen Materie (DM) untersucht.

Die Ergebnisse zeigen, dass das finale Dichteprofil unabhéngig von den Anfangsbedingun-
gen ist, sofern die Dichte bei grofsen Radien identisch ist. Ein Vergleich mit Dichteprofilen
wo BH Effekte kiinstlich eingebaut wurden (dies ist eine iibliche N#herung) zeigt eine
gute Ubereinstimmung mit der vollstandigen Simulation. Auf Grundlage dieser Ergebnisse
wird eine Anderung der Skalenhohe um den Einflussradius des BH vorgeschlagen, um eine
bessere Ubereinstimmung mit reinen SIDM-Simulationen zu erreichen.

Der resultierende Code ist ein hilfreiches Werkzeug, um die dynamische Entwicklung von
SIDM-Halos um BHs zu untersuchen.

Abstract

This thesis presents a numerical study of self-interacting dark matter (SIDM) halos con-
taining a central black hole (BH), using the gravothermal fluid model. The work focuses
on extending the GravothermalSIDM code by including accretion, in order to incorporate
the effects of a central BH, and study the system’s evolution toward equilibrium.

During the implementation, the simulation was found to be sensitive to numerical pa-
rameters, but these challenges were successfully addressed, and the correct slope index
is recovered at equilibrium. Various velocity dependencies of the dark matter (DM) self-
interaction cross-section were investigated.

The results show that the final density profile is independent of the initial conditions, pro-
vided the density is identical at large radii. A comparison with artificially spiked density
profiles, commonly used as an approximation, shows good agreement with the full simula-
tion. Based on these results, a modification of the scale height around the BH’s radius of
influence is proposed to improve a better agreement with SIDM-only simulations.

The resulting code provides a powerful tool for studying the dynamical evolution of SIDM
halos with central BHs.

III
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1. Introduction

To understand the nature of this work, a historical overview of the discovery of dark
matter (DM) is given first. Fritz Zwicky, who called it dunkle materie, examined the Coma
galaxy cluster in 1933 [I]. While doing so he noticed an irregularity - some galaxies were
moving at speeds much larger than could be explained by the gravity of the visible objects.
This led to four possibilities: either the system was not in equilibrium (i.e., it does not
follow the expected relation between kinetic and potential energy), the observed velocities
were changed due to redshift, these galaxies were not bound to the system or there exists
some sort of matter that is not visible. The effects of the first two options were found
to be not strong enough. Additionally, the third option was discarded, because it would
imply that other galaxies moving at similar speeds should be observed in other systems,
which is not the case. Hence, the conclusion was that additional mass is present in this
system, surpassing the visible mass by a factor of 400. ! However, this result was not
left unquestioned with some scientists considering it “unlikely* (see [3] for a history in the
discovery of DM).

Decades later, observations of the Andromeda galaxy showed further evidence for the
presence of invisible matter. [Rubin and Ford| measured the orbital velocities of stars in
the Andromeda galaxy and constructed so-called rotation curves that showed that the
velocities increase in the inner regions, and then stay roughly constant throughout the
halo [4]. In contrast to this, observations of visible mass show that it is concentrated in a
central region, so that based on Kepler’s law,

b= 20, )

for large radii, r, when the mass, M, is mostly constant, the velocity, v, should decrease as
1/r. Thus, there are two options to explain the discrepancy with observations. Either the
orbital dynamics is wrong, giving rise to theories of modified gravity, ? or (and this is the
widely accepted solution) the gravitational mass consists partly of some invisible matter
that is not confined to the central region; DM.

Figure 1| shows the rotation curve of another galaxy (M33), along with the contributions of
its individual components. The velocity increases with higher radii, and this phenomenon
cannot be explained by the contributions from the stellar disk and gas alone [§]. Hence,
the existence of DM is inferred, giving a major contribution to the matter in the system.

While many possible candidates for DM were proposed [3, 9], observations of the Bullet
Cluster further supported the idea that DM consists of individual particles, as opposed
to explaining the observed effects through a modification of gravity. 2 The Bullet cluster
consists of two galaxy clusters that have collided. Figure [2] shows that the individual
components of the system were separated in the collision and can be observed individually.

LA more recent study finds a slightly lower ratio, with 85% of the mass being in form of DM [2].

2These include Modified Newtonian dynamics which alters the gravitational force and can thereby explain
galaxy rotation curves [5] but struggles to explain some phenomena on larger scales [6], as well as more
complicated models [7].

3Nevertheless, as is frequently the case, divergent opinions are present as well [10].
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Figure 1: Galaxy rotation curve for M33 taken from [§]. Shown are the measured velocities
(points), the best-fit model (solid), contributions from the stellar disk (short
dashed), gas (long dashed) and DM (dashed-dotted).

The hot gas that was previously filling the space between galaxies in the cluster, was
separated from the remaining cluster and remains close to the point of collision. This is
because stars and galaxies can only interact very weakly through gravity, causing them to
pass by each other during a collision without decelerating significantly. In contrast to this,
the hot gas, consisting mostly of ionized hydrogen and helium, interacts electromagnetically
(a strong force compared to gravity), thus scattering significantly during a collision and
being slowed down. This separation of the collisional plasma and collisionless galaxies is
consistent with observations [12]. Furthermore, Clowe et al.| were also able to show that the
center of mass of these galaxy clusters is separated from the dominant baryonic component,
which is the plasma [12]. Gravitational lensing reveals instead, that the center of mass is
close to the location of the galaxies, far from the point of collision. This leads to two
conclusions: first, there is a significant amount of DM present in this system and second,
DM must behave like (almost) collisionless particles.

Our current standard model of the universe, called ACDM, incorporates these findings. It
assumes that on large scales general relativity (GR) is the correct theory to describe the
universe, that the universe is flat on large scales, and that there are three main components
of the universe: Dark Energy (A) that drives the current expansion of the universe, baryonic
matter, * and finally cold collisionless Dark Matter (CDM) [13]. Here, cold refers to the
fact that the movement of CDM is slow compared to the speed of light, and dark to the
fact that it does not interact with photons and is thus not visible. While CDM (or DM in
general) has not been directly observed yet, some constraints on its properties have still
been found [9]. In addition to being cold, dark and collisionless, it is dissipationless, i.e.,

4In cosmology baryonic matter refers to everything that makes up stars, galaxies, etc., i.e., everything
made from protons, neutrons and electrons.



Figure 2: X-ray image of the Bullet cluster (pink, showing hot gas) superimposed over
a visible light image (showing galaxies) [II]. The matter distribution obtained
from gravitational lensing (blue) shows a need for the existence of CDM.

it cannot lose energy by emitting radiation. ACDM predicts that dark energy constitutes
about 70% of the energy content of the universe, DM 25% and only the remaining 5% can
be attributed to baryonic matter [14, [15].

Navarro, Frenk, and White| studied the distribution of collisionless CDM in galaxies using
N-body simulations [16]. They found that the resulting density profiles are well described
by the NFW profile

PNFW = LQ, (2)
z(i+z)

with py and r; being a characteristic density and radius. The DM contained in such a DM
halo is distributed spherically symmetrical and results in a cusp with p oc 1/r for small
radii.
Despite the fact that this DM model is successful at explaining the DM presence in galaxy
clusters [17], central regions of dwarf galaxies favor shallower profiles with constant den-
sities, called a core [I8] [19]. This is known as the core-cusp problem and is illustrated in
fig. An examination of the rotation curve reveals that baryonic matter alone cannot
fully explain the velocity distribution and the presence of DM is significant in explaining
the data. However, while the NFW profile successfully predicts the observed velocities
for radii larger than about 3kpc, for smaller radii the velocities are overestimated. The
employment of a cored profile is able to solve this issue and better match observations.
For large distances to the center both profiles have a similar shape, while looking at the
innermost region, the differences become evident: the NFW profile features a cusp and has
a much higher central density in comparison to the cored profile.
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Figure 3: Left: Rotation curve of DDO 154. Observational data (black points) in compar-
ison to models with a NF'W profile (dotted blue) and a cored profile (red). Stellar
and gas contributions are shown in pink. Right: DM densities corresponding to
the fits. For the NFW profile, r, ~ 3.4kpc and p, ~ 1.5 - 10"Mg/kpc?. Reprinted
from [9].

In addition to this, a multitude of other issues have surfaced with the assumptions underly-
ing CDM [9]. For instance, the diversity problem demonstrates that the diversity exhibited
by galaxies far exceeds what can be explained by the two halo parameters featured in the
NFW profile. The missing satellites problem states that CDM halos should host a substan-
tial number of subhalos, yet this is not observed. The too big to fail hypothesis suggests
that the most massive subhalos appear to fail to host light-emitting objects. However, the
opposite would be expected, as the mass of the DM halo should encourage gas clouds to
collapse and form stars.

An elegant solution to this plethora of challenges is to allow for DM-DM self-interactions,
thereby giving rise to a new model of DM: Self-Interacting Dark Matter (SIDM). These
self-interactions, described by cross-section per unit mass o /m, ® cause particles to ex-
change energy and momentum, thereby “kicking“ particles out from regions where the
density is highest. Over time, this generally leads to a flattening of the inner region and
the formation of a core, thus resolving these issues [9].

For SIDM halos with sufficiently high cross-sections a process can occur where the evolution
of the halo is reverted resulting in a drastic increase of the central density and temperature
[20]. This is known as the gravothermal collapse and is thought to be a possible candidate
for the origin of SMBHs [21, 22].

Considering a wide range of astronomical objects (e.g., dwarf galaxies, galaxies, and galaxy
clusters) allows to investigate the cross-section of SIDM in various environments. In light
of the fact that the typical velocity of DM particles varies across these systems, 6 the
possibility of a velocity-dependent cross-section is testable and has been observed in [23];
the cross-section varies from 2cm?/g on galactic scales to 0.1cm?/g on the scale of galaxy
clusters. 7 This behavior is illustrated in fig. ; for larger halo masses (larger velocities),

5For brevity, o-/m will hereafter be referred to simply as o.
6The mean particle velocity of DM is higher in larger objects as can be seen in fig.
"It appears that SIDM acts more similar to CDM on larger scales. A similar behavior is seen when
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Figure 4: Constraints on the effective SIDM cross-section, shown as a function of system
mass and relative velocity [24].

the effective cross-section is decreasing.

Most galaxies are thought to host supermassive BHs (SMBHs) at their centers [25, 26].
Therefore, the question arises as to how the presence of a central BH alters the DM density
distribution. |Gondolo and Silk| investigated CDM distribution around such SMBHs and
found that if SMBHs grow adiabatically, they transform the DM in their environment
resulting in a stark increase of the density, so-called DM (density) spikes [27]. The relation
between the initial density distribution and the final DM spike is given by

9-2a
4-a’

(3)

-
PDM <1 TP, Qp =

where the density distribution of the isolated CDM halo scales with »=%. Hence, an overall
increase of the central density is expected. A NFW halo (@ = 1) is thus be expected to
have a,, = 7/3 near a BH.

In contrast to CDM halos, SIDM halos undergo some sort of evolution, and their density
is subject to a constant change. Hence, the relation between the spike index of the density
(@p) in the vicinity of a BH does not follow the simple relation that was derived for CDM.
Instead, equilibrium solutions can be found when there is a constant flux of matter onto
the BH [28]. The final @, then depends on the underlying particle model (see section .
For the choice of o o« v™4, commonly found in the literature [28-30], the resulting density
is expected to scale with 7~7/4 - shallower than for @5 = 7/3 in the CDM case.

looking at rotation curves; for large radii, the SIDM and CDM density profiles show similar behavior.
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To numerically simulate SIDM halos, two major approaches are commonly used: N-body
simulations model dark matter as a collection of discrete particles (typically N > 10%),
where the gravitational interactions between particles are calculated directly. For SIDM,
self-interactions are usually accounted for via Monte Carlo scattering methods that stochas-
tically model collisions [29]. While this approach resolves single particle interactions and
is widely used, it is computationally expensive due to the large number of particles and
interaction calculations involved.

An alternative approach treats DM as a collisional fluid [20H22], described by continu-
ous fields. ® In this framework, the evolution of the system is governed by hydrodynamic
equations, typically derived from the Boltzmann equation under certain assumptions [28].
This method allows for faster simulations and allows the exploration of a wide range of
interaction models and parameter spaces.

However, fluid models involve simplifying assumptions (e.g., thermal equilibrium, isotropy)
and often require calibration against N-body simulations to ensure accuracy [20]. *

The aim of this thesis is to examine the evolution of SIDM halos containing central BHs,
using a fluid model approach. The primary objective is to observe the convergence of the
spike index to the expected equilibrium solutions. Additionally, simulations with a central
BH are compared to SIDM-only simulations to study the influence of the BH on the halo’s
evolution. The final goal is to explore how the impact of BHs can be incorporated into the
results of SIDM-only simulations.

The thesis is structured as follows. First, the theoretical framework for modeling SIDM halo
evolution is introduced in section 2.1} followed by a brief overview of the typical evolution
of a SIDM-only halo in section Additional relevant physical concepts and quantities,
such as spike index, spike radius, accretion and the cross-section, are then discussed in
sections to In section the equilibrium solutions for the DM density profiles
are derived. After this, the general numerical approach for solving the equations governing
the evolution is described in section [3] along with the specific modifications central to this
work that are necessary to include a central BH (sections and Finally, the results
of the simulations are presented and discussed in section [

Throughout this work, I use the first-person form (“I) to distinguish my own contributions
from established theory or concepts taken from the literature.

81n a particle based model, each particle 7 has a position 7;, velocity 7; and other properties. In contrast,
fluid models describe macroscopic quantities like density p(7) and corresponding fluid velocity (7).
9E.g. the “C* in eq. l| is such a calibration parameter.



2. Theory

This section provides the theoretical foundation necessary to understand the physics rele-
vant to this study. The first part introduces the gravothermal fluid model [31], which is the
basis to describe the evolution of SIDM halos. This is followed by definitions of specific
physical quantities relevant to the analysis, such as the spike radius and spike index, the
self-interaction cross-section, and the treatment of accretion onto a central BH. In the last
part of the section, equilibrium solutions in different regimes are derived, which serve as
benchmarks for comparison with the results of numerical simulations presented later.

2.1. Gravothermal fluid

To model the DM halo surrounding a massive BH the gravothermal fluid model first de-
veloped by [Lynden-Bell and Eggleton| in 1980 is used. Originally, it was introduced to
study the dynamics in globular clusters, in particular the evolution of their core density.
However, this model can also be applied to SIDM halos [21].

In the gravothermal fluid model the DM halo is described as a fluid of particles that can
thermally interact with a certain self-interaction cross section and thus exchange heat.
To reduce the number of independent variables and connect the properties of the DM
particles, the equation of state of an ideal gas is defined as

V= NkT. (4)

This relates the pressure of the fluid, p, its volume, /7, the number of particles, N, Boltz-
mann’s constant, £, and the temperature, T'. Additionally, an internal energy per particle
mass, m, is defined as

3 1y, 3,
where in the last step the the one-dimensional velocity dispersion v is introduced as
1.
vi= () = () = (0F) = §<v2>- (6)

For the sake of brevity, I might also simply refer to v as the velocity and to u as the energy.

In the following, the equations used are only described very briefly. A more detailed treat-
ment of these can be found in [22] 32].

After applying spherical symmetry, the problem effectively reduces to one spatial dimen-
sion. This assumption is physically motivated, as SIDM halos tend to lose their ellipticity
quickly due to self-interactions [9).

Conservation of mass: The differential equation for the mass of a spherical DM halo can
be written as:

o5 = 47 pr?. (7)

Here, M is the halo mass, r the radius and p the DM density.
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Hydrostatic equilibrium: Hydrostatic equilibrium is assumed with no net flow of particles
so that for a Newtonian potential one can derive the condition on the gradient of the

pressure, p,
ap  GMp
o 2’ (8)

with G denoting Newton’s gravitational constant [22].

Heat conduction: The luminosity, L, describes how the heat in the DM halo is flowing,
i.e., how a gradient of the temperature of the DM particles changes their internal energy.
To derive an expression for the luminosity, a particle flux, nd /7t causing the flow of energy
through a surface is considered. In terms of the mean free path, 1, and the time between
collisions, 7, the luminosity is then given by:

23p/12b8_v2

L=-4 ,
i 2r  Or

(9)

where b ~ 1.385 is an effective impact parameter [20].
For the mean free path two regimes are considered, depending on its relation to the gravi-
tational scale height, H, also called Jeans length, r; [33]:

H v
= . 1
4rGp (10)

In the short mean free path (SMFP) limit, it is assumed that the mean free path is
much smaller than the gravitational scale height 4 <« H. In this case ordinary particle
scattering can be assumed with the mean free path being A = 1/po 10 and the time between
interactions simply being the mean free path over the velocity, T = A/v. Here, a cross-
section per unit mass o was defined that serves to model different particle interactions.
If on the other hand, A > H, then the long mean free path (LMFP) limit is considered [34].
The mean free path then becomes comparable to the gravitational scale height A — H and
the time between interactions becomes the relaxation time v = 1/ac pv with a ~ 2.257
[22]. Finally, to get a limiting behavior in either case, the luminosity is written in the
following way:

Arr2 2

L 3pbv b 1 oy2
—_—| . 11

[po—+ap0CH2] or (11)

Hence, the first term in the bracket stems from the expression in the SMFP and the second

one from the LMFP and C = 0.75 is a calibration constant between the two regimes
[20, 22, [35].

Laws of Thermodynamics: From the Second Law of Thermodynamics, an equation can
be derived that governs the time evolution of the DM halo. The entropy per unit mass,

10551 gives the average number of hits a particle is expected to make when traveling a length A through
a medium with density p and with cross-section per unit mass o. Hence, when one scattering occurs
the mean free path is 4 = 1/p0.



2.2. Evolution of SIDM halos

s=1In (v3/p), is introduced that causes the halo to evolve:

oL 9 of 0 v3
o A pry (61,‘ ln(p))M. (12)

The subscript M on the bracket indicates that the mass is kept constant when taking the
time derivative.

Addition of BH effects: In order to simulate a SIDM halo surrounding a central BH, the
influence of the BH on the halo has to be considered.

The BH is taken to be a point mass with mass My, situated at the center of the halo. This
leads to two changes in the equations discussed above. First, eq. gains an additional

mass term:
6p M + My,
— =—Gp——2.

or r2
With the BH at the center of the halo, the inner regions are dominated by the pull of the BH
and not the enclosed DM mass. Consequently, for sufficiently small radii, the DM mass can
be neglected and the scaling of the pressure analytically derived (eq. ) Additionally,
instead of the Jeans length r;, the gravitational scale height H is now determined by the
position r following the work in [28]. Hence, H is taken to be

(13)

H = min(r,ry). (14)

This modifies the scale height in the heat conduction (eq. ) in the LMFP regime.

2.2. Evolution of SIDM halos

In this section, it is assumed that the halo initially follows a NFW profile and is then left
to evolve.

Considering a SIDM halo without a central BH first, the evolution is characterized by three
distinct phases, illustrated by fig.

Initially (at ¢ = 0), the internal energy decreases toward the center, resulting in a negative
luminosity. This corresponds to an outflow of matter from the central region. During this
stage, the density in the inner region of the halo gradually relaxes and forms a flat profile,
called a core (seen in fig. at t = 1.9 -107*Gyr). The internal energy at the center
continuously increases over time, while the outer halo remains largely unaffected.

In the intermediate phase, the central internal energy continues to rise until it eventually
levels off, forming a constant plateau (seen at ¢t = 3.5-1072Gyr in fig. . Because of this,
at this stage the inner region of the density profile is also referred to as isothermal core.
As a result, the luminosity approaches zero in the central region and the matter outflow
halts. When this happens, the central density stabilizes temporarily.

Finally, in the gravothermal collapse phase (for t > 1.4 -1071Gyr), the direction of energy
and mass flow reverses. The internal energy continues to increase at the center, but now
the luminosity is positive throughout the whole halo (fig. causing mass to flow inwards.
The central density and temperature begin to rise rapidly, reaching increasing large values.
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With the introduction of a BH into the system, the evolution described here is altered. By
looking at eq. and considering the inner region where the BH dominates it becomes
evident that close to the BH My, > M, so that M + My, ~ My, = const. Additionally
assuming a power-law ansatz with p oc #=% this yields:

M M
p=p=|-p—Pdr= I—r‘“%dr
r r
1 -
=T’ A0 (15)
1 M,
2 bh -1
= V" = 1+a . o«cr .

Hence, the internal energy shows an increase towards the center and the luminosity is
positive, leading to the expectation that matter flows inwards instantaneously. This gives
rise to the need of modeling accretion when the particles reach the BH at the center.
The further evolution of the halo is more complicated to predict and is the goal of this
work.

2.3. Spike radius

Since the mass of a BH in the simulations is surpassed by the total DM halo mass by many
orders of magnitude,'! the evolution in the outer parts of the halo is expected to continue
unaltered when a central BH is introduced.

The area of the halo influenced by the inclusion of a central BH can be described by
introducing the radius of influence of the BH, r;,. Similarly, the transition from the power-
law solutions of the DM spikes in the inner regions to the shallower power-law solutions (or
cores) further outside is described by a transition radius, also known as the spike radius,
Tp.

A commonly used definition for the former is based on the work in [37] where the effects of
adiabatic BH growth on CDM halos were studied. It was found that the radius of influence,
Th.m, 2 can be defined in terms of the BH mass, My:

T,

M (r<m,)= 47TI ' pridr = 2My,. (16)

0

Using this, the spike radius is directly related to the radius of influence:
Tsp = 0.213 . (17)

However, this relation between ry, and 7, is specific to CDM halos. For SIDM, self-
interactions modify the inner density profile and shift the location of the transition region,
rendering this definition inaccurate (see my results in section|4.5)). An alternative definition,

H Observations indicate a correlation between the mass of the central BH and the surrounding DM halo.
Typically, the BH mass is about five orders of magnitude smaller than the halo mass [36].
12The subscript m indicates that this expression for the radius of influence is defined in term of mass.
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2.3. Spike radius
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(a) Internal energy as a function of radius. (b) Density as a function of radius.
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(¢) Luminosity as a function of radius. Negative luminosity is shown in
dashed lines, positive in solid. Some numerical artifacts are visible for
the smallest radii.

Figure 5: SIDM halo evolution with r, = 23.1pc, p; = 5.615Mg/pc?® and o = 100cm?/g.
Initially a NFW profile is present (1 = 0). As time progresses and central energy
increases, first a core forms (¢ = 1.9 - 107*Gyr). Once the energy is constant
throughout the whole center and the luminosity is strictly positive (1 = 3.5 -
1072Gyr), an isothermal core forms. The evolution then reverses and the density
increases again to much higher values during the gravothermal collapse (¢ =
1.4-107'Gyr and ¢t = 1.9 - 1071 Gyr).
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Theory

which I find to be more suitable for SIDM, is also proposed i n[37]. '3 Here, the radius of
influence, 7, ,, is defined in terms the velocity, such that

GM
v2(rp.,) = —22. (18)

Th,y

This places it such that the velocity dispersion of the DM particles is dominated by the BH
potential, i.e., the particle’s orbit is defined by the mass of the BH and not the enclosed
mass of the DM halo.

For an isothermal core, seen for example in the later phase of SIDM-only halo evolution
and also expected outside the radius of influence of a central BH, the velocity dispersion
is mostly independent of the radius, so that the above definition results in

GMy,
Th,y = D) (19>
Yo

when taking vy outside the radius of influence but within core.

As is shown in section [.5] this definition better captures the evolution of the transition
region when the spike radius is set to be ry, ~ 7, ,.

In practice, differences between SIDM halos with and without a central BH are expected
to appear only at radii r < 7y, while the outer regions remain largely unaffected.

2.4. Spike index

The spike index, «, is used to describe a power-law distribution of DM density. By defini-
tion, it is the slope of the logarithmic density:

_dlnp
dlnr

(20)

a =

Thus, if p o« 7~ the spike index is simply the exponent «.

Certain values of a are of particular physical meaning. For example, the NFW profile
features @ = 1 at the center and @ = 3 for large radii. As the halo evolves and a core
forms, the slope decreases and reaches @ ~ 0 in the central region. In halos hosting a
central BH, DM tends to form a steeper profile at the center compared to DM-only halos.
CDM spikes around central BHs are characterized by a spike index @ = 7/3 when the
halo is in equilibrium [27]. With the introduction of DM self-interactions, the spike index
is generally altered. The precise solution at equilibrium depends on the model of the
heat conduction and DM self-interaction cross-section. Further details are discussed in
section 271 A commonly cited value for the spike index is @ = 7/4, a value which is
derived from the cross-section for a Coulomb-like interaction given by o o« v=* [28].

13Note that although Merritt| presents both definitions, the author ultimately favors the mass-based version
(7h,m) due to its simpler computation.
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2.5. Accretion onto a Black Hole

2.5. Accretion onto a Black Hole

To understand accretion onto a BH, it is useful to start with the Schwarzschild met-
ric, which describes the spacetime around a spherically symmetric, non-rotating, and un-

charged BH:

dsQ:—(1—2GM)dz2+(1—2GM

rc? rc2

-1
) dr? + r2dQ?, (21)

where G denotes Newton’s constant, M is the mass of the BH, ¢ the speed of light, and
dQ? the angular part of the metric.

The Schwarzschild radius, r = 2GM /c?, marks the outer location at which the metric
diverges. This defines the event horizon; a region from which no information or particle
can escape. Any particle crossing this radius is inevitably accreted by the BH [3§].
However, the BH alters trajectories well beyond the event horizon. For massive particles on
circular orbits, there exists an innermost stable circular orbit (ISCO) at risco = 6GM /c?.
Inside this region, circular orbits become unstable.

However, for particles on unstable circular or more general orbits a boundary between the
Schwarzschild radius and the ISCO exists. The marginally bound orbit at r = 4GM /c?
marks the smallest radius at which a particle with zero velocity at infinity can still escape
[38]. This effectively sets the limit of how close to BHs bound massive particles can orbit
without being captured.

It has been shown that in a Schwarzschild spacetime, the DM density profile vanishes at
this radius [39], which motivates its use in the modeling of BH accretion within DM halos
28, [40).

2.6. Particle cross-section

The particle cross-section quantifies the probability of a specific interaction occurring be-
tween two particles.

The perhaps most intuitive example is the collision of two hard, inelastic spheres - such as
two billiard balls of radius R. In this case, the cross-section has a very intuitive geometric
interpretation; a collision occurs if the separation between the center of both spheres is
less than 2R, yielding a cross-sectional area of

o = (2R)?, (22)

corresponding to the cross-section for this interaction.

More generally, the cross-section is not necessarily related to the physical size of a particle.
Instead, it can be larger if there is a force acting between the colliding particles and depend
on various different experimental parameters. A classical example of this is the Rutherford
cross-section, which describes the angular distribution of a charged point particle being
deflected at an angle § when colliding with another charged point particle,

do qQ )2
dQ  \16reoEsin? (0/2))

(23)
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where ¢ and Q describe the two charges, E is the energy of the incident particle in the
center of mass frame and % is the differential cross-section for this interaction. The total
cross-section can then be recovered by integrating over the full solid angle dQ:

do

It is important to note, that when the Rutherford cross-section is being used this expression
diverges for small angles.

To draw the line back to the simulation of DM halos, it should be recalled that with the
fluid model used in this work and with spherical symmetry assumed, the particles are
not modeled individually. Instead, the fluid elements are only described by their radial
position. Consequently, the total cross-section is used for two main reasons.

First, from a practical standpoint, incorporating angle-dependent scattering (such as in
eq. ) is impractical with a one-dimensional fluid, given that there is only one variable
describing the position of fluid elements. Some N-body simulations address this issue by
sampling the scattering angle for each particle [41]. However, this approach requires a large
number of particles and samples to reduce statistical noise, which significantly increases
the computational cost.

Second, the aim of this work is to study the macroscopic effects of self-interactions, rather
than to simulate the detailed particle physics. While the microphysics is important because
it determines the scattering rate, for the current purposes the total cross-section is sufficient
to capture the relevant behavior.

Some constraints on the cross-section of DM have already been obtained. Observations
of the Bullet cluster with gravitational lensing have revealed a separation of the colli-
sional and collisionless components, indicating that DM is positioned with effectively col-
lisionless galaxies. [42] showed that using this data, the cross-section is constrained by
o < 1.25cm?/g for a DM with a constant cross-section.!®

Furthermore, observational data suggest that the cross-section of DM particles may de-
pend on the relative velocity of the interacting particles (fig. . A common approach is
to model the cross-section as a power-law in the velocity dispersion [40],

o= a0 (viv)F (25)

where o7 is a characteristic cross-section at a reference velocity vy and B describes velocity-
dependence. This provides a useful approximation in the limit of low and high velocity,
despite the fact that the underlying particle models generally predict behaviors that are
more complicated; often a constant cross-section at low velocities and a decreasing one at
high velocities [45].

14 Alternative definitions exist in which the differential cross-section is weighted by angular factors. For
example, including a factor of (1 — cos8) yields the transfer cross-section, which emphasizes particles
that have lost their forward momentum. Similarly, a weighting of (1 — cos? 0) gives the viscosity cross-
section, which places greater emphasis on perpendicular scatterings [9].

15For comparison, typical cross-sections for baryonic reactions can be much larger, e.g., o > 108cm?2/g for
electron scattering in plasma [43], while the collision of two Milky-way-like galaxies results in a much
smaller geometric cross-section of o ~ 10cm?/g [44].
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2.7. Equilibrium solutions

The simple example from eq. then reduces to setting § = 0, while the more compli-
cated Rutherford cross-section is equivalent to 8 = 4 after integrating eq. . 16 While
the particle physics of DM is still unknown, proposed models feature a relation o o 1/v*
for large v motivated by a “dark photon exchange [46] [47].

2.7. Equilibrium solutions

It is thought that permitting a halo to evolve for a sufficiently large time, allows it to settle
in an equilibrium. In this work, I am particularly interested in correctly determining such
equilibrium solutions. A precise prediction of these will help to determine the structure of
present-day DM halos.

The derivation of these steady-state solutions presented in this work is based on the argu-
ments presented in [40].

To derive the equilibrium solutions it is necessary to consider eq. (12)). Here, one can

immediately see that the halo does not change if % = 0 since in this case % =0. To
determine when the luminosity becomes constant eq. is rewritten in the slightly more

convenient form:

3pbv b L oy?
L =—-4nr?=—— — —. 2
S ['00— + apO'CHQ} or (26)

As was shown in eq. , v2 scales like 771 close to the BH. Thus, the trivial solution to
L = const, %2 =0= %, can be immediately ruled out and it can be concluded that the
equilibrium of the halo solution is not due to a thermal equilibrium.

Instead, the equilibrium arises when the luminosity is constant but non-zero; that is when
the energy flux, which in turn is supported by a matter flux, remains constant. In this
case, the term in the brackets of eq. can now be examined, allowing three scenarios
to be determined; the halo can be in the LMFP, the SMFP regime, or in a combination of
both.

In the following, a power-law solution for p and for the velocity dependence of the cross-
section o o v7P is assumed. Furthermore, since the part of the halo close to the BH is
considered, H? o r2 and v oc r~1/2,

2.7.1. Equilibrium in LMFP

In the LMFP regime, only the right term in the bracket of eq. is relevant, giving

3 dv? dv?
L= —47rr2ﬂap0'CH2l oc TQpQV(THQL.
or or

- (27)

6F o 92 so that 1/E2 « 1/v4.
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Collecting everything gives:

L o p2p=20,-1/2,8/2,2,-2 _ 3/2-204+8/2 L . 1

3+ 8 (28)
1

Therefore, for 8 = 4 the known value @ = 7/4 for the Bahcall Wolf cusp when looking at

the distribution of stars around a BH [48] or the common literature value found for SIDM
[9, 28 [30] is recovered.

©3/2-2a+B2=0a=

2.7.2. Equilibrium in SMFP

Considering the SMFP regime, only the left term in the bracket of eq. is used, giving;:

— xriveT —. (29)

By collecting everything, the following equation is obtained:

|
Looc 2~ 12p=B2p=2 — p=(B+1)/2 = copst

(30)
Sp+1=0sp8=-1.

This means that in the SMFP there is only an equilibrium solution if o « v. The power-law
index of the density does not seem to play a role here!

However, I note that in [40] a different result is stated if the halo is in the SMFP regime:

pocl+ y (m/r)’?, x~06(1), (31)

There, it is assumed that the BH accretes particles via a constant and spherical Bondi flow
dM

- % pv, (32)

1 3/2

so that when v o< r~Y/2 and % = const, p o r7%/* is recovered.

Physically, setting the accretion rate constant implies that a fixed number of particles flow
through a surface per unit time. Conversely, in the fluid model a constant luminosity
corresponds to a constant energy per unit time flowing through a surface. Since particles
can carry different amounts of energy, the number of particles crossing a shell can vary
even when the total energy flux remains constant.

This distinction implies that these two approaches - constant accretion rate vs. constant

luminosity - are not expected to yield the same density scaling of the DM halo.

2.7.3. Equilibrium in a combined regime

Finally, in the combined regime, both terms in the brackets are taken into account. The
difference to the two previous scenarios lies only in the bracketed terms and so it is sufficient
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2.7. Equilibrium solutions

| | LMFP [ SMFP | LMFP+SMFP | LMFP+SMFP |
B any -1 > -1 -1
@ || (B+pB)/4| any (3+p)/4 >1/2

Table 1: Slope index a at equilibrium, when velocity-dependence of cross-section is
o « v~# and halo is in either the SMFP, LMFP or a mixed regime. In the mixed
regime, a distinction has to be made depending on whether § = -1 or § > —1.

to focus only on them. Dropping all constants in the equations, since the interest here lies
only in the scaling of the luminosity rather than its absolute value, yields the following
expression:

po +

}_1 B [1027“20'2 +1

-1 [r‘QC’TQrB + 1}_1
5 .
por

(33)

por? por?

Three cases can now be determined depending the term that dominates for small radii,
r<1:

rr2t 2 <1, if —2a +2+ B > 0= LMFP
r20t2H8 o1 if — 20 +2+ 8 <0 = SMFP (34)
r20t248 21, if —2a + 2+ B ~ 0 = LMFP ~ SMFP

The first case applies if @ < 1+ /2. Comparing this to the result for a constant luminosity
in the purely LMFP regime (eq. ), gives a constraint on the possible a:

3+ B B
1 <1+§<:>/3>—1 (35)

Hence, the solution in the mixed case reduces to that of the LMFP for g8 > —1.
On the other hand, the second case applies if @ > 1 4+ B8/2. Once again looking at the

equilibrium case in the SMFP, g ~ 1 so that
a>1-1/2=1/2, (36)

giving a constraint on the possible power-law index of the density.

Finally, when @ = 1 4+ 8/2, a truly new case appears where the equilibrium solution is
different. Both the SMFP and LMFP regimes are of similar scaling which means that an
equilibrium solution has to satisfy both regimes equally:

e="=1+2"= 1/2 (37)

To summarize: in the mixed regime, constraints are imposed on the possible velocity-
dependencies of the cross-section, 8, and the resulting spike indices, @. A summary of
these findings can be found in table

In the following, generally only the LMFP case is considered.
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Numerical approach

3. Numerical approach

This section outlines the numerical approach used to solve the gravothermal fluid equations
(eas. (@), (). and (12)). The methodology for solving these equations follows [22} [35],
with several modifications introduced to address the specific challenges encountered. Key
numerical issues encountered during the implementation are also discussed, along with the
techniques I employed to resolve them.

The code I used in this work 7 is based on the GravothermalSIDM code, which was previ-
ously employed to study SIDM halos [49, [50].

To model the impact of the BH, I used ideas presented in [40]. However, the specific
implementation of this approach is the result of my own research.

3.1. Simulation of SIDM halo

In order to solve the gravothermal fluid equations numerically, it is useful to convert all
dimensional, z;, variables into dimensionless, z;, ones using fiducial variables, xg ;:

X

&=

(38)

Xo,i

It is important to note that x; and zp; should be of similar scale, as different orders of
magnitudes of these numbers might lead to unnecessary numerical errors. The following
fiducial quantities that depend on the parameters of the initial DM halo p, and r; are used:

rn=7s pPoO0= Ps

My = 471'057"53 go = (psrs)_l

39
v = (4nGpy) 2 ry Lo = (4n)°2G32 pY%r? 39
to = (4nGpo) 2.
Converting the gravothermal fluid equations into a dimensionless form, gives:
oM, _
= _ 40
o =P (40)
oF TR
oL (8 (VP
= __ —In|l— 42
o7 rpv(azn(ﬁ (42)
- 3, 11 1 ] av?
L — __~2 T~ = _ <o~ - — 4
2" [bﬁ C 2 [)26'1%1} oF (43)

17The code can be found on GitHub (https://github.com/Alex-Dreichner/GravothermalSIDM-BH/tree/
master/my%20work).
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3.1. Simulation of SIDM halo

Hydrostatlc Hydrostatic Yes BH mass
Add BH mass adjustment
step equilibrium? reached?

Yes
Accretion
Initial Data Conduct heat Compute & radius
reached?
Yes
Correction Accrete,
step resample

Figure 6: Flowchart of how the simulation of the SIDM halo is implemented in the code.

The process of how the simulation is conducted is explained in fig. [ff The simulation
starts with the initial density, usually a NFW density profile, from which the remaining
halo variables are calculated (see section [3.1.1)).

In the next step of the process, the BH is incorporated iteratively, with the entire BH
mass being added piece-by-piece. Choosing initial conditions where the BH is not grown
adiabatically, but instead inserted from the beginning, this step is simply skipped.

After each increment in BH mass, the halo is brought back to a hydrostatic equilibrium
through repeated hydrostatic adjustment steps (see section . Once the complete BH
mass is reached, the heat conduction, and consequently, the temporal evolution can begin
(see section [3.1.4).

I introduced the following three additional steps to this process:

In section the need of modeling accretion was motivated. When a particle (or shell)
reaches the vicinity of the BH, the particle has to be accreted; in the implementation
presented here, this means it is in some way removed from the simulation (see section .
In order to maintain a constant number of shells, I then choose to resample the remaining
ones, restoring their number to its original value. Because this changes the mass grid, a
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Numerical approach

correction step is introduced where hydrostatic equilibrium equations with explicit mass
and entropy conservation are used (I derive these equations in section .

Finally, the necessary time step is calculated before conducting heat (see sections
and , thereby perturbing the system and starting the next iteration of the process.

3.1.1. Initialization

To start the simulation some initial values for variables describing the DM halo, e.g.,
0, p,u, v, M, have to be provided. A NFW density profile is used and all necessary pa-
rameters are derived from it:

1
0(7) = ——. 44
0=~ (44)
This allows M and p to be computed directly:
o R R F2 _R _
Mmy—Jﬁ#ﬁ—J . —dr = _ +In(1+R)
0 or(1L+7) 1+R (45)
. © 5N © =L 4+ In(1+F
pe) = [ i | o
R T R 72-7(1+7)
After this, u = 3_1; and v = \/% can be computed. With all basic thermodynamic quantities

now defined, more complex quantities, such as the luminosity, can be derived from them
In the following, the tilde is dropped again and dimensional quantities are stated with the
correct unit.

3.1.2. Discretization of equations

Following [22 [32] [35], the differential equations (egs. (40) to (43))) are solved on a numerical
grid. What follows is merely a sketch of the key steps and some technical details are
omitted. For a more comprehensive derivation, the following references can be consulted
22, 132, 35).

The halo is divided into N spherical shells, with corresponding radii 74, ..., ry which initially
are spaced evenly on a log scale. Extensive quantities are then defined at positions r1...ry,
while intensive quantities are defined inside the shells at positions (r; + 7;-1)/2. Eg. M; is
defined at r;, while p; is defined at (r; +7;-1)/2 for i = 2, ..., N. Throughout the evolution
the mass of each shell is kept constant unless a shell is removed due to accretion.

3.1.3. Solving for hydrostatic equilibrium

Using these definitions, the equation for hydrostatic equilibrium (eq. ) reads:

. M! 5. .
PH—I Pz :__zpl+1+pl. (46)
(rig1—ri—1) /2 r? 2
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3.1. Simulation of SIDM halo

Here, M is defined as the sum of the BH mass My, and the DM halo mass M;. While
executing the time evolution of the simulated DM halo some heat Au is conducted, changing
the properties of the halo. In order to ensure that hydrostatic equilibrium is maintained,
perturbations in density, pressure and radius are introduced:

pi = pi + Api, pi — pi +Ap; and r; — r; + Ar;. (47)

To reduce the number of unknown variables to one, Ap; and Ap; are expressed through
changes in the volume [22]

AV rl.zAr,- - rl.z_lAri_l
Api =—pi—— = —pi ;
Vi (r=r2,) 3
) i—-1 (48)
5 AV; rl.QAri - 7”1~2_1A7”i—1
Ap; = —3Pi 7 =5p; TR .

T

The assumption that adjusting the halo into hydrostatic equilibrium is an adiabatic pro-
cess was used here giving rise to an adiabatic invariant, pV"®/® = const, and equals the
conservation of entropy.

What follows now is a slightly different approach in obtaining Ap; and Ap; motivated by
two issues that I have encountered:

For one, the equation for mass conservation (eq. ) is not explicitly used after initializing
the halo parameters. In my studies I have found that over time this equation can fail to
be fulfilled, i.e., % # pr?. This issue particularly arises, when the mass of the shells is
altered due to accretion and does not occur in a SIDM-only simulation.

As a result, instead of using Ap; in eq. the discrete form of eq. can be used to
obtain Ap;:

oM _
or P
M1 - M; 2
= (ri + Ary)” (pi + Ap;
riv1 + Arigg —ri = Ar; (ri + An)" (pi + Api) (49)
L Ap Myt - M, L

Tit1 + Aripn =1 = Ari (r; + Ary)?

The other issue is the way entropy is conserved. In the standard formulation, entropy
conservation is implicitly used in deriving Ap;. This approach conserves entropy at first
order, but does not explicitly includes it in solving the equations.
However, I find that entropy can be used to completely replace p by p and s. The entropy
on a discrete grid is given by s; = In vz.?’/ pi. Since it is conserved during the hydrostatic
adjustment, the term in the logarithm is as well and s, = vl.?’/pi can simply be taken as the
conserved quantity instead. Additionally using p = pv? gives:

i = P?/3s£2/3 , Ap = gSIQ/SPQ/BAp’ (50)
so that p; +Ap; can be replaced by eq. and Ap; can be replaced by eq. , transform-
ing eq. to an equation only in Ar; as well as quantities that are known, e.g., p;, p;, 8i, 7.
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Solving the equations from here on progresses in the same way as described in [22] 32].
Equation is multiplied by the denominators of both sides, all terms are moved to one
side and only terms at first order in Ar are kept, which results in terms linear in Ar;, Ar;j41,
Ar;_1, and terms independent of Ar (see appendix |Af for the full expressions). Then, the
following boundary conditions are assumed:

ro = 0 , ATO =0 , A?’N =0. (51)
This results in a tridiagonal matrix equation for i =1, ..., N — 1,
bl a Arl dl
az b2 02 A?’Q dg
ag by . A1 1= (52)
’ ’ 64‘7\"—2 ATA“V—Q d1\7—2
an-1 bN—l A?"N_l dN_l ’

which is particularly easy to solve and allows to compute Ar;, thereby solving the hydro-
static adjustment equation.

After each iteration, the updated density and pressure can be obtained by employing either
eq. or eqs. and . This process is repeated until Ar/r is small enough; I used

|
Ar/r < 10710,

3.1.4. Heat conduction

In the previous section, the amount of heat conducted Au as well as the change in entropy
As imposed by the temporal evolution were taken to be arbitrary. The section below
specifies how Au is obtained and explains how As is computed and affects the halo.

The time evolution through heat conduction is governed by eq. :

L 5 (8 (v*
(a7, &

Following the approach in [35], it is assumed that heat conduction changes mainly the
velocity dispersion, but leaves the density constant. One can then derive an equation for
the change of internal energy [32] [35]:

(54)

L,—L;_
s

M; - M;_,

Using the definition of the entropy on the other hand, eq. can immediately be rewritten
into:

s 1 oL
= 55
ot r2pv? or (55)
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3.1. Simulation of SIDM halo

The RHS of this can be simplified using eq. :
1oL 1 oLoM 1 0L 0L

=P = —, 56

r2pdr  r2pdM or  r2p oM T oM (56)
so that a discrete equation for the entropy evolution is obtained:
Os 1 oL 1 L;—L;;

_—_—=—_———_— A 7 — _At_' . L . 57

ot vzom v M; — M, (57)

In both cases the luminosity L can be directly obtained from eq. and Lo = 0 = M.
The time step At is chosen in a way that keeps the changes small compared to the quantity
changed. Specifically, this means that

AS,’

Au:
max( i ) <s[:10_4>max(

Ui

) (59)

Si
for the respective approach.

To evaluate the impact of heat conduction on the halo, consider first the approach where
density is held fixed. In this case, a change in the internal energy directly implies a change
in pressure, since p oc u p through the equation of state:

S Sk ap =gt (59)

After heat is conducted, the pressure becomes p; + Ap;, which brings the halo out of
hydrostatic equilibrium. To restore equilibrium p, p and r are perturbed using the method
described in the previous section until the halo once again reaches a hydrostatic equilibrium.
In the second approach, the entropy is explicitly changed. In this case, there is no need
to adjust any other quantities initially. Instead, the entropy change enters directly with
the entropy in the hydrostatic equilibrium equation (eq. ), causing p, p and r to be
adjusted to new values, until the halo is once again in hydrostatic equilibrium.

Conceptually, both methods are equivalent: in the first, the perturbation is introduced via

a change in internal energy (and hence pressure), while in the second, the perturbation is
introduced through a change in entropy.
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3.2. Accretion of DM onto a BH

As described in section 2.2 an inflow of matter towards the BH is expected. To model the
accretion onto the BH, mass shells that cross the accretion radius 4. need to be modified
in some way.

3.2.1. Defining the accretion radius

First, a suitable accretion radius needs to be defined. The most straightforward choice here
is to simply take the physical accretion radius for matter around a BH, 7, = 4G M, /c?
[39]. Generally speaking, it is very small compared to characteristic halo scales and so
this is not a very practical choice if the innermost grid point is far away, i.e., 71 > 7.
I have observed in my simulation that if this accretion radius is chosen initially, the shell
at r; tends to move inwards quickly while the other shells do so at a much slower speed
(or might even be moving slightly outwards), creating an increasingly bigger distance to
the next closest point until 71 < r5. This can cause numerical issues in the derivatives
of quantities, as the spacing r; — r;—1 grows uneven. The code can then fail to return the
system to hydrostatic equilibrium.

Figure [7] shows a zoom on the inner region in the early stages of the simulation. For
t < 1072Gyr and the innermost grid points, the halo slightly relaxes with density decreas-
ing as the shells move outwards, except for the innermost point that moves inwards and
increases its density. In the last time step shown (at ¢ = 1.05-10~'2Gyr) the position of the
innermost point quickly reduces significantly while at the same time the density rises by al-
most two orders of magnitude compared to the second to last time step (¢t = 9.63-10713Gyr).
Conversely, all other grid points remain at roughly the same position and density. At this
point in time, the innermost grid point has moved too far inwards compared to its neigh-
bor. Consequently, in the subsequent step during the hydrostatic adjustment, the code is
unable to return the halo to hydrostatic equilibrium and is terminated after 500 iterations.
The resulting density profile (gray) demonstrates a substantial change, with the innermost
grid point shifting outward by two orders of magnitude and the corresponding density
declining below the density of the halo at this position but in previous points in time. The
aforementioned trend continues until negative values of the density are reached, if the code
continues to run.

It is worth to note that between the two profiles for t = 1.05 - 1072Gyr, no time has
elapsed, and all observed differences appear as a result of the hydrostatic adjustment and
are unphysical.

Because of this issue, I choose to iteratively reduce r,, from a value that is reasonably
close to the initial 71, to its final value, r,.. = 4GMpp/c?; when a shell crosses the accre-
tion radius, a new accretion radius 7., = 0.995r is defined.
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3.2. Accretion of DM onto a BH
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Figure 7: Zoom into inner region of the halo. Shown is the density as a function of the
radius. Dots indicate positions of the grid points. Different colors indicate snap-
shots of different potions in time. At ¢ = 1.05 - 10~*2Gyr no hydrostatic equilib-
rium can be found and the code is halted after 500 iterations (gray).

3.2.2. Modeling the accretion

Once a shell crosses the accretion radius, its particles no longer contribute to the evolution
of the halo. They stop participating in heat conduction; instead their, mass is subtracted
from the halo and added to the BH.

The easiest way to achieve this is to simply remove the grid point, i.e., go from N grid
points to N —1, and to add the mass of the innermost shell to the BH and subtract it from
the remaining halo. However, many such crossings can occur during the whole simulation
(> 10%). Because the number of shells is much smaller than this (< 1000) this approach is
not useful, as the shells in the center are depleted over time, causing the spatial resolution
in the region that is most interesting to be lost.

Another approach was thus needed and I chose to simply resample shells as necessary. I pick
the shell that is closest to the accretion radius but still outside and some n,,,,-th shell and
interpolate n,,,, shells between those on a linear grid on a log scale. All thermodynamic
quantities, e.g., p, p, M, are then taken at a new and slightly offset position with the
number of accreted shells added in between. This ensures that the number of shells stays
constant, maintaining as high of a degree of accuracy as possible.

Figure [§ shows the effect of this step on the 10 innermost halo grid points. Shown are the
density versus radius for a halo with test1_old halo parameters (table at t = 0 and
t = 8-10~"Gyr. Compared to the initial distribution the density right before the accretion
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step is slightly lower, with the innermost grid point moved over the accretion radius and
showing a raised density. After accretion, the density follows the same distribution as
before for r > ro. In the subsequent adjustment, a general shift of all shells towards the
center is observed. All points are now outside of 74, and spread more evenly.

— Accretion radius

t=0 Gyr
before accretion, t=8-10"14Gyr
—e— after accretion, t=8-10"*Gyr
H —-Q. -14
1023 . —e— after adjustment, t=8-10""Gyr
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Figure 8: Density as a function of the radius. Dots indicate positions of the grid points.
Black vertical line represents the accretion radius used at this stage. Plot shows
one iteration with accretion and resampling and with subsequent return to hy-
drostatic equilibrium, as well as the initial density at ¢t = 0.

3.2.3. Reintroducing mass conservation

The introduction of accretion presents an additional challenge to the original method of
solving the gravothermal fluid equations. In their derivation, a Lagrangian framework is
adopted, which assumes that the mass enclosed within each shell remains constant through-
out the evolution. However, once a central BH is included and accretion is introduced, this
assumption no longer hold. As a result, eq. is increasingly violated. Because this
equation is not actively enforced during the evolution, '® the system cannot account for
the changes in the mass grid. Over time, as mass is repeatedly removed from the halo
and the shells are resampled, the error in this equation increases drastically - eventually
reaching over 80% (fig. [0al).

181n the derivation of eq. {48)) it is used implicitly with the assumption that the mass of the shells does
not change.
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3.2. Accretion of DM onto a BH

To address this issue, a correction step can be introduced that uses the alternative for-
mulation of solving the gravothermal equations, which gives rise to a change in density
(eq. (19)) that explicitly depends on eq. (40).

Figure |§| shows the relative errors in eqs. and initially, after 1000 accretion steps,
and after a subsequent correction step. It can be seen, that initially both equations are
fulfilled well with relative errors generally just above 10% at most (with the exception of
the innermost point that shows a much larger deviation).

After 1000 iterations where matter was accreted, fig. Da] shows that the relative error in
eq. (40)) is significantly increased for radii smaller than 10~"kpc, with values exceeding 50%
for » < 5-107'"%pc. The impact of the correction step is clearly visible; the relative error
is significantly reduced and is below 5% for radii smaller than 10~*kpc (again, with the
exception of the innermost point). At this point, a sharp increase of the error can be seen
compared to the initial profile. This is likely due to its position precisely at the edge of
where the interpolation was applied, causing large changes in the area within this radius
(see section for more details).

The relative errors in the hydrostatic equilibrium equation paint a slightly different pic-
ture (fig. . After 1000 accretion steps, the error has increased to about 25% for radii
smaller than 10~%kpc. 1? Compared to fig. this increase in the error is notably smaller.
However, after the correction step, there is no overall decrease in the error; errors are
reduced below their previous values only for radii between 2.5 - 10™%kpc and 1.2 - 10 kpc,
but increase at smaller radii and now reach over 60%. This suggests that the alternative
approach initially perturbs the halo, driving it away from a hydrostatic equilibrium at first.
Even more concerning is the effect that this correction step has on the density of the halo.
In the beginning, the slope index of the density shows a good agreement with the expected
solution @ = 7/3 in the inner region (fig. . Over time, a relaxation of the halo to-
wards @ = 7/4 is expected and this trend can be confirmed when examining the halo at
t = 2-107'°Gyr; the slope index shown is within 3% of the expected solution for radii
smaller than 6 - 10~%kpc before the correction. However, after the correction is applied, a
significant shift of @ can be seen for radii smaller than 10 %kpc. The deviation from the
expected value is much larger now; the innermost points show a reduction by about 0.2 in
the slope index, down to @ ~ 1.5 - a decrease by about 10%.

Since the main goal of this work is to demonstrate agreement between numerical simu-
lations and analytic predictions of the slope index, this poses a source for concern. It
indicates that the correction proposed in this section may unintentionally lead to signifi-
cant alterations of the halo beyond the intended effect if applied too frequently.

Because of this, I apply this correction to the halo only every 10* accretion steps. While
this leads to larger errors in eq. , it ensures that there are sufficient unperturbed steps
to allow the slope index to adjust back to the theoretical solution.

9The stark increase seen at 7 = 10"*kpc, can be once again attributed to the choice of mq.
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the beginning (¢ = 7/3) and at equilibrium (@ = 7/4).

Figure 9: Effects of one correction step using eq. on a halo after 1000 accretion steps.
The initial profile is shown for comparison. Based on the discussion in section [3.3]

the time step was adjusted.
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3.2. Accretion of DM onto a BH

3.2.4. Selecting the outer boundary for interpolation

In the previous section, the choice to keep the number of shells fixed resulted in the need
of interpolation in a certain region. It is used during a key step; to redefine the positions
and thermodynamic quantities of the halo during accretion. However, it is not trivial to
determine the optimal outer boundary of the interpolation region, described by the index
Nmaz, Which also serves as the outer boundary of where I apply the correction step.

Using a large value reduces numerical errors in the mass conservation and hydrostatic equi-
librium equations (egs. and ) by increasing the number of grid points in the inner
regions, where these errors tend to be largest. In other words, with a larger n,,,., the grid
spacing at the center is finer, which results in a better fulfillment of these equations (see
fig. .

On the other hand, the process of re-sampling introduces small deviations from the hy-
drostatic equilibrium solution because all quantities are recalculated at slightly moved
positions. In the inner region, a dynamical evolution - caused by a physical process such
as SIDM scattering - results in much shell movement and changes of thermodynamic vari-
ables and these physical changes can counteract occasional unphysical disturbances. How-
ever, further out in halo, the evolution is very slow and changes occur over much longer
timescales. As a result, introducing even small unphysical perturbations in these regions,
especially if these are repeated many times, can lead to unrealistic alterations of the halo.
This is the result of simulations when n,,,, is taken to have a large value (see fig. for
Nmax = 300).

An ideal choice for n,,, would ensure that the natural halo evolution can compensate for
these unphysical perturbations, i.e., the position is such that more than one scattering is
expected before the next time step:

!
povAL > 1. (60)

This guarantees that changes are imposed only in a region where there is some degree of
dynamical evolution going on. However, in practice this is not a very useful approach, as
in the cases I have studied generally povAr < 1.

Another consideration is that the range where a power-law solution for the density can
exist is inherently limited. After all, a key assumption is that My, > Mpy; in this area,
since only in this case does the velocity dispersion scale as »~'/2. From studies of SIDM
halos without a central BH, it is known that the internal energy initially decreases towards
the center (see section , implying the existence of a local minimum. Consequently, the
power-law solution can only be valid in the region inward of this minimum. Based on this,
I choose to place 7,4, at precisely this point. 2° A physical flow of matter is expected here,
(ideally) washing out numerical inaccuracies during the evolution. This position can shift
slightly over the course of the simulation, and the correct choice of n,,,, must therefore be
recalculated repeatedly. 2!

In practice this second condition with placing #n,,,, at the minimum of the internal energy
is working better compared to the first condition.

20For sufficiently early times, this choice roughly corresponds to setting 74, such that ry,, =7, ,. At
late times, during gravothermal collapse, no local minimum in # exists.
21T found nper = 70 — 90 for the halo parameters used in this work.
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To better investigate the impact of a fixed choice of n,,, on the halo evolution, three
cases with n,,,, = 100, 200 and 300 are considered. These simulations use the test1_old
parameters from table [2] and each halo is divided into 400 shells. The corresponding re-
sults are shown in fig. [0} The numerical artifacts observed in fig. [I0D] are caused by the
interpolation boundary at 7., so that their position can serve as a proxy for the chosen
Nmaz- As a comparison, the variable choice is used, where n,,,, is set at the minimum in
the internal energy.

Examining the slope index « (fig. at the first time step shown after initialization,
at t ~2-107?Gyr, shows that the curves for n,,, = 100 and 200 (green and blue, respec-
tively) are in very good agreement with each other for radii greater than 10~3kpc. The
interpolation edge for 7,,,, = 100 occurs there causing them to deviate slightly for smaller
radii. A good agreement can once again be seen for radii smaller than 10~%kpc. Comparing
the highest choice of n,,,, (orange) to these results, a noticeable difference for radii between
~ 1077 — 2kpc can be seen. Conversely, the variable choice of 7,4z (magenta) is in very
good agreement with the smaller choices of 7,4,

This effect is further exaggerated for later times. At ¢t = 2.7Gyr, both the two small-
est (e = 100, 200) and the variable choice (green and blue, magenta) show very good
agreement in the outer regions of the halo for » > 10 'kpc. There it becomes clear, that
a higher choice of n,,, (blue) results in a bigger deviation from the physically expected
solution. 22 While the lowest choice, nyq; = 100, does show a formation of the core, the
variable choice is able to better capture this; the slope is lower for a larger interval and the
numerical artifact is smaller. Once again, the highest choice for n,,, (orange) results in
a significantly altered evolution, altering even the outermost regions of the halo. Despite
these differences, all choices result in a similar slope index in the inner region. 23

A similar result is seen when examining the corresponding density profiles (fig. . At
the earliest time step shown, and for radii larger than 10~“kpc, there is good agreement
between 1n,,,, = 100, 200 (green, blue) and the variable choice set at the minimum of the
internal energy (magenta). Here, the larger numerical artifact seen in the green curve (also
visible in fig. just below 1073kpc) causes a slight deviation from the other two profiles.
The largest choice of n,,, (orange) results in a deviation from the others in a larger area
once again. However, at this time step, the distinction between the different choices cannot
be seen as clearly in the density profiles as when examining the slope index.

This changes when looking at the latest point in time shown, at t = 2.7Gyr. Here, it is very
evident where the deviations occur and where the profiles follow the expected flattening of
the curve in the middle regions of the halo. Once again, it can be seen that a smaller choice
of n,,4. leads to a better agreement with the expected result and a smaller perturbation of
the outer halo, where no change is expected.

22As explained in section the expectation is that over time the halo forms a core with @ = 0 at the
center. Here, @ = 0.2 is observed instead.

23The result in the inner region depends on the time step size (section . In this figure, the modified
value is used, resulting in the expected solution, @ = 7/4, for g = 4.
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3.2. Accretion of DM onto a BH

When examining how well the numerical equations are fulfilled, a different result is ob-
served.

Figure shows how well the mass conservation is satisfied, i.e., whether M, p and r fol-
low the relation specified in eq. . At the earliest time step shown, no clear distinction
between the different choices can be made; only a slight trend suggests that higher choices
of nyq. lead to slightly higher relative errors. In the innermost regions a general trend
can be seen where the errors rise dramatically, reaching values close to 100%. This can be
explained by the repeated accretion of DM, causing changes in the mass grids; something
that does not occur in the isolated SIDM case.?* A correction step to mitigate some of
these effects was introduced in the previous section.

At later times (t = 2.7Gyr), a clearer separation appears, particularly in the plateaus and
for radii between 10~'%kpc and 10~3kpc. Here, higher values of 7,,q, lead to lower errors:
for example, the error for n,,, = 300 (orange) is only about one-third of the error of the
variable choice (pink).

Looking at the relative errors in the hydrostatic equilibrium (fig. , this effect becomes
even clearer; larger choices of n,,, result in smaller errors and a better fulfillment of
eq. . The difference between the different choices is slightly more pronounced in this
case, with the errors for the choice of n,,, = 300 (orange) being roughly one-fifth of those
of the variable choice (pink), which generally results in the smallest 7,,q;.

The findings outlined in this chapter suggest that the numerical parameter n,,,, has to be
chosen with care. The expected evolution of the spike index tends to favor smaller values
of nyqe, with large values resulting in a nonphysical “evolution® of the halo. However,
an analysis of the relative errors indicates the opposite; choosing smaller values leads to
greater violation of the governing equations.

241n the formulation of the gravothermal fluid model, a lagrangian derivative is used, forcing the mass of
the shells to stay constant - something that cannot be done here because of accretion.
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Figure 10: Effect of different choices of n,,, on halo evolution. Lighter shadings indicate
later time steps. 7n,,,, = 100, 200, 300 (green, blue, yellow); otherwise a dynamic
choice is taken, placing n,,,, at the minimum of the internal energy (magenta).
Note that only when making the later choice, the halo forms a core. The time
step size is adjusted according to section to obtain the correct slope index
at the center.
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Figure 11: Relative errors in the equations that are solved. Lighter shadings indicate later

time steps. 7,4, = 100, 200, 300 (green, blue, yellow); otherwise a dynamic
choice is taken, placing it at the minimum of the internal energy (magenta).
Generally, larger n,,,, leads to smaller errors. The jumps in the errors indicate
where n,,,, is. The time step size is adjusted according to section
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3.3. Numerical equilibrium

The approach used in simulating the DM halo in this work results in another option to
achieve an equilibrium solution that is not apparent from the discussion in section [2.7] or
from looking at the gravothermal equations.

In a physical system, heat conduction and hydrostatic adjustment happen simultaneously -
all governing equations are fulfilled at all times. However, numerically, this is not possible
and it is resorted to solve them separately. In particular the time evolution governed
by eq. and the equation to solve for the hydrostatic equilibrium (eq. ) are two
distinct steps involved in simulating the SIDM halo. When the effects of both of these
processes are of the same magnitude, an interesting phenomenon can arise: a ‘numerical”
equilibrium, where the changes imposed by taking a heat conduction step are reverted by
the subsequent hydrostatic adjustment.

To better understand this effect, it is useful to examine the evolution of the entropy. For
simplicity, only the innermost region and the case o « v~% are considered here, but the
idea is valid in general.

As derived in eq. , initially the velocity dispersion follows v o 7~1/2, while adiabatic
BH growth results in a density profile that follows a power-law with @ = 7/3 in the inner
region. Therefore, the entropy decreases towards the center, with s’ = v3/p o 7%/6. Once
the time evolution starts and heat is conducted, the entropy in the innermost region starts
to increase. This increase, described by eq. , which I call As,y,q, is proportional to
r~12. 25 Tt is therefore immediately clear that only the inner regions are affected and at
a certain radius, this change becomes negligible.

In the subsequent hydrostatic adjustment, the position of the shells is adjusted, which
generally makes them move inwards, while the entropy per shell remains constant. As a
result, the whole profile is shifted inwards, changing the entropy profile as a function of
the radius.

Depending on whether the entropy increases or decreases towards the center, two cases can
be distinguished. In the first case, if the entropy at the center is larger than further out,
then the inwards movement of shells during the hydrostatic adjustment step decreases the
entropy as lower entropy shells shift to inner radii. In the second case, if the entropy at the
center is smaller, this movement increases the entropy as higher entropy shells move to the
inner radii. The second case is relevant initially, when starting with a spiked NF'W profile,
and when considering the equilibrium solution for 8 = 4, where s’ = v3/p oc r=3/2+7/4 =
ri/A,

In either case, when any of the shells cross the accretion radius, they are removed from the
simulation, effectively cutting the entropy off at the center. Consequently, the hydrostatic
decreases the entropy in the first case, and increases it in the second. I call this change
Ashydrm

If this effect is large enough compared to the physical change, As,,, , the entropy at the
center increases until it reaches a flat profile, rather than the expected s’ o #1/%. Moreover,

251 assume the halo has evolved but is not yet in equilibrium as in section and has a spike-index of
a = 2.
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3.3. Numerical equilibrium

if the entropy happens to have an increasing profile towards the center, 26 the change
introduced by the hydrostatic adjustment acts to reduce it to a flat profile. I find that this
process creates a numerical equilibrium in which the entropy is constant at the center, and
shows neither an increase nor a decrease.

Because the velocity dispersion scales like r~/2 near the BH, the scaling of the density
under these circumstances can be determined to be

2

s=1In (v3/p) = const = v?/p = const = p o« v3 oc 732, (61)

Interestingly, this also corresponds to the correct slope in the case 8 = 3. As a result,
when this effect is not properly accounted for and an unsuitable time step is picked, the
resulting density slope might be the same across all velocity dependencies. This is what I
observed when using the method described so far.

To illustrate this effect, I consider a DM halo with o oc v~* after the simulation has run for
some time. Figure shows the entropy profile if the approach described so far is used
with an increased time step parameter & = 0.01. Shown are the entropy profiles before
heat conduction (cyan), after one heat conduction step (red) and after the subsequent
hydrostatic adjustment (green). The entropy profile remains constant in most of the halo
for this step, and in the inner region only a slight change can be seen. This is expected, since
by construction the changes of the entropy are kept small, and As,,, s quickly decreases
for larger radii. However, the 10 innermost grid points reveal a discrepancy between the
results and the theoretical expectations.

Initially, the change due to heat conduction decreases the entropy in this case. Compared to
the initial profile, this change is small. However, in the subsequent hydrostatic adjustment
step, this change is reverted so that effectively the entropy is increased after this step. This
does not happen through an increase in the value on the grid, 2” but instead the whole
profile shifts and thus s(r) increases; the result is a slightly flatter profile. Hence, in this
step, the effects from the hydrostatic equilibrium and not the heat conduction dominate
the evolution of the halo and if this continues over time, the entropy profile becomes flat
at the center, independent of the cross-section.

3.3.1. Modifying the time step

To solve this issue, it is necessary to ensure that the changes imposed by heat conduction are
larger than the changes imposed by the hydrostatic adjustment and subsequent accretion,
i.e., Ascond/Aspydro > 1. While As,y,q is given by eq. and can easily be calculated
ahead of conduction, Asygy, is not trivial to compute, as there is no equation giving the
exact form of it. Instead, it (not only) depends on Ar and so can only be given after a
hydrostatic adjustment step has been taken.

To increase the ratio of both changes and thereby ensure, that the changes in entropy
are in fact predominantly caused by conduction, I consider the following. The hydrostatic
adjustment restores hydrostatic equilibrium after the halo is perturbed; therefore, this

26Tis is relevant for the equilibrium solutions where 8 < 3, and for initial conditions where & < 3/2.
275; cannot increase in this step, since the entropy per shell is kept constant during hydrostatic adjustment.
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Figure 12: Entropy profiles (s = v3/p) before conduction (cyan), after heat conduction
(red) and after hydrostatic adjustment (green). Zoom on the 10 innermost grid
points. For larger radii, no difference is visible. The time step parameter, &;,
and the number of heat conduction steps, n,.,, per hydrostatic adjustment need
to be strongly increased in order to counteract a flatting of the halo.

step cannot be modified. Modifying it would imply either that the system cannot (fully)
return to its hydrostatic equilibrium, or that some additional conditions would need to be
introduced. In contrast, the time step in the heat conduction is a numerical parameter
and can be chosen arbitrarily within certain bounds. If &; is increased, the result is simply
a larger As.,q. The trade-off to this is a reduced numerical accuracy in the integration of

eq. ([@).

Figure[I2D]illustrates the result when the time step is effectively increased by a factor of 20.
As in the previous case with a smaller &;, changes in the entropy remain minor throughout
most of the halo and can only be seen in the inner regions. However, a clear difference is
visible now: the change in the entropy due to heat conduction is amplified tenfold. As a
result of this, after hydrostatic equilibrium is restored, the entropy profile follows the result
post heat conduction more closely, and the overall increase and flattening of the profile is
no longer observed. Instead, the entropy remains shifted in the direction specified by the
heat conduction. 28

In order to avoid decreasing the accuracy of the time integration too much, &, should also
not be too large. I impose a maximum value of & = 0.01, which I found to work well
empirically. If a larger time step is necessary, multiple heat conduction steps are taken,
without performing a hydrostatic adjustment in between. This results in approximately the
same overall change as simply taking one larger time step, but since each step is smaller,

281 note that this solution does not entirely eliminate the issue and the impact on the spike index remains
visible for the innermost few grid points.
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the numerical accuracy of the time integration is improved.

While this can be repeated many times in principle, a maximum number of these repeti-
tions, 7,,p, must be imposed to preserve a good agreement with the boundary condition
imposed by eq. . This is because the method described in section assumes that
the system remains close to equilibrium after being perturbed; if the deviation is too large,
the approximations made to compute Ar break down. I find that a value of n,,, ~ 5 — 10
yields good results.

For some configurations, particularly when the luminosity is high, this proves to be in-
sufficient - the ratio As.o,q/Aspydr, remains too small. The simple selection of an even
larger value for either &; or n,,, is not a viable option as it decreases numerical accuracy
significantly. Despite this, it is nevertheless possible to increase the number of repetitions
if simultaneously reducing &,. My findings indicate that &mn,., should not exceed ~ 0.2,
e.g., & = 0.002 and n,,, = 100.

Finally, I specify the method to determine Asyyq,,. Instead of performing a heat conduction
step and then comparing the resulting change to that caused by the subsequent hydrostatic
adjustment, I choose to compare it with the previous hydrostatic adjustment step instead.
Ideally, the comparison should be made with the subsequent step, as this is the hydrostatic
adjustment physically linked to the conducted heat. However, given that the expected
changes should not vary too much from one step to the next, given similar perturbations,
this approach gives a reasonable approximation and has the added benefit of being easier
to compute.

One final complication arises, because before the hydrostatic adjustment step, the shells
are defined at radii ; while afterwards they are defined at radii ; + Ar;. When computing
Aspyaro the entropy before the adjustment, s; ,, and the entropy after adjustment, s; ., are
thus defined at different radial positions and As; jy4,0 7 $i,a —Si,5- To remedy this, the value
of s; , at the new position, must be interpolated back to the old radius r;. Because the
quantities involved span many orders of magnitude, I interpolate on a logarithmic scale
to minimize numerical effects. Nevertheless, small interpolation errors are introduced. If
these errors exceed the actual entropy change, they can overshadow the true change of the
entropy and lead to a false estimate of Asyq,,, resulting in inaccurate time steps.

3.4. Adding DM spike by hand

Numerically simulating SIDM halos with central BHs proves to be computationally expen-
sive. Depending on the halo parameters used, simulations can take weeks to complete.

Consequently, a common approach found in the literature is to simulate SIDM-only halos
and then add the expected DM spikes by hand [51, [52]. Using this method, the known
power-law solution of the density (derived in section is simply added on top of the
evolving halo. To do this, the spike radius ry, introduced in section @ is used to define
the transition point. The DM distribution is then modified, such that inside of the spike
radius the density follows the power-law solution and outside it reduces to the density of
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Numerical approach

the isolated SIDM (or CDM) halo, ppas:
- - .f
—_— < ,
poar(r) = pom (rep) (np) if r <7y (62)
pD;M(r’ if r > Tsp.

As shown in section the resulting density profiles do not necessarily match with the
ones obtained from halo simulations including a central BH. The expression used for the
spike radius to stitch the profiles together, plays a significant role here.
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4. Results

In this section, I present the final results of my simulations of DM halos. The halo param-
eters utilized are based on [28, [35] [5T] with slight changes for the purposes of this work. A
summary of the parameters can be found in table

Note that in [28], the initial density profile is only given in dimensionless units; the dimen-
sional values I used in my thesis chosen for convenience.

For the number of shells, I used N = 400 for simulations with a central BH and N = 201
for SIDM-only simulations. Other parameters such as the time step size, the velocity-
dependence of the cross-section, and a change of the BH mass are specified when relevant.
Additionally, only the LMFP regime is considered.

run name test1_old shapiro alonso_bh_Imfp | shapiro_static
initial profile | (spiked) NFW | spiked NFW | (spiked) NFW Plummer
My, [Mo] 100 42 108 6-10° 9.42 - 10°
rs [kpc] 2.586 2.586 2-103 V2
ps [Mo/pc?| 0.0194 0.0194 3-1074 1/(4m/§3)
o [em?/g] 0.05 5 5 5
vo [km/s] 84 84 8050 55

Table 2: Halo parameters used and corresponding run names. Scale radius and density are
based on [28, 35, 51]. A BH was added to the halo parameters from [35].

4.1. Results for ococy™

Because the case with o o v~ leads to the theoretical prediction @ = 7/4, commonly
found in the literature, it serves as a natural benchmark and is therefore presented first.
The halo parameters are listed in table[2 and all numerical studies in this work are initially
based on these values.

The key goal of this thesis is to numerically simulate the evolution of a DM halo with a
central BH and verify the convergence of the central spike index to its theoretical value.
Figure shows the slope index as a function of the radius for various time steps. Initially,
as expected for an effectively CDM halo (no time has passed), the slope index is close
to the theoretical solution @ = 7/3 after the central BH has grown adiabatically. For
r > 1073kpc the NFW profile is recovered. As the halo begins to evolve, the inner points
move inwards and the slope index starts to decrease to the equilibrium solution, reaching
a good agreement by ¢ = 2.9 - 10"9Gyr. In the intermediate region, the slope index has
slightly relaxed; however, it still mostly follows the NFW profile here (r > 1073kpc). As
time progresses, the slope index continues to relax in the region r ~ 10~°kpc — 10~ 'kpc,
gradually forming a core and reaching @ ~ 0 by ¢ = 10Gyr. At this point changes are
only visible for r < 10kpc, while the slope index remains very close to the theoretical value
in the inner region (r < 10~"kpc). Even during gravothermal collapse (¢ = 91Gyr), this
remains the case and changes only occur in the outer regions of the halo.
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Results

Because of the approach described in section [3.2] numerical artifacts remain. They appear
at the edge of where the interpolation is applied. With time, these artifacts disappear and
are barely visible for the later time steps (1 > 0.7Gyr).

The resulting density profile (fig. shows the evolution from a spiked NFW profile
towards a cored profile with a SIDM spike. While the convergence towards the equilibrium
spike index is more difficult to judge, the halo clearly forms a core; at t = 10Gyr the core
spans five orders of magnitude from r ~ 10 °kpc to lkpc. Additionally, the increase of
the halo’s density during the gravothermal collapse is also readily seen. It is interesting
to see, that in the central region the density profiles for t = 2.7 - 10"'Gyr and ¢t = 91Gyr
are virtually indistinguishable. This degeneracy could complicate the inference of DM
properties from observational data.

Initially, the internal energy shows a combination of the profile for a SIDM-only halo
(fig. and the expected scaling u o 7~! in the inner region (fig. . This results in a
positive luminosity in the inner region, followed by a negative luminosity in an intermediate
region (fig. . For the first three time steps shown, the internal energy profiles are
nearly identical. For later time steps (¢ > 1.1-10~"Gyr), the formation of an isothermal
core can be seen, until by 91Gyr, the energy has increased to a point where no minimum is
visible anymore. The velocity dispersion (v = v2/3u) reaches relativistic values of around
v/c =~ 0.3, once the physical accretion radius is reached.

The effects of this are also seen in the evolution of the luminosity (fig. . As the
equilibrium solution is approached in the inner region, the luminosity flattens out. Finally,
during the gravothermal collapse, the luminosity is positive, with the sole exception at
around 7 ~ 10 %kpc. It is not entirely clear if this is a physical property of the halo, or a
numerical artifact, causing the luminosity to remain negative in a small area.
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4.1. Results for o-ecy ™%
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(a) Slope index. Initially, @ ~ 7/3 (dashed black) at (b) Density profile. Initially, density follows a spiked NFW
the center. Convergence to the theoretical value, profile. Over time, a core develops in the intermedi-
a = T7/4 (dashed-dotted black) occurs within 2.9yr. ~ ate region of the halo. At late times (t = 91Gyr),
Numerical artifacts between 10™*kpc and 10 3kpc the density is increasing again, indicating an ongoing
are a numerical artifact from interpolation (see sec-  gravothermal collapse.

tion .
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(c) Internal energy. Initially, # o 7~! at the center. For (d) Absolute value of the luminosity. Initially, luminos-

r < 10~ "kpc, the energy remains almost constant with
time. As the halo evolves, an isothermal core forms. By
t = 91Gyr the energy has increased to a point where no
minimum is visible.

ity increases towards center. Once accretion sets in,
the central luminosity flattens (¢ > 7.1-1071Gyr) and
gradually approaches a constant value. In the inter-
mediate region of the halo, the luminosity is gener-
ally negative. During gravothermal collapse (shown at
t = 91Gyr), luminosity is positive, except in a small
area near r ~ 10 °kpc, possibly due to a numerical
artifact.

Figure 13: Results for a halo evolved using the test1_old parameters from table |2| with
B = 4. The central region converges to the expected theoretical solution, while
the intermediate and outer halo follow the evolution expected for a SIDM-only
halo. At t = 91Gyr, gravothermal collapse is clearly observed.
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4.2. Mean free path

In section the mean free path is given by the jeans length in the LMFP regime. [Shapiro
argues that in the presence of a BH, this gravitational scale is modified and that “it proves
sufficient then to set H = min(r, rs)* [28]. Figure [14]shows the ratio of r; and the radial
position, . Looking at this graph, it can be clearly seen that the approach by |Shapiro/mod-
ifies the interaction scale of the particles far outside the area one would assume. Physically,
it would be expected (and desired) that this modification is relevant, i.e., rj/r > 1, only
when Mpyr/My, < 1. Surprisingly, depending on the specific parameters used, rj/r > 1
even for Mpy /My, as large as 10° and increases over time. Despite this, the impact on the
halo is much smaller, with the mean free path increased by about a factor of 50 at most,
slightly below Mpy; < My,.
Nevertheless, this shows that this approach might not be suitable for correctly modeling
the impact of the BH on the gravitational scale height. Halo evolution is modified far
outside the radius of influence of the BH and even more importantly, the modification is
completely independent of the mass of the BH.
As a possible modification of this approach, a function that smoothly interpolates between
r and rj depending on the ratio of the BH mass and the enclosed DM halo mass, My, /Mpyy,
could be introduced. An example of such a function that explicitly depends on the BH
mass is

H? = r2e MMy 2 =M/ M (63)

Using this function ensures that the undesired term is quickly suppressed, i.e., if M > M,

e~ MMy yanishes and H? ~ r?, and vice versa.

To isolate the effect of this modification on the luminosity of the halo, two cases of a SIDM
halo without a BH are considered: One, where the scale height remains unmodified, i.e.,
H = ry, and the other where the modified scale is used, i.e., H = min(ry, 7). As can
be seen from the result in fig. [I5 the halo with the modified luminosity shows a slower
evolution of the core. For all time steps shown, the halo with the unmodified evolution
(blue) shows a lower slope in the inner regions compared to the modified version (green).
This is not unexpected, since decreasing the scale height in eq. results in a smaller
luminosity, thus decreasing the speed of evolution.

Therefore, when trying to compare the evolution of a halo with a central BH to a SIDM-
only halo, the change due to the different potential, i.e., due to the added gravity of the
BH, is accurately captured by a SIDM halo with the modified scale height. Making the
comparison to the SIDM halo without this alteration, results in a slower evolution of the
halo with a central BH.
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4.2. Mean free path
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Figure 14: Ratio of the Jean’s length r; and radial position r as a function of the ratio
between DM mass and BH mass. Initially profiles (solid) and profiles at later
times (dashed) are shown, with halo parameters from table [2, H = min(r, ;)
can result in H > rj even for Mpy; >> My,.

Surprisingly, modifying the scale height does not leave a lasting imprint on the DM halo
when a central BH is present.

Figure 16| compares the approach from [28], H? = min(r?, r?,), with the modification of the
scale height as a function of BH mass defined by eq. .

Initially, a BH is grown adiabatically, producing a spiked NFW density profile with @ ~ 7/3.
Modifying the scale height in the two ways, causes initially differences in the luminosity
between 4 - 10~*kpc and 10~ 'kpc , as shown in fig. The inner boundary of this region
roughly coincides with the radius where M (r) = 0.5M;;,, while the outer boundary extends
up to M(r) = 10°My, (see fig. [14] for t = 0 and test1_old). With the equation proposed
by me, the scale height is increased compared to the approach by [Shapiro, which results
in an increase by about a factor of two in this range. The stars indicate the where the
luminosities match again at the center.

However, these differences vanish with time. After the initial phase, the luminosities
equalize throughout the whole halo. The notable exception here being the BH mass depen-
dent approach. Here, minuscule fluctuations in the internal energy cause large oscillations
of the luminosity between positive and negative values. This fluctuations appears near
M (r) ~ My, where the function defined by eq. changes behavior, which may be the
origin of these fluctuations. Physically, the only difference between both profile for ¢t > 0
appears near the center; the luminosity for H2 = min(r?, r?,) is slightly higher. Although
this might seem counterintuitive (a smaller scale height should lead to a smaller luminos-
ity), this can simply be explained by the system evolving more slowly initially. Because
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Figure 15: Spike index parameter @ as a function of radius for a SIDM halo (blue) and
a SIDM halo with a modified luminosity (green). Later times are shown in a
lighter shading with a shift towards higher radii for later time steps. The evo-
lution of the unmodified halo progresses quicker. Halo parameters correspond
to test1_old with My, = 0.

luminosity tends to decrease over time, a slower evolution implies a higher luminosity at a
given moment.

The impact of these changes on the density is illustrated by fig. As seen for SIDM-only
halos (fig. , the halo with the BH-mass dependent scale height develops a core more
quickly; it is both flatter and less dense. Further towards the center, both approaches
follow a similar, yet offset profile, indicating a convergence to the same slope index. Again,
the stars indicate the position where M = 0.5M;;,. While the density shows a clear differ-
ence for t =2-107%Gyr and t = 5-1073Gyr, by t = 10Gyr both halos have converged to
identical density profiles.
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(a) Absolute value of the luminosity. At the radius marked by the
stars both luminosities are nearly identical. The large increase
for t = 10Gyr at r ~ 10~ 2kpc is due to slight numerical errors in
the internal energy. Luminosity oscillates between positive and
negative values here.

1015
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(b) Density profile. Evolution with H? = min(r?,r3) is slower ini-

tially; the density is larger. Differences are generally largest at
the radius marked by the star. However, by ¢t = 10Gyr, both
halos converge to the same profile.

Figure 16: Comparison between setting the scale height to H? = min(r?,r%) (blue) and
using the function described in eq. (green). Both simulations start from
the same spiked NFW halo, with parameters given in table Despite the
luminosity being different initially, the final profiles converge. Star indicates
position where M (r*) = 0.5M;;, (star). Lighter shadings indicate later time
steps.
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4.3. Different initial conditions

To test the stability of the code and asses whether the expected spike index can also be
produced by starting from different initial profiles, I examine alternative initial conditions.
First, conditions based on Section II.A.4 from [28] are used. The corresponding halo pa-
rameters are listed in table|2] in the column labeled shapiro_static. Unlike in the previous
cases, the evolution does not start with a NFW profile that has undergone adiabatic BH
growth resulting in the CDM spike with @ = 7/3. Instead, a Plummer density profile,

3ps

(1 N (r/rs)z)wz’ (64)

pp =

is used, and the outer edge of the halo is kept fixed throughout the evolution. The main
feature of the Plummer model is a flat central density with @« = 0. In theory, the halo
should evolve towards the expected solution of @ = 7/4 in the inner regions, despite
different initial conditions.

Figure shows the evolution of the halo through the example of density (fig. and
spike-index (fig. profiles.

The initially flat profile quickly evolves to higher density in the inner region. The slope
parameter makes this evolution clearer and shows that the significant increase in density,
respectively the spike parameter, only occurs once accretion sets in, i.e., when inner shells
move significantly inwards at around ¢t = 0.01Gyr. The spike index in the inner region only
flattens out and finally converges to the theoretical solution at this point. The equilibrium
solution of the inner region is first achieved at around ¢t = 0.032Gyr. Once this occurs,
the evolution of the halo is effectively stopped and between this point and ¢ = 0.99Gyr no
visible changes occur.

One thing to note is that the density of the halo is increasing everywhere with progress in
time despite the assumption that the halo mass is kept constant. Thus, eq. is fulfilled
progressively worse which can prove to be an issue in predicting the correct density of the
halo. However, I have not observed this behavior in any other runs.

To further test the stability of the equilibrium solution, I consider a NF'W halo once again.
Instead of growing the BH adiabatically, resulting in the CDM slope @ = 7/3 at t = 0, the
total BH mass is now included from the beginning, and the pressure is modified to fulfill
the corresponding hydrostatic equilibrium equation.

The initial halo parameters used correspond to the testl1_old run name from table
Compared to previous simulations using the same parameters, these initial conditions yield
similar thermodynamic variables in the outer regions of the halo, while the inner region is
altered.

The results of this simulation are shown in fig. Examining the spike index (fig.
clearly shows the initial difference between both halos. The halo with the adiabatically
grown BH (hereafter referred to as adiabatic BH) exhibits the CDM spike slope with
@ = 7/3, while the other halo (hereafter NFW-+BH) simply follows a NFW profile with
@ = 1 at the center. As a result, the densities for radii smaller than r ~ 10~*kpc (fig.
also show clear differences. Despite these, the internal energy is very similar for both halos,
scaling like 7~1/2 at the center (fig. . The adiabatic BH halo shows a slightly lower
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(a) Density profile. A zoom on the outer regions is shown. (b) Spike index profile. Horizontal, dash-dotted line repre-
sents the theoretical equilibrium solution @ = 7/4.

Figure 17: Evolution of a halo from a flat Plummer profile (black) towards a spiked halo
with @ = 7/4. Halo parameters are taken from table

minimum internal energy at a slightly smaller radius.

Fairly quickly, after only about a decade (at ¢t = 1.4 - 10Gyr), both halos can be seen to
converge. The spike index falls in a similar range for radii larger than 10~°kpc and only
shows significant differences for smaller radii. The density profile also shows increasingly
good agreement in this range (fig. , though still diverging for smaller radii. At this
points the most notable distinction is that the halo with the adiabatic BH extends to much
smaller radii, and the convergence towards the equilibrium solution with @ = 7/4 (fig.
is faster. Here, the spike index reaches the equilibrium solution @ = 7/4 already at the
earliest shown time step (after less than a year), while the NFW-+BH halo still resembles
its initial profile.

By the final time step depicted (at ¢ ~ 190yr), both halos exhibit a high degree of similarity,
rendering them virtually indistinguishable. For all subsequent time steps, all relevant
quantities demonstrate a perfect agreement with between each other. Consequently, the
conclusion can be drawn that the halo’s equilibrium state is independent of the initial
conditions in the inner region. While the outer parts are identical from the beginning, the
inner parts ultimately converge to the same solution.

In practice, when simulating SIDM halos, the more practical starting conditions can thus
be chosen.
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(¢c) Spike index profile in intermediate region of the

halo. CDM spike index

(o = 7/3, dashed) and equilibrium spike index (¢ = 7/4, dashed-dotted)

are also shown.

Figure 18: Evolution of a halo with an adiabatically grown BH (green) in comparison to a
BH without growth, i.e., with the initial halo following a NFW profile (blue).
For better clarity, initial profiles for energy and density are shown in black. Halo
parameters are test1_old from table 2 Lighter shadings indicate later times.

After about 190 years both initial conditions yi
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4.4. Varying the velocity-dependence of the cross-section

4.4. Varying the velocity-dependence of the cross-section

In the previous sections, the velocity-dependence B of the cross-section was fixed at a
constant value of four, i.e., o oc y™4,

In this section, B is varied and the resulting spike index is compared to the expected equi-
librium solutions (table [).

For velocity-dependencies of the cross-section with 8 =0, 1, 2, 3, 4, 5, 6, the expected slope
indices are @ = 3/4, 4/4, 5/4, 6/4, 7/4, 8/4, 9/4, respectively.

Figure shows the resulting slope indices of the halos at late times. All simulation start
with a spiked NFW profile with an initial slope index close to the CDM slope, @ = 7/3.
Once the evolution sets in and the equilibrium is reached at the center, the resulting pro-
files show a good agreement with the theoretical predictions.

For the three lowest velocity-dependencies (8 = 0,1, 2), the simulation have not yet
reached ¢t = 10Gyr. 2 Despite this, a partial convergence towards the expected solu-
tions (@ = 3/4,4/4,5/4) is still observed. For B = 2, the halo has only relaxed in the
inner region, causing the slope index to increase with radius in the intermediate region of
the halo. For 8 = 3,4, 5 the slope indices follow similar profiles in the outer regions but
diverge at the point where the halo transitions to the BH dominated regime (r < 10~%kpc)
to follow the corresponding equilibrium solutions, @ = 6/4, 7/4, 8/4. The highest velocity-
dependence (B = 6) leads to a gravothermal collapse of the halo by ¢t ~ 9.4Gyr. As a
result the profile of the slope index shifts to smaller radii and exhibits a much higher value
in the outer regions (107> — 1kpc). Despite the collapse, the halo still converges to the
equilibrium solution @ = 9/4 in the inner region.

It is notable that, even though the expected values for @ only differ by about 10-20%
between adjacent solutions, a clear distinction can be made between all results. This is
particularly impressive given that much larger errors were observed (e.g., in fig. .

It is important to note that in the very central region (r < 10~*2kpc), the slope index
diverges from the equilibrium solution and the profiles tend towards @ = 3/2. This is a
direct result of the “numerical equilibrium* described in section [3.3]

The most notable feature seen in the density profiles in fig. is the strong increase
in the density of the simulation with 8 = 6, where the halo is undergoing gravothermal
collapse. Compared to other profiles at a similar time, the density is increased by 10 or-
ders of magnitude. For the smallest velocity-dependencies (8 = 0, 1, 2), the halo remains
close to the initial NFW profile up to the spike radius (r ~ 10~*kpc). At smaller radii, a
clear distinction can be made between all profiles, with convergence towards the expected
power-law solutions. For § = 3,4, 5, a core is visible between 10~%kpc and 1kpc, and the
density follows the respective power-law at smaller radii.

The relative error in the slope index, defined as
(lAa|)/a = (la - aol)/a, (65)

is shown as a function of time in fig. Here, g is the analytic equilibrium value obtained

29The luminosity for small 8 grows particularly quickly with smaller radii, leading to increasingly small
time steps.
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(c) Convergence towards the theoretical solution as a func-
tion of time. Initially, @ ~ 7/3, which leads to different
relative errors. In the end, Aa/a ~ 1 - 10%.

Figure 19: Based on the run parameters test1_old the velocity dependence of the cross-

section, B, is varied: o o« v78.

Initial spiked NFW profile is given in black.

For B = 6 a collapse of the halo can be seen at 9.4Gyr where the density of the
core is strongly increased (red). A convergence to the equilibrium solution can

be seen nonetheless.
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4.5. Comparison to artificial spiking

from section and the average is taken within the transition region. 3°

Initially, this relative deviation differs greatly between different choices for 8, ranging from
a few percent for B = 6 and nearly 200% for 8 = 0. 3! This is because of the difference
between the initial slope @ = 7/3 and the eventual equilibrium value @y. Nonetheless, the
halos reach equilibrium on fairly short timescales (¢ < 1071°Gyr) and after this the relative
errors are consistently only a few percent. Some outliers are present where (|Aa/|)/a is in
the range around 50%. This is most likely caused either by discontinuities in the profile or
a preceding correction step, which can alter the slope index (see fig. .

4.5. Comparison to artificial spiking

In this work, SIDM halos are simulated explicitly with a central BH, allowing the impact on
halo evolution to be directly captured. In contrast, the more common approach described
in section [3.4] simulated only the SIDM halo and then includes the effects of a central
BH on the density by adding a DM spike. The goal of this final section is to investigate
whether these two methods yield the same results.

A useful quantity for comparison is the slope index a, which clearly shows the intersection
point of both power-laws.

Figure shows the slope index at ¢ = 0, after a BH was grown adiabatically (orange).
As a comparison, a spiked SIDM halo is shown, with the spike radius chosen in terms of
mass (eq. , blue dashed) and in terms of internal energy (eq. , blue). This yields
spike radii of 7y, = 0.15pc and r;,,, = 0.2pc, respectively. Although both methods result in
a similar spike radius, they overestimate the point of transition (ry, ;) When comparing
this to the simulated profile. Defining this point at the steepest descent of the slope index
32 T find Tsp,irue = 0.08pc.

While both analytic estimates of the spike radius are off by a factor of 2, this is nonetheless
an acceptable result as the order of magnitude is correctly determined.

The effect of this is also reflected in the density profile (fig. . The full simulation
with the BH yields a lower density than predicted by adding the spike artificially. At
r = 10~%kpc, the density is p = 8-10¥Mg/kpc? for the full simulation. In comparison, the
added spikes show a density of p = 2-10Mg/kpc? for rgp = 0.2r;, ,, and p = 3-104My /kpc?
for ry, = ry,,,. Again, while the precise values differ, the results of these methods are broadly
in the same range.

This changes drastically as the evolution continues.

As time progresses, the internal energy in the inner region increases. Since v* « u, and the
mass of the BH remains roughly constant, eq. implies that the radius of influence 7, ,
decreases over time.

Most of the halo evolves similarly to a SIDM-only halo, where the density of the halo
generally decreases as a core begins to form. As heat flows inwards during this stage, an

2

30The outer boundary of this region is set by .,y (eq. ) To reduce boundary effects, the 10 innermost
and outermost grid points are then excluded.

3lag =2.25 for B =6 = (|Aa|)/a ~ 4%, whereas ag = 0.75 for 8 = 0 = (|Ace|)/a ~ 200%.

32This method works well for smooth functions. Numerical errors can make the slope index non-
differentiable, which makes it more challenging to use this method.
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Results

(a) Slope index. Vertical lines indicate the position of

the spike radii.

(b) Deunsity

Figure 20: Comparison between a simulation with an explicitly modeled BH (orange), and
SIDM-only simulations with added spike (@ = 7/3) at r,, (blue solid) and at
0.2ry, ,, (blue dashed) at ¢t = 0. Initial parameters are test_old from table

outward flow of matter is established. Because the 2My;, shell lies in this region of the halo,
it shifts outwards over time, pulling 7 , along with it. Thus, the spike radius increases
over time time.

To determine which of these two expressions more accurately reflects the true spike radius,
fig. [21| shows the evolution of the ratio between ry, ;- and both of the analytic expressions,
for multiple simulations. For simulations based on test1_old, only the relevant change is
used as the label, e.g., for B = 6, the label is o « v=%. For test1_old_initial_bh, the
initial conditions of the NFW+BH halo (section are used.

Examining first the ratio 7y /rue/7h,y, the results follow a pattern, with most of the points
falling within a range of 0.4-0.8, and no clear distinction between runs is visible (fig. [21a)).
In contrast, using 7y, ,, from eq. results in poorer match to the actual transition point
(fig. . Initially, the ratio stays relatively constant between 0.1 and 0.2, 33 indicating
that 7, , may be used as an approximation for the intersection point early on. However,
as time progresses (after roughly 107'°Gyr) the halo expands and Th,m INCreases, causing
Tsp,irue/Th,m t0 decrease. Once the halo undergoes a gravothermal collapse (¢ > 60Gyr), this
ratio increases slightly again. Hence, 7 ;rue/7h,m is time dependent, and r;, ,, proves to be
a poor measure of the transition region.

Additionally, there is a clear difference between the different models for this choice of the
radius of influence. When increasing the BH mass from 100Mg to 1000Mg or 10000M,,
Tsp,irue/Th,m 18 also increased for larger BH masses. Changing the velocity-dependence of
the cross-section also has an influence on the evolution of the ratio - larger 8 lead to an
earlier formation of the core and thus an earlier decrease in the ratio (e.g., compare the
profiles for o oc v=6 to o o« v73).

These results suggest that the position of the intersection point of the power-laws is best

33 According to [37] this value should be 0.19-0.22.
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(a) r, = 7, from eq. (18). Majority of results are (b) 7, = 7, from eq. (17). Ratio decreases over

in a band between 0.4 and 0.8 (black solid lines),
indicating this definition accurately captures the

transition between the power-laws.

time due to expansion of the halo. At late times
(t < 60Gyr) a reverse trend can be seen when
the halo collapses. Additionally a distinction be-
tween models can be seen, e.g., higher BH masses

increase the ratio.

Figure 21: The ratio between the BH radius of influence and the numerically determined
intersection point of the two power-laws (75, 1r4¢) as a function of time. Simula-
tions based on test1_old are labeled by the specific change, e.g., for o oc y =6

B =6.

)

captured by the radius of influence when defined in terms of the velocity dispersion as in
eq. . Therefore, when simulating a SIDM halo without a central BH and later adding
a DM spike, using r;, , as the spike radius is the optimal approach.

The choice of spike radius has a direct impact on the resulting density profiles. Figure
compares both choices of the spike radius (ry, = r3,,, and r, = 0.2, ,,) to the full simulation
with a central BH (SIDM+BH) for ¢t > 0.

In all time steps shown, placing the spike radius at 0.2r; ,, leads to a gross overestimation
of the density (fig. . As predicted, the spike radius increases with time, so that the
discrepancy is largest at the last time step shown (1 = 10Gyr). The density is overesti-
mated by six orders of magnitude and the spike radius by over three orders of magnitude,
compared to the full simulation.

On the other hand, setting the spike radius at r; , results in a density profile that very
closely follows the result of the full simulation at the center. The largest deviation here
occurs at the first time step shown (¢ = 1.6-107°Gyr), where adding the spike results in an
overestimation of the density by about 60%. this difference decreases over time, so that at
t = 10Gyr the difference is only 6% and not visible by eye. This choice of the spike radius
also correctly reproduces the transition point in the slope index @ (fig. . The other
expression of the spike radius, ry, = 0.2r ,,, does not capture this transition accurately,
because in this case the spike radius grows over time rather than shrinking.

However, when comparing the halos in an intermediate region, it proves that the SIDM-only
halo evolves slightly slower; the density is slightly raised compared to the full simulation.
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This difference is most likely caused by the choice of the scale height H, since it influences

the luminosity even outside the BH dominated region.
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Figure 22: Comparison of full simulation with BH (orange), to SIDM only simulation with
added spikes (@ = 7/4) at r;,,, (blue solid) and at 0.27, ,, (blue dashed). Lighter
shadings indicate later times. Vertical lines indicate position of the respective
spike radii. Initial parameters follow test_old from table .
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5. Conclusion

The goal of this work was to simulate the evolution of a SIDM halo with a central BH
using the gravothermal fluid model.

During the implementation, it became evident that the numerical simulation is sensitive
to certain purely numerical parameters and the specific approach used to incorporate the
added effects of the BH (sections and. These challenges were successfully addressed,
and the simulations were shown to reproduce the theoretical results for the DM distribution
in equilibrium (fig. .

While the modification of the scale height as proposed in [28] seems to be too simplistic at
first glance, affecting the luminosity far outside the BH’s radius of influence, the resulting
deviations disappear during the evolution fig.

Additionally, it was demonstrated that the steady state solution of the halo’s density is
independent of the initial conditions, provided that the density profile at large radii is
identical (fig. [18).

Finally, the commonly used method of adding a DM spike to a SIDM-only simulation
was shown to yield a good approximation of the central density obtained from the full
simulation (fig. . In the intermediate region, slight deviations were observed, likely due
to the choice of the scale height. Recognizing that the correct radius of influence of the
BH is best described in terms of internal energy rather than mass, I propose that the best
agreement with a SIDM-only halo using the Jeans length as the scale height is achieved
when the transition of the scale height (r; — r) occurs around 7y ,,.

Despite these successes, there remains much for future work.

The current implementation uses a Newtonian description of gravity. Given that the
simulation of the halo extends very close to the BH and particles reach relativistic speeds,
a general relativistic description of the system, as studied in [28, 40], is more suited to
model the halo.

The accretion model used in this work is very simple; a more sophisticated model for
accretion could be introduced and the accretion of DM studied more extensively in future
work.

In this work cross-sections with power-law dependencies on the velocity dispersion were
studied. Future works could consider more general models (such as studied in [45]), possibly
resulting in different equilibrium solutions.

By comparing simulation results with observational data, constraints on the cross-section
and velocity-dependence could be derived. Additional interactions, such as inelastic DM
scattering [53], could affect the luminosity in a complicated manner, altering both halo
evolution and the equilibrium solutions of the halo.

In this work, BHs were either assumed to grow adiabatically or to be present from the
beginning. Allowing the BH to grow with time may lead to observable imprints on the
evolution of the halo.

A systematic comparison between full simulations and artificially spiked SIDM-only halos
would help asses the quality of the approximations commonly used in the literature [511 [52].
Additionally, a comparison to N-body simulations (such as those in [54]) could further
consolidate the robustness of the methods employed in this work.
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Conclusion

Finally, all effects caused by the presence of baryonic matter in the system were neglected
in this work. Baryonic matter can have a large impact on the evolution of DM halos; the
presence of a baryonic potential can cause an accelerated core collapse of the DM halo [55]
and an outflow of matter from active galactic nuclei can lead to a transfer of energy from
baryonic to DM particles resulting in the flattening of a CDM core [56]. Both these effects
could drastically alter the DM distribution and lead to different results compared to this
work.
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A. Full set of hydrostatic equilibrium equations

The full expressions for the terms appearing in the matrix in eq. that is used to solve
for hydrostatic equilibrium, with M,,, = M; + My,, AM; = M; — M;_1 and s; = vl.?)/pi , are
given below. To reduce floating point errors, these expressions should be factored as much
as possible when converted to code.
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Full set of hydrostatic equilibrium equations
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