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Abstract
In this work, different dark matter models, Cold Dark Matter, Self-Interacting Dark
Matter, and Dissipative Self-Interacting Dark Matter, were tested using the GD-1 stel-
lar stream by generating and analyzing the respective density power spectra. GD-1 is
particularly well suited for this purpose due to the availability of high-precision observa-
tional data and its clearly defined density profile. Notably, GD-1 features a gap whose
structure possibly suggests a perturbation by a massive and compact object, potentially
a dark matter subhalo. To investigate this possibility, subhalo impacts were simulated
for each of the models, and the resulting density power spectra were computed as a
function of the angular coordinate ϕ1 and the path length s. The results show no sig-
nificant differences between the models. This may indicate that the power spectrum is
not the most suitable tool to accurately resolve small-scale density fluctuations such as
those caused by a subhalo impact.

Zusammenfassung
In dieser Arbeit wurden verschiedene dunkle Materie Modelle, Cold Dark Matter, Self-
interacting Dark Matter und Dissipative Self-Interacting Dark Matter mit Hilfe des GD-
1 Stellar Streams getestet, indem jeweils ein Power Spectrum erstellt wurde. GD-1 ist
aufgrund sehr präziser Beobachtungsdaten und einem sehr ausgeprägten Dichteprofil hi-
erfür besonders geeignet und weist eine Lücke auf, deren Struktur möglicherweise darauf
hindeutet, dass sie von einem massiven und kompakten Objekt stammen könnte, wobei
viel dafür spricht, dass dafür ein dunkle Materie Subhalo in Betracht kommen könnte.
Dazu werden zunächst Subhalo Impacts für die verschiedenen Modelle simuliert und an-
schließend Density Power Spectra als Funktion von ϕ1 und der path length s erstellt. Im
Ergebnis ist kein wesentlicher Unterschied zwischen den Modellen erkennbar. Möglicher-
weise stellt ein Power Spectrum kein optimales Mittel dar, um Dichtefluktuationen auf
kleinen Skalen, wie sie nach einem Subhalo Impact auftreten, präzise abzubilden.
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Notation

Abbreviations

Abbreviation Meaning
CMB Cosmic Microwave Background
CSD Cross Spectral Density
DFT Discrete Fourier Transform
DG Dwarf Galaxy
DM Dark Matter
DSIDM Dissipative Self-interacting Dark Matter
FLRW Friedmann-Lemaître-Robertson-Walker metric
GC Globular Cluster
GD-1 Grillmair–Dionatos 1 stream
HDM Hot Dark Matter
NFW Navarro-Frenk-White profile
MC Molecular Cloud
MPI Message Passing Interface
MW Milky Way
PSD Power Spectral Density
SDSS Sloan Digital Sky Survey
SIDM Self-interacting Dark Matter
WDM Warm Dark Matter

Symbols and Units

Symbol/Unit Meaning
s (time) second
h hour
d day
a year (cosmological)
y year (astrophysical)
ly light-year
pc parsec
M⊙ solar mass
s (path) proper path length along GD-1
D heliocentric distance to GD-1
c speed of light in vacuum
G Newton’s gravitational constant
H Hubble constant
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Chapter 1

Introduction

1.1 The Visible and the Invisible

"So remember to look up at the stars and not down at your feet. Try to make
sense of what you see and hold on to that childlike wonder about what makes
the universe exist."

– Stephen Hawking

In his Allegory of the Cave, the Greek philosopher Plato describes people who have been
chained in a dark cave since birth, such that they can only look at the wall in front of
them. Behind them burns a fire, and between the fire and the prisoners, objects are
moved, casting shadows onto the cave wall. The prisoners perceive these shadows as the
only reality. When some of them are freed and leave the cave, they come to recognize
the true world outside. They see the earth, the sun, and at night the whole cosmos
stretching above them with its beauty and understand that the shadows were merely
illusions. A parallel between Plato’s allegory and our understanding of the universe has
been drawn, for example in the context of the film Interstellar in which the former NASA
pilot Cooper joins an expedition that travels through a wormhole to explore new worlds
and ultimately save humanity [81]. But it can also serve as metaphor for our general
understanding of the universe and particularly the mystery of Dark Matter (DM). If, as
it seems to be the case, 85% of all matter in the universe [126] consists of this substance
we do not yet understand, then what we can observe today is, metaphorically speaking,
merely a shadow on the wall of the cave. And despite decades of effort to break free, no
one has truly left the cave yet. But what we can do is study the shadows in detail and
analyze the traces that this mysterious form of matter leaves behind. One such trace
is the stellar stream GD-1 [45], a long, thin structure of stars stretching across several
kiloparsecs in the halo of the Milky Way (MW). Within this stream lies a gap whose
shape and properties suggest it may have been caused by a collision with a DM subhalo.
It is, in a sense, a direct shadow cast by dark matter into our cave, that might help us
find a path into the open. This thesis attempts to examine that shadow, that may one
day take on tangible form under the open starry sky of reality.
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Figure 1.1: Artistic illustration of a wormhole [91], a theoretical con-
cept from general relativity that describes a shortcut between two distant
points through spacetime, like a tunnel. In the film Interstellar, NASA
pilot Cooper travels through such a wormhole to save humanity. Plato’s
Allegory of the Cave has been interpreted as a metaphor for this film [81].
This interpretation can also be applied to Dark Matter, a mystery that sci-
ence has been puzzling over for several decades (M. A. Garlick/ESO/CC

BY-SA 4.0) [58].

1.2 Motivation

Among the stellar streams in the MW, GD-1 is particularly well observed and exhibits
a clearly defined density profile. One of its gaps shows a structure that could be the
result of a collision with a DM subhalo. In the ΛCDM model, dark matter halos play a
major role, forming the framework within which baryonic matter first assembled. During
the process of accretion, these halos orbit as subhalos around main halos that surround
galaxies such as the MW. The precise structure of one gap in GD-1, which might have
formed as a consequence of such a collision, would be related to the density profile of
this subhalo. This profile depends on the DM model considered and can be either cored,
cuspy or super-cuspy. This allows conclusions to be drawn about the structure of DM.
A useful tool to describe structures and patterns in astrophysical objects is the so-called
power spectrum. In this work, this is calculated and interpreted for all three models
using a specially developed code.
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Chapter 2

Theory

2.1 Cosmological and Astrophysical Background

2.1.1 The ΛCDM Model

2.1.1.1 Cosmological Framework

The particle models examined in this thesis are based on the framework of Cold Dark
Matter (CDM) [43, 121]. Together with Dark Energy Λ [102], CDM is a part of the
ΛCDM model. This is the standard model of cosmology, describing both the large-scale
structure and the evolution of our universe. It is based on the cosmological principle,
which states that the universe is homogeneous (uniformly distributed) and isotropic (the
same in all directions) on large scales. In such a universe, distances can be described
using the Friedmann-Lemaître-Robertson-Walker (FLRW) metric [133]

ds2 = −c2dt2 + a(t)2
[

dr2

1 − kr2 + r2(dθ2 + sin2 θdϕ2)
]

(2.1)

with the scale factor a(t), describing the expansion of the universe, the radial distance
r, representing the distance in a specific coordinate system, the curvature parameter
k, characterizing the spatial curvature of the universe1, and the speed of light c. The
Friedmann equations are derived from the Einstein field equations

Rµν − 1
2gµνR + gµνΛ = 8πG

c4 Tµν (2.2)

with the Ricci curvature tensor Rµν , the metric tensor gµν , the Ricci scalar R, the
cosmological constant Λ, the energy-momentum-tensor Tµν , and Newton’s gravitational
constant G. If the matter is isotropically distributed, Tµν can be expressed as

1The universe can be open (k = −1), flat (k = 0) or closed (k = 1).
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Tµν =


−ρc2 0 0 0

0 p 0 0
0 0 p 0
0 0 0 p

 (2.3)

By inserting the FLRW metric (Eq. 2.1) into the Einstein field equations (Eq. 2.2), one
obtains the Friedmann equations

H2 =
(

ȧ

a

)2
= 8πG

3 ρ − kc2

a2 + Λc2

3 (2.4a)

ä

a
= −4πG

3

(
ρ + 3p

c2

)
+ Λc2

3 (2.4b)

with the Hubble parameter H, the total density ρ and the total pressure p. The equation
of state describes the relationship between the pressure p and the energy density ρi of
a given component in the universe. It is defined as

ρi = ρi,0

(
a0
a

)3(1+wi)
(2.5)

where wi are the equation-of-state parameters and ρi,0 the present-day energy density
of the component i. The components of the universe in the ΛCDM model are baryonic
and (cold) dark matter (DM) (m), radiation (r), and dark energy (Λ). Dark energy
(Λ) acts as a repulsive force that counteracts gravity on cosmological scales, driving the
accelerated expansion of the universe. The critical density ρcrit, at which the universe
is exactly flat (k = 0), is defined as

ρcrit = 3H2
0

8πG
(2.6)

Dividing the first Friedmann equation (Eq. 2.4a) by H0 then yields

H2

H2
0

=
∑

i

Ωi,0

(
a0
a

)3(1+wi)
(2.7)

where H0 is the Hubble constant today. The equation-of-state parameters wi are defined
as the relation between pressure and density (wi = pi/ρi) and have the values wm = 0
(matter), wr = 1/3 (radiation) and wΛ = −1 (dark energy). Equation (2.7) can then be
rewritten as

H2

H2
0

=
∑

i

Ωi,0

(
a0
a

)3(1+wi)
= Ωr,0

(
a0
a

)4

︸ ︷︷ ︸
radiation

+ Ωm,0

(
a0
a

)3

︸ ︷︷ ︸
matter

+ ΩΛ,0︸ ︷︷ ︸
dark energy

(2.8)
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where matter can be both baryonic and collisionless CDM. a is the scale factor of the
universe and describes how much the universe has expanded or contracted relative to
a specific reference time. a0 is defined as the scale factor today, so that today a = a0.
With the density parameters (cosmological parameters) Ωi, defined as

Ωi = ρi

ρcrit
(2.9)

it is now possible to express each component of the universe relative to the critical
density ρcrit (Eq. 2.6)

Ωtot =
∑

i

Ωi = Ωr + Ωm + ΩΛ (2.10)

where Ωtot is the total density parameter of the universe.

2.1.1.2 Composition of the Universe

Ωtot (Eq. 3.13, see Subsubsec. ▶ 2.1.1.1) describes the contribution of all the individual
components of the universe. Modified particle models in the framework of CDM need to
be in accordance with the structure formation of the universe (see Subsubsec. ▶ 2.1.2.1).
For example, the density parameters Ωi determine how quickly matter collapses and how
dark matter interacts with itself and other components which is relevant for the self-
interactions in Self-interacting Dark Matter (SIDM). To determine the composition of
the universe, the Cosmic Microwave Background (CMB) (Figure A.1) can be used [51]
(for a description of the single steps, see ▶ A.1). Table (2.1) shows the composition of
the present-day universe, as determined by the latest measurements [126]. Figure (2.1)
illustrates the evolution of the universe’s composition from the time of recombination
to the present day.

Parameter Value ±1σ

Ωm (matter) 0.3153 0.0073
ΩΛ (dark energy) 0.6847 0.0073
Ωbh

2 (baryons) 0.02237 0.00015
Ωch

2 (cold dark matter) 0.1200 0.0012
Ωr (radiation) ≈ 5 × 10−5 -

Table 2.1: Cosmological parameter Ωi with their values and uncertain-
ties. The values are taken from [126].
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Figure 2.1: Composition of the universe from the recombination until
today. In this figure, the energy density ρi for each component i has
been determined using Equation (2.5), where ρi,0 denotes the present-
day energy density, obtained from the CMB as described in the preced-
ing section. The cosmological parameters Ωi were then calculated using

Equation (2.9).

2.1.2 Structure Formation

2.1.2.1 Dark Matter in the Context of the Cosmic Evolution

Figure 2.2: Epochs of the universe, as well as the developmental phases
of DM. Recombination marks the moment when the universe became
transparent and simultaneously the beginning of structure formation

[124].



Chapter 2. Theory 7

Now that the constituents of the universe [80] have been identified, the question arises as
to how its structure could have formed, ranging from galactic structures (such as stars,
star clusters, and galaxies) to the cosmic web (filaments, voids, and nodes) [106]. Figure
(2.2) shows the evolution of DM within the framework of the various cosmic epochs.
This is relevant to understand the abundance of DM subhalos in the Milky Way (MW),
which are a natural consequence of the structure formation in the universe. According
to the standard description provided by the ΛCDM model, this formation proceeds
hierarchically, from smaller to larger structures (in contrast to, for example, the top-
down scenario of hot DM models) [47]. As shown in Figure (2.2), DM is produced at
different stages of cosmic evolution depending on the model (whether through freeze
out [79], the standard mechanism, or alternative non thermal explanations). However,
in all cases, its production is complete by the time of recombination. This is also the
point at which structure formation begins. DM plays an important role in this process
[47]. Since it does not interact electromagnetically, it can collapse early under gravity
and thus drives the formation of structures. Small density fluctuations initially lead to
the formation of small halos, which merge over time through hierarchical accretion into
larger structures. Baryonic matter cools down and subsequently falls into the already
existing dark matter halos. These halos connect to form filaments, nodes, and voids,
known collectively as the cosmic web. Thus, DM forms the gravitational backbone that
governs the motion of galaxies and larger structures [120].

2.1.2.2 The Accretion of Subhalos

Due to hierarchical structure formation, the universe today still hosts a large population
of DM halos of various sizes [92]. If smaller halos come close to the sphere of a big DM
halo, hosting a galaxy such as the MW, it can become gravitationally bound and turn
into a subhalo. Figure (2.3) shows this process, called accretion. Since numerous of such
subhalos are located within the halo of the MW, collisions with stellar streams are a
realistic scenario, one of which may have caused the a in GD-1 that forms the basis of
this analysis. In the MW there are 104 − 105 such subhalos with masses greater than
105M⊙ [119]. If the subhalo crosses the virial radius of the host halo (Step 1, see Fig.
2.3), rinfall ≤ Rvir, with rinfall defined as the distance from the center of the host halo to
the subhalo at the moment it crosses the host’s virial radius, it becomes gravitationally
bound. The virial radius Rvir [31] is defined as

Rvir =
( 3Mvir

4π∆cρcrit

)1/3
(2.11)

with the overdensity factor ∆c, which describes how much denser a halo is compared to
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Figure 2.3: Illustration of the different steps in the accretion of sub-
halos: Virial crossing (Step 1 ), tidal stripping and dynamical friction
during the (usually) eccentric orbit (Step 2 ), and merging or tidal dis-
ruption when the subhalo has reached the center of the host halo (Step 3 ).

the average critical density of the universe2 and ρcrit the critical density [101], defined
for a flat universe as

ρcrit = 3H2

8πG
(2.12)

When the smaller halo has become gravitationally bound to the host halo, it usually
moves on (usually eccentric, sometimes even strongly elongated) orbits around the center
(Step 2 ). The closest point to the center of the host halo is called pericenter, the most
distant apocenter. During this orbit, two processes can take place. The first, tidal
stripping, means, that DM is stripped away from the subhalo, caused by the tidal forces3.
While within tidal radius [15]

rt ≈ R

(
msub

3M(R)

)1/3
(2.13)

2A typical value would be ∆c = 200 [31].
3That means that the gravitational force acts with different strength on different parts of the smaller

object. It is the same force, that the moon exhibits on the ocean waters, causing tides.
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the gravitational pull of the subhalo dominates, outside the tidal forces on its particles
dominate. R is the distance of the subhalo to the center of the main halo, msub the
mass of the subhalo and M(R) the mass of the main halo within R. Once, enough
DM has been stripped from the subhalo, the baryonic matter (forming a Dwarf Galaxy
(DG)), typically located deeper in the gravitational potential, can also be removed by
tidal forces4. The second process is called dynamical friction and occurs, when the
subhalo moves through a background particle field (as it can be the DM of the host
halo). The gravitational force of the subhalo then attracts the DM around it, creating
an overdensity behind it. This gravitational action slows down the subhalo and is called
dynamical friction. It can be described by the Chandrasekhar formula [37]

dv⃗

dt
= −4πG2mρ ln Λ

v3

[
erf

(
v√
2σ

)
− 2v

√
π

√
2σ

e− v2
2σ2

]
v⃗ (2.14)

with the mass m of the subhalo, the density of the background ρ, the velocity v of the
subhalo, the Coulomb logarithm ln λ and the velocity dispersion of the medium σ5. As a
consequence, the orbit contracts, the pericenter becomes smaller, and the orbit gradually
tightens. According to Equation (2.13), the tidal radius therefore also becomes smaller,
leading to increased tidal stripping. When the subhalo has reached the center, it can
either undergo tidal disruption or merging (Step 3 ). The time until merging or tidal
disruption can be estimated with the dynamical friction timescale [78]

tfric = 1.17
lnΛ · r2

circVvir

Gmsub
(2.15)

with the time until spiral-infall (merger) tfric, the Coulomb logarithm ln Λ, the radius
of a circular orbit with the same energy rcirc and the virial velocity of the host halo

Vvir =
√

GMvir
Rvir

(2.16)

If the subhalo merges, it becomes incorporated in the main halo (see Fig. 2.3). In case
of tidal disruption, tidal forces near the apocenter disrupt the subhalo, causing a leading
and trailing tail. This can lead to the creation of a stellar stream [119] (see Subsubsec.
▶ 2.3.1.1).

4This can potentially give rise to a stellar stream. GD-1, on the other hand, is believed to have
originated from a GC, which does not possess a DM subhalo.

5This effect particularly plays a role for massive subhalos (approximately m > 109M⊙).
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2.1.2.3 The Small-Scale Crisis

While the ΛCDM model provides an excellent description of the universe on cosmological
scales6, there are some discrepancies between simulations and observations on galactic
and sub-galactic scales. These discrepancies are the motivation behind the development
of modifications to the CDM model, such as SIDM and Dissipative Self-Interacting Dark
Matter (DSIDM) (for a description of the specific models see Subsec. ▶ 2.2.2). In the
following, these issues, also referred to as the small-scale crisis, are briefly discussed, as
well as, how SIDM and DSIDM can contribute to its solution [127, 28, 32]:

• The core-cusp problem: CDM simulations have shown that the mass density profile
increases for r → 0 and predict a cuspy density profile [50, 93, 94]. However,
observations of the rotation curves of disk galaxies favour cored density profiles
α ∼ 0 at small radii [89, 88]. This problem is adressed by the the SIDM modell, as
Figure (2.4) shows by comparing simulations of a galaxy density profile with two
standard profiles for CDM and SIDM. In this model, self-interactions between the
DM particles alter the density profile towards a core in the center (see Subsubsec.
▶ 2.2.2.2).

Figure 2.4: N-body simulations of different density profiles (from [54],
left) and two typical density profiles (cuspy Navarro-Frenk-White (NFW)
[94]) and cored Einasto [53]) for comparison. The SIDM model used in

this work is based on a cross section of σ
m = 5 cm2 g−1 .

• The diversity problem: Simulations in the ΛCDM model predict that galaxies of
similar mass should have similar rotation curves, as DM halos follow a universal

6Cosmological scales, contrary to galactic scales, describe the big structure of the universe, ranging
from galaxy clusters to the whole universe.
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profile (e.g., NFW). Observations, however, show a wide range of inner rotation
curve shapes [96]. Some galaxies have steeply rising curves (= cuspy halos), while
others rise more slowly (= cored halos)7. By implementing, in addition to the self-
interactions in the SIDM model, also dissipative effects, DSIDM can produce super-
cuspy profiles. Through the combination of these two mechanisms, the diversity
problem can be addressed.

• The missing satellites problem: When looking at the structure of a galaxy, ac-
cording to the standard model, each galaxy is assigned exactly one DM halo. The
equivalent for a dwarf galaxy, also referred to as a satellite, would be a subhalo
(although not every subhalo necessarily contains a DG). However, based on the
number of subhalos in a galaxy, one can also expect a certain number of satellites.
As CDM halos form through the merging of smaller halos, they are expected to
contain a significant number of subhalos [73]. This is due to the hierarchical for-
mation process, explicated in the section above, where structure grows from the
bottom up, with small halos collapsing first and later merging into larger systems.
Therefore, remnants of these early halos should persist as subhalos within the
newly formed larger DM halos. However, the observed number of small galaxies
in the Local Group is significantly lower than the predicted number of subhalos.
For example, in the MW, only about 10 dwarf spheroidal galaxies have been dis-
covered, whereas simulations predict on the order of 100–1000 subhalos [90, 74].
SIDM addresses the Missing Satellites Problem by altering the internal structures
of subhalos through self-interacting dark matter, reducing their survival proba-
bility within the main halo, which leads to fewer visible satellites [132]. DSIDM
extends this model by including dissipative effects that can cause additional energy
losses in small subhalos, resulting in even stronger mass reduction and a changed
number of satellites [60]. However, neither of the two models can fully explain the
problem, so further (astrophysical) solutions need to be found.

• The Too-Big-To-Fail Problem: CDM simulations initially predicted that the bright-
est satellites of the Milky Way would correspond to the most massive subhalos,
as these are expected to have the highest chances of hosting observable galaxies.
However, studies have shown that subhalos in the central regions of the MW are
much denser than expected [28]. These subhalos are so massive and dense that
they should have been capable of forming stars, meaning they should host visible
satellite galaxies. However this galaxies are not observed, creating a discrepancy.
SIDM addresses this problem by creating cored density profiles in massive subha-
los, reducing their central densities, so they no longer appear too big to fail.

7For the rotation curve of the MW, see [40].
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2.2 Dark Matter

2.2.1 General Concepts

2.2.1.1 Problems with the Standard Model

Figure 2.5: The components of the Standard Model of particle physics
are fermions (= building blocks of matter) and bosons (= mediators of the
fundamental interactions). The fermions are organized into three gener-
ations in order of increasing mass, with the first generation constituting
the stable matter that makes up our everyday world. The four gauge
bosons mediate the fundamental forces (photon: electromagnetic, gluons:
strong, W/Z bosons: weak), whereas the Higgs boson is responsible for

generating mass [42].

In physics, four fundamental interactions are known. Three of them are described by
the Standard Model of particle physics: the electromagnetic force (described by quantum
electrodynamics, QED [48]), the weak interaction (described by the electroweak theory),
and the strong interaction (described by quantum chromodynamics, QCD [62]). The
model distinguishes between matter particles (= fermions) and force-carrying particles
(= bosons), which mediate the interactions between them, as Figure (2.5) illustrates8.
Through various mechanisms (e.g., thermal radiation, radioactive decay, electron transi-
tions), matter produces electromagnetic radiation that can be observed with telescopes,

8The standard model has been experimentally confirmed step by step troughout the 20th and 21st
century, most recently through the discovery of the Higgs boson at CERN in 2012 [1].
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because photons can be described as waves due to the wave-particle duality. This ra-
diation spans the entire electromagnetic spectrum, of which only a small portion corre-
sponds to the wavelength range detectable by the human eye. The three interactions
described by the Standard Model of Particle Physics can be probed either directly (as in
the case of the electromagnetic interaction via light) or indirectly (such as the weak and
strong interactions through neutrino or cosmic ray signals). The fourth fundamental
force of physics, gravity [86], however, cannot be observed with telescopes. Neverthe-
less, there are ways to determine gravity, such as motion of celestial bodies, gravitational
lensing, tidal forces, or gravitational waves. In principle, the amount of matter detected
with telescopes should thus be confirmable through these measurements. In fact how-
ever, several discrepancies have emerged. Particularly five of them have been central
[14]:

• Rotation velocity of clusters: Even if the existence of an unseen matter in the MW
was taken into consideration earlier, Fritz Zwicky was the first scientist explicitly
introducing the term Dark Matter [136]. The velocity of galaxies orbiting a cluster
is given by

v ≈

√
GM

R
(2.17)

with the total mass of the cluster M, the radius of the cluster R and the gravita-
tional constant G. He observed that galaxies within the Coma Cluster were moving
at velocities too high to be held together by the visible mass alone. Applying the
virial theorem, he deduced that there must be a significant amount of unseen mass
providing the necessary gravitational pull9 [136, 137].

• Rotation velocities of galaxies: In 1970, Vera Rubin investigated the rotational
velocities of stars in spiral galaxies and discovered the same phenomenon on a
galactic scale. According to the relation v ∝ 1/

√
r, following Equation (2.17),

stars farther from the center should rotate more slowly. However, observations
showed that they rotate at nearly constant speeds [109, 108]. Figure (2.6) shows
this on the example of the spiral galaxy M33.

• Gravitational lensing: This occurs when massive objects, like galaxy clusters, bend
the light from background sources. Observations revealed that the amount of
lensing could not be accounted for by visible matter alone [128, 38, 85, 30].

9This does not necessarily mean that DM interacts only gravitationally. For example, there are
models that assume a coupling to Standard Model particles (see Subsubsec. ▶ 2.2.1.2). The essential
property of DM, however, is that it does not interact with the electromagnetic spectrum and is therefore
invisible to direct observation.
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• The Cosmic Microwave Background: Measurements of the temperature fluctua-
tions of the CMB revealed that the density of visible matter cannot explain the
peaks in the power spectrum [117, 3].

• Structure formation and large-scale distribution: The distribution of galaxies and
galaxy clusters across the universe reveals a web-like structure that developed from
tiny primordial density fluctuations, visible in the CMB and serving as initial con-
ditions for the structure formation (see Subsubsec. ▶ 2.1.2.1). Models with only
baryonic matter fail to reproduce the correct timing and scale of these structures.
Therefore, structure formation strongly supports the existence of DM [14, 122].

Figure 2.6: Rotation curve of the spiral galaxy M33 [41, 110].

2.2.1.2 Dark Matter Particle Models

Since the second half of the 20th century, a wide variety of theories, models, and particle
candidates have been developed to explain the discrepancies. Figure (2.7) shows a
possible way to structure the various particle models [63]10. The process of structure
formation (see Subsubsec. ▶ 2.1.2.1) depends on the velocity of the DM particles during
the time when the structures are forming. Faster-moving particles (such as Warm Dark

10Alternative approaches are the so-called Modified Gravity and the idea that DM could consist of
compact objects. While the former is still actively debated, the latter is currently considered as less
probable [36, 59].
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Figure 2.7: Possible classification scheme of DM particle models (col-
ored region). These can, for example, be distinguished by their kinetic
energy or structure formation behavior, their (non-)thermal history, their
mass, and possible self-interactions. They may either be embedded within
the Standard Model or described within a separate so-called dark sector

(such as SIDM and DSIDM).

Matter (WDM) or Hot Dark Matter (HDM)) erase smaller density fluctuations more
quickly, so that in this case, instead of the hierarchical structure formation described in
the previous chapter, large structures form first [23]11. DM could have formed thermally
or non-thermally (see Subsubsec. ▶ 2.1.2.1). SIDM and DSIDM are both so-called
Dark Sector models [67]. This means, they involve their own interactions that cannot
be classified under the known interactions of the Standard Model. Furthermore, DM
models can include self-interactions or not, whose strength are typically characterized by
the interaction cross section per unit mass, usually in the range σ/m ≈ 0.1 − 10 cm2/g.
Larger values are considered strong, smaller values weak [127]. The mass of possible
candidates spans a wide range from ultralight (≈ 10−22 eV) to the Planck scale.

11However this does not match the observations [44].
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2.2.2 Specific Models

2.2.2.1 Cold Collisionless Dark Matter

CDM is the most common model for DM and a part of the so-called ΛCDM model
[8], the standard model of cosmology [72]. During tiny density fluctuations formed
due to quantum fluctuations, the slow velocity of CDM particles (therefore the term
cold) allowed gravitational aggregation in regions with a high density of matter. This
process allowed for the growth of small structures that could merge into larger ones,
a phenomenon known as hierarchical structure formation, described above (see Subsec.
▶ 2.1.2). It explains the observed large-scale structure of the universe, with galaxies
and clusters arranged in a filamentary pattern12. CDM particles do not interact with
each other, so no heat conduction occurs. As a result, DM structures such as halos can
remain stable over long timescales.

2.2.2.2 Self-Interacting Dark Matter

Figure 2.8: This figure provides an illustrative representation of energy
transport via thermal conduction in SIDM. As a result, energy flows from
the hot central region outward, leading to a flattening of the central den-

sity profile.
12In contrast, WDM, and even more so HDM, would result in a smoother structure, inconsistent with

observations, because the higher speed of WDM particles prevents them from accumulating strongly in
the potential wells [22].
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SIDM was introduced as a possible solution to the small-scale crisis, notably the core–cusp
problem. The original model proposed by Spergel and Steinhardt [118] was based on
elastic scattering. The self-interactions are thus modeled as 2 → 2 scattering processes.
Figure (2.8) illustrates, how the core-cusp-problem can be adressed with this model. Par-
ticles located closer to the center of the halo are more strongly attracted by the overall
gravitational potential of the halo and therefore require a higher velocity to remain in
place. Otherwise, they could fall inward, leading to gravitational collapse13. When two
SIDM particles scatter elastically, a faster-moving particle from the inner region may
collide with a slower one from farther out. As a result, energy is transferred from the
inner to the outer region [104, 75, 54]. The slower particle gains energy and moves out-
ward, while the faster one loses energy and sinks inward or remains. Statistically, this
leads to a net outward flow of energy (= heat conduction). The particles in the center
thus lose energy, move more slowly and the pressure decreases. As a result, the density
profile in the center becomes flatter (core instead of cusp). The precise implementation
of self-interactions depends on the specific SIDM models, that can be classified into
velocity-independent and velocity-dependent scenarios. In velocity-independent SIDM,
particles scatter with a fixed probability regardless of their relative velocity, which leads
to uniform heat conduction in halos of all sizes. In velocity-dependent SIDM, the scat-
tering probability depends on the relative velocity. In this work, a velocity-independent
model is used (which means, the cross section per unit mass σ/m is fixed). To describe
the subhalo profile, the solution of the gravothermal fluid equations for a spherically
symmetric gas is employed, where self-interactions are modeled via heat conduction. To
describe this, one can start with [114]

q = L(r)
4πr2 (2.18)

Here q is the radial heat flux and L the luminosity. According to Fourier’s law of heat
conduction, the heat flux in a medium is proportional to the temperature gradient. The
one-dimensional expression in a spherical symmetry is

q(r) = −κ
∂T

∂r
(2.19)

κ is the thermal conductivity, which describes the heat conduction ability of a medium.
From this, the following expression can be derived:

L

4πr2 = −κ
∂T

∂r
(2.20)

13Which is typically the case for σ/m > 10 cm2/g [55]. This reflects the concept of the virial theorem:
in a stable halo, gravitational forces and kinetic energy are balanced.
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As shown in Figure (2.8), the scattering processes in SIDM lead to a heat flux similar
to that in a gas. This situation can be described by the so-called gravothermal fluid
equations [114]

∂M

∂r
= 4πr2ρ (2.21)

∂(ρν2)
∂r

= −MGρ

r2 (2.22)

∂L

∂r
= −4πρr2ν2

(
∂

∂t

)
M

ln
ν3

ρ
(2.23)

q(r) = −κ
∂T

∂r
(2.24)

These equations are also able to describe the heat conduction toward the center, which
in turn results in a flatter density profile. The SIDM density profile used in this work is
based on a numerical solution of them. While the gravothermal fluid equations describe
the time evolution of the halo as a whole, the local relationships between the state
variables of the SIDM fluid are described thermodynamically (for the derivation, see
▶ A.2) [24]

∂L

∂r
= −4πρr2ν2

(
∂

∂t

)
M

ln
ν3

ρ
(2.25)

2.2.2.3 Dissipative Self-Interacting Dark Matter

Inelastic scattering on the other hand refers to collisions where DM particles change
their internal states or convert into different particles, resulting in a transfer or loss
of kinetic energy. Unlike elastic scattering, which conserves both kinetic energy and
particle identity, inelastic processes can be exothermic or endothermic, causing energy
to be released or absorbed during collisions [127]. In the exothermic case, where energy
is released (e.g. through the emission of radiation) the interaction can be described as
DSIDM, provided that the energy loss leads to a net dissipation from the system. In
DSIDM, DM particles not only interact with each other via self-scattering (as in SIDM)
but also have the ability to dissipate energy, typically through weak interactions or
other mechanisms that allow for the loss of kinetic energy. This dissipation leads to the
cooling of dark matter, causing it to cluster more efficiently in the central regions of halos,
which can help address the core-cusp problem by softening the central density profile,
resulting in a cored structure rather than a steep cusp. In comparison to traditional
SIDM, which involves elastic scatterings that redistribute energy, but do not result in
cooling, DSIDM adds dissipative processes, that cause DM particles to lose energy over
time. This can lead to a more rapid concentration of DM in the centers of halos and
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potentially resolve some of the small-scale structure issues that persist in the ΛCDM
model. In the thermodynamic description (see Eq. 2.25), a cooling term (in form of the
cooling rate C) needs to be included to account for the energy loss due to the inelastic
scattering [114]

∂L

∂r
= −4πρr2ν2

(
∂

∂t

)
M

ln
ν3

ρ
− 4πr2C (2.26)

2.3 Stellar Streams

2.3.1 General Concepts

2.3.1.1 Formation and Structure

Figure 2.9: Numerical models of a 108M⊙ DG and a 104M⊙ GC,
both undergoing tidal disruption along the same orbit within a MW–like
gravitational potential to form stellar streams (adopted from [21]). The
columns show the individual steps in the formation of stellar streams for
the two cases: Left column: Overview of the first 109 years of the disso-
lution of the progenitor, starting at position (X, Z) = (−15, 20) kpc. The
Roman numerals indicate the position shown in each column. DG tails
are longer than those of GC at all times. Column I (after 300 Myr):
The progenitor already develops short leading and trailing tails, while
most stars are still bound within the tidal radius (Eq. 2.13, see Subsub-
sec. ▶ 2.1.2.2). Column II (after 600 Myr): Tidal tails are longer at
pericenter than at apocenter. When formed from a GC, epicyclic overden-
sities and underdensities become apparent, which also shape the density
profile of GD-1 (see Subsubsec. ▶ 2.3.2.3). Column III (after 900 Myr):
The tips of the tails have by now moved away from the progenitor’s orbit,

and the density profile of the GC streams is fully developed [21].
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Stellar streams form from two possible structures, called progenitors, Globular Clusters
(GC) or Dwarf Galaxies (DG) [130]. A fundamental difference between the two objects
is, that DG are independent systems with a DM subhalo (satellites), whereas GC are
only baryonic. Furthermore, DG are usually more massive (≈ 106 − 109M⊙) than GC
(≈ 104 − 106M⊙) and have a larger diameter. The stellar population of GC consists
almost exclusively of old stars from a single population (similar formation time and
metallicity), whereas DGs contain stars from different epochs of star formation and
with varying metallicities. These differences have an impact on the formation and the
later structure of the stellar streams that arise from them. When considering the stages
of the accretion of a DM subhalo (which simultaneously corresponds to a DG, since
being surrounded by a DM subhalo is characteristic of a DG), streams predominantly
form during the tidal stripping process (see Subsubsec. ▶ 2.1.2.2). The forming process
for the two progenitors (see Fig. 2.9) differs slightly:

• Dwarf Galaxies: DG, due to their higher total mass, mainly from their DM halo,
have a larger tidal radius (Eq. 2.13) and are therefore disrupted more slowly and
over larger scales. The formation proceeds without a single well-defined escape
point, but rather through large-scale unbinding of the outer regions. DGs usually
also have a more diverse stellar population with varying age and velocity distri-
butions. This causes streams from DGs to often be more heterogeneous and less
dense.

• Globular Clusters: Stellar streams from GCs on the other hand, form through a
relatively continuous tidal stripping. Stars escape mainly via the Lagrange points
L1 and L2, located along the line connecting the cluster to the galaxy, following
slightly offset orbits, causing epicyclic motion. An epicycle is a small, superim-
posed oscillation on top of a larger guiding orbit. The oscillation of the stars in
radial direction can then be described as r(t) = R0 + A cos(κt + ϕ) under the
(simplified) assumption that the galactic potential is approximately axisymmetric
and smooth, and that the star deviates only slightly from the guiding orbit. Here,
r(t) denotes the radial distance of the star from the galactic center at time t, R0

is the radius of the guiding orbit, A the amplitude of the epicyclic motion, κ the
epicyclic frequency, and ϕ the phase angle. This epicyclic motion causes stars
to move faster in the inner region (pericenter, r < R0) and slower in the outer
region (apocenter, r > R0) (see [77], for more details). As a result, the forming
stream develops areas of over- and underdensities, such as those observed in GD-1
[19, 71]. Due to their highly localized escape from a compact system with low
velocity dispersion, streams from GC are often thin and long with a smooth and
uniform structure, making the epicyclic pattern clearly visible, which is also the
case for GD-1 [115, 12, 21].
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2.3.1.2 Stellar Streams in the Milky Way

Figure 2.10: This figure shows a map of stellar streams in the MW
in galactocentric coordinates. It covers the entire southern (b < 0°) and
northern (b > 0°) hemispheres in both longitude and latitude, correspond-
ing to the whole sky visible from earth. The red hatching approximately
indicates the region of the galactic disk, where many interactions with
baryonic matter (e.g., Molecular Clouds (MC)) occur, making the study
of DM with stellar streams challenging. The green-hatched outer region
marks the area where DM can be effectively investigated, provided that
the streams under consideration also possess suitable properties [98, 26].

Our galaxy, the Milky Way (MW), is a barred spiral galaxy of type SBbc (S = spiral
galaxy, B = presence of a central bar structure, bc = moderately wound spiral arms and
an intermediate-sized bulge)14 [70]. Its main (baryonic) components include the bulge
(the central component, containing older mainly older stars), the disc (with many star
formation regions) [16] and the halo [68]. Stellar streams in the MW have been discovered
through various spectroscopic, photometric amd astrometric sky surveys. Table (2.2)
lists different missions, their timeframes and major discoveries. Figure (2.10) shows a
galactocentric map of the stellar streams in the MW. The galactic disk, where most of
the baryonic matter is concentrated, lies around galactic latitude 0, typically within a
range of approximately b = −10◦ to b = 10◦ (thick disc). Stellar streams that are well
suited for analyzing potential dark matter interactions are typically found in regions far
from the galactic disk (at higher galactic latitudes, |b| > 20◦ – 30◦). In these regions,
the contamination from gas, dust, star fields, and other baryonic structures is much less

14In some classifications, it is also broadly referred to as type Sc or Sbc, due to its loosely wound spiral
arms and relatively small bulge [129, 111].
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strong. To study DM through its interaction with a stellar stream, it is also advantageous
if the stream possesses the following properties:

• Dynamically cold nature: Intrinsically dynamically cold streams exhibit a lower
internal velocity dispersion (also referred to as intrinsic noise, σ ≤ (2 − 3) km/s).
This makes perturbations more visible [83, 20, 33, 2, 35].

• Large angular length and well-determined stellar membership: Streams with sub-
stantial angular length and precisely identified member stars enable a clearer base-
line for detecting structural irregularities [99].

Source Era Stream discoveries
Sloan Digital Sky Survey 2001-2010 Palomar5 (2001), GD-1 (2006)
(SDSS) Orphan (2007)
Pan-STARRS1, DES, 2010-2017 Atlas, Phoenix
VST, ATLAS Tucana III
Gaia 2016-today >60 streams, Jhelum,

Gaia-Enceladus debris, Helmi

Table 2.2: Sky surveys that lead to the discovery of stellar streams in the
MW. While SDSS [57], Pan-STARRS1 [13], and DES Tucana [49] were
both photometric and spectroscopic missions, Gaia [39] enabled highly
precise measurements of stellar proper motions in the streams thanks to

its astrometric data.

2.3.2 The GD-1 Stream

2.3.2.1 Properties

The GD-1 stream was first discovered in 2006 by Grillmair and Dionatos in photometric
data from the Sloan Digital Sky Survey (SDSS) [65]. With the advent of Gaia data,
especially Data Release 2 (DR2) and DR3, its spatial extent, distance profile, and full
6D phase-space structure have been significantly refined [84, 105]. GD-1 has a physical
length of approximately 14 kpc [83] and a width of about 20−30 pc [105]. The stream lies
at heliocentric distances ranging from roughly 8 − 13 kpc, with a mean distance around
10 kpc [46]. Its galactocentric radius varies accordingly, averaging around 13 kpc, and
its vertical position relative to the Galactic plane is about 10 kpc, placing it well within
the stellar halo [46]. GD-1 is on a retrograde, eccentric orbit around the MW, with
an estimated eccentricity of e ≈ 0.3 − 0.4 and an orbital period of roughly 500 · 106 yr
[83]. The stream passes between a pericenter of ≈ 13 kpc and an apocenter near 20 −
25 kpc [76]. Radial velocities along the stream vary from approximately −100 km/s to
+50 km/s, depending on the position along the stream [105].
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2.3.2.2 Origin

Despite extensive searches, no clearly bound remnant of the progenitor cluster has been
conclusively identified. There are tentative overdensities along the stream (for example
near ϕ1 ≈ −13◦) [105], but none shows the properties expected of a surviving core.
Nevertheless, the progenitor is believed to have been a GC for several reasons. First,
the narrow width of only about 20 pc [105] is characteristic for streams originating from
relatively compact, massive and dense systems like GCs, whereas DGs are larger and
more diffuse, producing wider and less dense streams [55]. The compactness of a GC
results in small velocity differences among the tidally stripped stars, which leads to a
narrow and coherent stream15. Another strong argument is the low velocity dispersion of
typically less than 1 km/s [76, 83], which reflects the much higher compactness of a GC.
In contrast, DG usually exhibit higher internal velocity dispersions (typically around
5 − 10 km/s), which would result in wider streams with greater kinematic spread. The
total energy of escaping stars is defined as

Estar = 1
2v2

rel + ΦGC(r) > ΦMW(r) (2.27)

where vrel is the velocity of the star relative to the cluster and ΦGC(r) ∼ GM
r the

gravitational potential of the progenitor. Stars escape when their total energy exceeds
the MW’s potential at that location, Estar > ΦMW (r). A higher internal velocity
dispersion in DGs leads to larger values of v2

rel, and thus to broader, dynamically hotter
streams. The metallicity16 has been identified as [Fe/H] ≈ 2.0 to 2.1 [83]. Such a
low metallicity is typical for a GC, which typically hosts old and metal-poor stars.
Furthermore, the kinematic sharpness and orbital coherence of GD-1 argue against the
presence of a DM halo, supporting a purely baryonic origin. Above this, in streams
formed from DGs, one often finds a surviving core remnant due to their larger mass.
However this is not observed in GD-1.

2.3.2.3 Density Profile and Perturbation

Figure (2.11) shows the density profile along the GD-1 stream. Papers that have in-
vestigated its density structure (see [19], for example) have identified several notable
characteristics. The presence of so-called epicyclic overdensities in a stellar stream is a
common phenomenon, resulting from the process of tidal stripping from the progenitor

15The width σx of a cold stream can be approximated by σx ≈ σv ·t, where σv is the velocity dispersion
of the progenitor and the time since the stars were stripped.

16Metallicity is defined as the ratio of iron to hydrogen compared to the Sun, given by [Fe/H] =
log10

(
NFe
NH

)
object

− log10

(
NFe
NH

)
⊙

.
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Figure 2.11: The density profile of GD-1 shows the two gaps at ϕ1 =
−40◦ and −20◦, as well as the spur next to the gap at ϕ1 = −40◦. This
is one of the reasons why a collision with a compact object is assumed to

be the cause, rather than an epicyclic underdensity [19].

(see Subsubsec. ▶ 2.1.2.2 and ▶ 2.3.1.1)17. Two prominent density gaps at ϕ1 = −20◦

and ϕ1 = −40◦ stand out and could originate from different physical processes [19]. The
gap at ϕ1 = −20◦ coincides precisely with the location of the presumed progenitor of
GD-1 [19]. According to models of epicyclic stellar release, such a gap is expected at
this position, since no new stars are being stripped there anymore. Just before and
after the gap, epicyclic overdensities are observed, as the last stars released from the
progenitor accumulate in these regions. The gap at ϕ1 = −20◦ is therefore considered a
natural consequence of the stream’s formation. In contrast, the gap at ϕ1 = −40◦, in the
interpretation of [19] is attributed to a perturbation by a massive external object. This
argumentation is supported first by the gap’s morphology: it is relatively broad (several
degrees wide) and asymmetric, whereas epicyclic gaps are typically narrow and regular.
Secondly, a lateral overdensity (the so called spur) is visible in the range ϕ1 ≈ −40◦

to −30◦, located above the main stream (= vertically offset in ϕ2). This spur is not
compatible with the expected stream path and could be explained by a gravitational
kick from an external perturber. Simulations show that such a feature can only result
from a close encounter with a massive object, with an estimated mass of about 106 to
107 M⊙. It should be emphasized, that there are also opinions considering the spur as
a normal part of the epicyclic stream-fanning pattern, citing the regularity observed in
the density power spectrum as justification [71] (see also the discussion in Sec. ▶ 4.2).
If the gap is caused by an external perturbation, a DM subhalo could be an object that
might realistically be able to explain it. Larger subhalos usually host a DG that should
be visible. However, if a DM subhalo has a lower mass then 3 × 108M⊙, gas is unable
to cool enough to enable star formation, such that subhalos with lower mass remain

17A compact star cluster is gradually disrupted by the galactic gravitational field, primarily at the
Lagrange points in the leading and trailing directions. Due to differential rotation within the galaxy’s
potential, a released star’s orbit becomes superimposed with an epicyclic motion. Because stars are
released with slightly different velocities, this leads to phase mixing, causing them to accumulate at
specific locations along the stream. These regions appear as epicyclic overdensities.
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non-baryonic [34]. Beside this, Bonaca et al. [19] considered several known objects as
potential candidates for a past encounter with GD-1. Figure (2.12) shows the distance
of various known baryonic objects that could plausibly have interacted with the stream,
tracked over the past billion years. As illustrated, all of these objects have remained
at least 1 kpc away from GD-1 during that time. Figure (2.13) displays the mass and
size a perturbing object would need in order to produce the gap observed at ϕ1 = −40◦.
Overlaid are the properties of known GCs, DGs, and MCs located in the outer halo of
the MW, where GD-1 resides18. The diagram shows, that Molecular Clouds (MC) are
generally too diffuse and extended to qualify as plausible perturbers. Altogether, this
evidence suggests that an encounter with a known baryonic object is unlikely. However,
ruling out such a scenario with certainty would require precise knowledge of the under-
lying gravitational potential. But the orbits of both GD-1 and any potential perturber
could have been significantly influenced by the gravitational effects of two massive MW
satellites: the Large Magellanic Cloud and the Sagittarius DG. Due to the shape of
the gap (broad and asymmetric), the presence of a vertically offset spur, and the fact
that no known baryonic perturber has been identified to date, such a scenario appears
highly unlikely. Based on current knowledge, the most plausible explanation is therefore
a perturbation by a DM subhalo.

Figure 2.12: This figure shows the distance between the gap in GD-
1 and known dwarf galaxies (dark red), ultra-faint dwarf galaxies (red),
globular clusters (orange), and the stellar disk (light orange). Also shown
is the maximum permitted impact parameter (the largest distance at which
an object could pass by and still produce an observable disturbance).
From the figure, it is visible that no known object has come close enough

to GD-1 (from [19]).

18This comparison is primarily conceptual, as the different classes of objects are characterized by
different density profiles.
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Figure 2.13: This figure shows the inferred mass and scale radius of
the GD-1 perturber compared to known DGs (squares), GCs (triangles),
and MCs (circles) in the outer disk. From this, it can be concluded
that molecular clouds are not compact enough to have caused the gap at
ϕ1 = 40◦ in GD-1, while known GCs and DGs are excluded due to their

orbital properties (from [19]).

2.4 Spectral Analysis

2.4.1 General Concepts

2.4.1.1 Fourier Transform and Power

A power spectrum shows how the energy of a signal is distributed across its frequency
components. It indicates which frequencies are dominant and how strongly they are
represented. It can be distinguished between the Power Spectrum (unit: power) and the
Power Spectral Density (PSD) (unit: power per Hz). While the former expresses how
much power is contained in a frequency component, the PSD describes the density of the
power distribution by normalizing the power with respect to the width of the frequency
bins [123]. In this work, a power spectrum is determined. Figure (2.14) illustrates this
concept using two contrasting examples. To achieve this goal, the so-called technique of
Fourier transform is used. This technique decomposes a signal into a sum (or integral) of
sine and cosine functions, that is, into harmonic oscillations of different frequencies [29].
This decomposition is based on the idea that a function in most cases can be represented
as a superposition of basis functions, which are, in case of Fourier analysis, the complex
exponential functions. The Fourier transform ρ̃(k) of a discrete signal, called Discrete
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Fourier Transform (DFT), is defined as

ρ̃(k) =
N−1∑

n

ρne−2πi kn
N , k = 0, 1, ..., N − 1 (2.28)

with the discrete signal ρn, the total number of sampling points N , the spatial or tempo-
ral index of the original signal n (depending on whether one considers positions or time
steps) and the index k of the frequency components. If this would directly be applied
in this work, ρn would correspond to the counts in each individual bin, N would be the
total number of bins along the stream, n would represent the index of the individual bins
with n ∈ {0, . . . , N − 1}, and k ∈ {0, . . . , N − 1} would denote the respective frequency
components19. The power P (k) can then be calculated with

P (k) = |ρ̃(k)|2 (2.29)

2.4.1.2 Welch Method

In principle, it is possible to apply the Fourier transform directly, a method commonly
referred to as periodogram [112]. However, this leads to a couple of problems, of which
two are particularly noteworthy. Variance describes how much the result of a power
spectrum estimate can vary when using different parts of the data. When using a peri-
odogram, the result can be very noisy, because it strongly depends on the specific data
segment. This makes it hard to see the real underlying frequency structure. Spectral
leakage happens when a signal is cut off at the edges because only a finite time window
is used. This can cause energy from one frequency to spread into neighboring frequen-
cies in the spectrum. As a result, sharp peaks become blurred, and the spectrum can
be misleading [125]. To address this problems, several methods have been developed20.
A very common approach is the so-called Welch method [134], which uses two tech-
niques: Segmentation means, that a signal is devided into multiple shorter overlapping
segments, that can be smoothed by averaging. Windowing means, that a tapering func-
tion, called window, is applied to each segment of the segmentation before its Fourier
transform to reduce discontinuities (see also Subsubsec. ▶ 3.1.2.1 for the mathematical
implementation) [66].

19The indices n and k each consist of the same number of N discrete values, since the DFT is a linear
mapping from an N -dimensional space to another N -dimensional space [97].

20For other methods see e.g [11, 125, 5].
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Figure 2.14: Illustration of two contrasting cases: A sine wave and
a random signal. For both cases, the plots on the right show power
spectra, once calculated with scipy.fft (= standard Fourier Transform)
and once with scipy.signal.welch (= application of the Welch method
[134]), each with a bin number of 40, as used throughout this work. In
doing so, one can observe the effect of the Welch method on both spectral

leakage and variance.

2.4.2 Density Power Spectrum of a Stellar Stream

The power spectrum determined in this work is a so-called density power spectrum.
It describes spatial density fluctuations, or, in this case, how much the stellar density
varies along the length of the stream. The signal in each bin is normalized by the average
density in that region, determined through a fit. This density is then used as the signal
input for the power spectrum calculation using a standard method (in this case: the
Welch method). To obtain a more intuitively interpretable result, the frequency can
be plotted inversely (as 1/f) on the x-axis and the square root of the power on the
y-axis. This way, the unit on the y-axis corresponds to that of the input signal [Counts]
and the x-axis is expressed in degrees [°]. For the result to be physically meaningful
and comparable, the power needs to be normalized by the length of the considered
stream segment and the sampling frequency needs to be set to 1/lengthofthebins (see
Subsubsec. ▶ 3.2.2.3). The resulting spectrum shows the density fluctuations along the
stream: large scales reflect broad variations, while smaller scales reveal finer fluctuations.
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Chapter 3

Methodology

3.1 Physical Model

In the following section, the physical models implemented in the numerical codes are pre-
sented. This provides the theoretical background of the analysis, that was subsequently
performed numerically.

3.1.1 Stream Simulation

This subsection is based on a manuscript currently in preparation [4]. It provides the
theoretical foundation for the Stream Simulation code, which computes the positions
of the stars in the GD-1 stream after a subhalo collision. These positions form the
basis for determining the power spectrum. The number of subhalos involved in an
impact is determined stochastically; that is, it is not fixed, but rather sampled from a
probability distribution. The effect of an impact on the stream strongly depends on the
density profile of the subhalo, which varies between the models, as the density profile
determines, for example, the gravitational potential. The specific parameters on which
the subhalo density profile depends for each model are presented in the following section.

3.1.1.1 Subhalo Profiles

For all three particle models, a classical Navarro-Frenk-White (NFW) profile forms the
basis [93, 94]

ρNF W (r) = ρs

r/rs(1 + r/rs)2 (3.1)

rs is the scale radius at which the shape of the density profile (see Fig. 2.4) changes
from a shallower inner region to a steeper decline toward the outer parts. This profile
is then truncated for r > rt to account for tidal stripping effects from the MW halo (as
explained in Subsubsec. ▶ 2.1.2.2), according to the relation ρ(r) = ρNFW(rt) · (rt/r)5.
The tidal radius rt (see Eq. (2.13), Subsubsec. ▶ 2.1.2.2) is set, for simplicity, to three
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times the scale radius rs (see also [64]). For the two dark sector models SIDM and
DSIDM, several modifications are implemented:

• SIDM : For the case of SIDM, a time evolution over 10 Gyr is implemented by
numerically solving the gravothermal fluid equations (see Eq. (2.21 - 2.24), Sub-
subsec. ▶ 2.1.2.1) using the Nishikawa code [9, 113]. This models show self-
interactions between DM particles affect the structural evolution of the halo (see
Subsubsec. ▶ 2.2.2.2 ). The cross section per unit mass is fixed at σ

m = 5 cm2 g−1.
Prior to the simulation, a grid of (M200, log(c)) combinations is defined in order to
prepare a wide range of possible subhalo models. Here, M200 is the mass enclosed
within a radius where the mean density is 200 times the critical density of the
universe [52], and log(c) is the logarithm of the concentration parameter, which
describes the ratio between the halo radius and the scale radius [4].

• DSIDM : For the case of an additional dissipation (DSIDM), the same procedure
was used. In addition, when modeling the subhalo as a gravothermal fluid, a
bulk cooling rate is included to account for dissipation (see Eq. (2.26), section
▶ 2.2.2.3).

Figure 3.1 shows the associated subhalo profiles for the three models, as discussed above.

Figure 3.1: This figure shows the enclosed mass profiles for the three
models. The greater diversity in density profiles for DSIDM is clearly
visible. Also shown is the reference Hernquist subhalo profile, which was

used by [19] to successfully model the spur in GD-1 [4].

3.1.1.2 Stream Simulation

For the description of the density profile, for the simulation certain models are used:
A Hernquist profile for the bulge [69], a Miyamoto-Nagai disk for the disk [87] and a
NFW profile for the halo. Table (3.2) shows the parameter for this constituents. The
simulations are performed in galactocentric coordinates with r⃗⊙ = (−8, 0, 0) kpc and
v⃗⊙ = (12.9, 245.6, 7.78) km/s. As a first step, the position of every member star of GD-1
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without perturbation by a subhalo encounter is determined. The galactocentric posi-
tion r⃗s(t0) = (−9.01, 6.41, 8.76) kpc and velocity v⃗s(t0) = (−160.1, −219.3, −55.4) km/s,
corresponding the trailing end of GD-1 at the time t0, of a tracer particle in a MW
potential is time-evolved to ti, the initial time of the simulation. Subsequently, every
single star n is added to the stream by uniformly selecting stars within the time interval
tn ∈ [ti, ti + τ ] with τ = 60 Myr corresponding to the time, a star needs to traverse the
angular length of the stream of ≈ 100◦ on the sky. The position ri and velocity vi of
every star is defined by

r⃗n(ti) = r⃗s(tn) (3.2)

v⃗n(ti) = v⃗s(tn) + δv⃗n (3.3)

where a random shift, derived from a normal distribution of width 0.3 km/s, is added to
the velocity component, respectively. Thus, the angular width of GD-1, corresponding
to σ(ϕ2) ≈ 0.2◦ and the dispersion in radial velocity relative to the streamline value,
σ(∆vr) ≈ 0.6 km/s can be replicated. As a next step, the impact of the perturbers on
the stream is modeled. The trajectory of every subhalo is described as a straight line,
given by the Equation [4]

r⃗sub(t) = v⃗sub · (t − timp) + r⃗s(timp + fimpτ) + b⃗ (3.4)

with the impact time timp and the impact position fimp, expressed as a quantity 0 ≤
fimp ≤ 1 relative to the length of the stream, as well as the subhalo velocity v⃗sub [4]

v⃗sub = vsub
(

ˆ⃗ez cos θ − ˆ⃗ex cos ϕ sin θ + ˆ⃗ey sin ϕ sin θ
)

(3.5)

with the orthonormal basis ˆ⃗ex,y,z. ˆ⃗ex,y is perpendicular and ˆ⃗ez parallel to the stream
velocity at the position of the impact. The impact parameter b⃗ is defined as [4]

b⃗ = b
(

ˆ⃗ex sin ϕ + ˆ⃗ey cos ϕ
)

(3.6)

Table (3.1) lists the kinematic impact parameters which define the difference between the
subhalo samples. To calculate the number of subhalo encounters, a tubular region along
the stream trajectory with cylindrical radius bmax is considered. This region evolves
over time t from r⃗s(t) to r⃗s(t + τ). The total number of encounters N (= the number
of subhalos that pass through this region)1 is defined differentially as [4]

dN = 2π vr bmax dl dt
dnsub
dMsub

dMsub P (v⃗sub) d3vsub (3.7)

1Only subhalos crossing through the sides are considered. The flux through the ends is neglected.
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Here, l is the length along the stream, vr the radial component of vsub perpendicular to
the stream, and P a Maxwell-Boltzmann distribution for subhalo velocities with width
σsub = 180 km/s. The number density of subhalos per unit mass is defined as Einasto
profile [4]

dnsub
dMsub

= 1
3c0

(
Msub
m0

)n

exp
(

− 2
α

[(
r

r−2

)α

− 1
])

(3.8)

with n = −1.9, α = 0.678 and m0 = 2.52 × 107M⊙. The maximum impact parameter
is set to bmax = 5rs for a given subhalo mass. Following [26], the parameter c0 is fixed
to c0 = 2.02 · 10−13M−1

⊙ kpc−3, and r−2 (for the MW) to r−2 = 162.4 kpc, where a
prefactor of 1/3 is included to account for subhalo disruption by the baryonic disk. The
total encounter rate is defined as [4]

R(t) =
∫ t+τ

t
dt′

∫ Mmax

Mmin
dMsub

√
2ϕ σsub

∣∣v⃗s(t′)
∣∣×bmax(Msub) dnsub

dMsub

(
Msub,

∣∣r⃗s(t′)
∣∣) (3.9)

Parameter Unit Description
timp Gyr Impact time
fimp - Impact position,

with 0 ≤ fimp ≤ 1
along the stream

vsub km/s Subhalo velocity
b pc Impact

parameter
θ rad Polar angle
Φ rad Azimuth angle

Table 3.1: Kine-
matic impact pa-
rameters of the sub-

halo samples [4].

Bulge
Mbulge (M⊙) 4 × 109

abulge(kpc) 0.28
Disk

Mdisk (M⊙) 5.5 × 1010

adisk(kpc) 3
bdisk(kpc) 0.28

Halo
M200(M⊙) 1.08 × 1012

rs(kpc) 15.62

Table 3.2: Param-
eters for the MW
bulge, disk and halo

potentials [4].

3.1.2 Power Spectrum

3.1.2.1 Mathematical Description

Through the numerical implementation of the previous section, the positions of the stars
in GD-1 after the subhalo impact are now determined. These positions can be divided
into N bins xi of equal size along the length of the stream2:

2The length of the stream can be described both by the Koposov coordinate ϕ1 and by the physical
length along the stream s.
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xi ∈ [xmin, xmax], i = 0, . . . , N − 1 (3.10)

In each bin xi, the number of stars (= counts) is determined:

Ci = counts per bin i (3.11)

Now, a fitting function can be applied on the counts in the bins. The underlying physical
idea is to compare the perturbations in the stream (e.g., caused by a subhalo impact)
to the undisturbed stream [26]. Following [71], a second-degree polynomial fit is used

f(x) =
∑
α=0

aαxα, α = 0, 1, 2 (3.12)

The density in each bin can then be described by

ρ(xi) = Ci

f(xi)
, i = 0, . . . , N (3.13)

Subsequently, the Welch method is applied to the signal. Its two main steps are seg-
mentation and windowing (see Subsubsec. ▶ 2.4.1.2). Segmentation (Step 1 ) means,
that the signal is divided into M overlapping segments. By default, csd uses an overlap
of 50 %, which means that the shift D between the segments is D = L/2. The segment
length L (equal to nperseg in csd, see Subsubsec. ▶ 3.2.2.3) is the number of data
points per segment. The number of segments is defined as [134]

M = N − L

D
+ 1 (3.14)

In this analysis, the segment length L is set to N. This means that one segment corre-
sponds exactly to one bin and effectively no segmentation takes place at all. While this
leads to a higher variance in the power spectrum, it simultaneously results in a finer
frequency resolution3. In this case, this is more important, as the analysis of density
fluctuations along the GD-1 stream requires a high resolution. Therefore, the subse-
quence ρm = (ρmD, ρmD+1, ..., ρmD+L−1) in this case corresponds exactly to the bins.
The second step of the Welch method is windowing (Step 2 ). This means, that a win-
dow function is applied. In this case, since N = L, this function is applied directly to
the bins and smoothes the transitions between them. Per default, csd (see Subsubsec.
▶ 3.2.2.3) chooses a Hann-window:

wj = 0.5
[
1 − cos

( 2πj

L − 1

)]
, j = 0, . . . , L − 1 (3.15)

3Because the frequency resolution is inversely related to the bin size.
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This function is now multiplied with the subsequence of the segment to smooth the
edges. The segments (in this case identical with the bins) can then be described as

sj = wj · ρj , j = 0, . . . , N − 1 (3.16)

On this segment, the standard DFT is now applied (see Subsubsec. ▶ 2.4.1.1 )

s̃k =
N−1∑
j=0

sj · e−2πi kj
N , k = 0, . . . , N − 1 (3.17)

The power spectrum is then

Pk = 1
U

|s̃k|2 (3.18)

where U is the normalization factor of the window energy, given by

U = 1
N

N−1∑
j=0

w2
j (3.19)

The final step of the Welch method, averaging over all segments, in this case is not
necessary, since the segments correspond exactly to the bins.

3.1.2.2 Coordinate Transformation

The length along the stream GD-1 can be described in two ways: The angular coordinate
ϕ1 and the proper path length along the stream. ϕ1 originates from a coordinate system
introduced by Koposov et al. [76], which was specifically tailored to the GD-1 stream.
This system is a rotated spherical coordinate system (ϕ1 = longitude, ϕ2 = latitude)4.
Proper path length s means the real physical length along the stream, described in [kpc].
As the distance of GD-1 is varying (see Subsubsec. ▶ 2.3.2.1), the transformation can
be executed with the arc length formula

s(ϕ1) =
∫ ϕ1

0

√√√√1 +
(dD(ϕ1)

dϕ′1

)2
dϕ′

1 (3.20)

where D describes the heliocentric distance. As ϕ1 is an angular coordinate, it is nec-
essary to replace the differential length element dϕ1 with the physical length element
D dϕ1, giving

s(ϕ1) =
∫ ϕ1

0

√√√√D(ϕ1) +
(dD(ϕ1)

dϕ′1

)2
dϕ′

1 (3.21)

4For the transformation matrix from (α, δ) to (ϕ1, ϕ2), see [76].
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3.2 Numerical Implementation

Now, that the theoretical concepts are clear and the physical model has been estab-
lished, the task can be implemented numerically. The main code consists of two parts:
Part 1, Stream Simulation, was written by Prof. Sean Tulin and adapted by myself
for the special tasks. Part 2, Power spectrum, was mainly written by myself on the
base of a Jupyter notebook by Elham Rahimi. The power spectrum part of the code
is available on GitHub and can be accessed with the link ▶ Ocean16151/stream-team-
power-spectrum. Subsubsection ▶ 3.2.1.2 describes the structure and modular design
of the code, Subsection ▶ 3.2.2 the implementation of the steps within the code, and
Subsection ▶ 3.2.3 its execution. The individual steps are also linked on GitHub5.

The procedure was as follows: First, a test version for the power spectrum was de-
veloped in order to reproduce the results of [71]. Subsequently, the two base codes were
aligned and prepared for analysis. Later, various modified versions were created. All
codes were initially developed as Jupyter Notebooks and then converted into Python
scripts, which were executed on the cluster computer of the Institute for Theoretical
Physics of Goethe University, Frankfurt, via Bash scripts (see Subsubsec. ▶ 3.2.3.2).
The final plots were created using a separate Jupyter Notebook.

3.2.1 Programming Framework and Code Organisation

3.2.1.1 Python and the csd Algorithm

Figure 3.2: Important milestones in the development of the SciPy li-
brary: Since 2005, SciPy has been based on the NumPy library, which
emerged from its predecessors Numeric, and Numarray. Other libraries
used in this work include SymPy (for symbolic computation, since around
2006), pandas (for table-based data processing, since 2008), matplotlib
(for plotting, since 2003), and math (mathematical functions, since 1995)

[131].
5These links refer to the Jupyter Notebook of the main version of the power spectrum code.

https://github.com/Ocean16151/stream-team-power-spectrum
https://github.com/Ocean16151/stream-team-power-spectrum
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The code is written in Python, a programming language that was developed with the aim
to enable a simple and highly readable programming style [107]6. Python aligns well with
the requirements of transparency, reproducibility, and accessibility in astrophysics, and
is therefore widely used. Its modular structure has enabled the development of numerous
libraries specifically tailored to astronomical data processing, such as Astropy [6]. To
compute the power spectrum, the signal processing suite scipy.signal.csd (csd) was
used. csd is a part of the SciPy software framework, a scientific Python library founded
by Eric Jones and Travis Vaught in 2001 [131] (see Fig. 3.2, showing important stages
of the development of the project). The scipy.signal module includes classical signal
processing tools such as filters, spectral analysis methods, and window functions. The
csd function belongs to the spectral analysis suite and was developed around the same
time as the functions welch, coherence, and spectrogram. Within this analytical
framework, csd represents a generalization of welch, as it can estimate not only the
auto power spectrum Sxx (f), but also the cross power spectrum Sxy (f). Additionally,
it is possible to select whether a power spectrum or a PSD should be computed.

3.2.1.2 Code Structure and Modular Design

Figure 3.3: This figure shows the folder structure of the code. The cen-
tral components are the two main scripts, Stream simulation and Power
spectrum, each with their own associated folder systems containing the
relevant functions. The output of the first script, the stream simulation,
includes both a visual representation and the positions of the individual
member stars of the GD-1 stream, and is read by the second script. This
script then computes a power spectrum as a function of both ϕ1 and s.

Figure (3.3) shows the steps of the computation: Part 1, Stream Simulation (see Sub-
subsec. ▶ 3.2.2.1) first performs the simulation of the subhalo impact on the stream.

6The name originates from the fact that the creator was a big fan of Monty Python’s Flying Circus
[82].
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As output, the code provides the positions of the stream stars after the subhalo impact.
Part 2, Power Spectrum, then reads in this output from the first part and calculates the
power spectra as function of ϕ1 and s respectively. Each code has an associated folder
structure containing its respective functions. For the Stream Simulation code, this is the
stream folder; for the Power Spectrum code, it is the power folder. Due to the modular
building-block design, core operations such as binning or fitting can be applied multiple
times, as demonstrated in Figure (3.6) (see Subsubsec. ▶ 3.2.2.2). The codebase pre-
sented here provides the framework for a single run at a time. The number and type of
iterations were therefore controlled with the Bash script (see Subsubsec. ▶ 3.2.3.2). The
communication between Bash script and the two main codes was handled through the
environment variable num_data. Regarding the choice of the subhalo profile, both codes
were designed such that the profile needed to be specified only once at the beginning of
the code, after which the rest of the code would automatically adapt accordingly.

3.2.2 Code Modules

3.2.2.1 Stream Simulation

Figure 3.4: Input interface of the multiprocessing tool. The desired
number of stars per simulation can be controlled via both the number of
parallel processes and the number of stars per process. The number of
processes was chosen to match the number of parallel nodes requested in

the Bash script.

Part 1 of the code, Stream Simulation, is based on the package stream, which provides
numerous tools for simulations with the GD-1 stream. The two modules used in this
code are, first, stream.simulate(), which outputs a list of phase space trajectories
for N stars, and second, coordinates, which allows conversions between galactocentric
coordinates and various celestial positions (e.g., ϕ1 and ϕ2, see Subsubsec. ▶ 3.1.2.2). To
generate a realistic version of the stream, the multiprocessing tool (see also Subsubsec.
▶ 3.2.3.2) can be employed. In this tool, a few keywords can be set, as Figure (3.4)
shows. To simulate a specific number of stars, both the number of parallel processes
and the number of stars per process can be freely chosen. To reduce computation
time, the number of parallel processes was matched to the number of cores used on the



Chapter 3. Methodology 38

ITP cluster (see Subsubsec. ▶ 3.2.3.2). The number of stars was set to 2000 in all
simulations. Figure (3.5) shows the example of the output, a simulated version of GD-1
for the subhalo with num_data = 44.

120 100 80 60 40 20 0 20 40
1

6

4

2

0

2

Subhalo profile :  tNFW, Data section :  44

Figure 3.5: Example of an output of the stream simulation. The stellar
positions were plotted as a function of the Koposov coordinates (ϕ1, ϕ2).

For comparison, also a version with a bootstrap sampling was run. Bootstrap sampling
means, that a new sample of the same size is repeatedly drawn with replacement from
the original dataset. Like this, several random realisations of the stream simulation
could be performed.

3.2.2.2 Power Spectrum: Structure

Part 2, Power Spectrum, consists of three modules, which are introduced in the follow-
ing sections: calculation of the power spectrum (I), conversion from the ϕ1 Koposov
coordinate to the physical length along the stream, s (II), and plotting of the power
spectrum (III). These are organized into three distinct blocks: the calculation of the
power spectrum as a function of ϕ1 (a), the coordinate transformation (b), and the de-
termination of the power spectrum as a function of s (c). Figure (3.6) illustrates the
structure of the code, including which functions from the modular system are used in
each step. The procedure is as follows: first, the stars are assigned to a binning scheme
along the ϕ1 coordinate. The same binning scheme, aligned with [71], was used. Using
a fit, the density per bin can then be determined. Subsequently, the power spectrum
is calculated using the csd algorithm and plotted. Afterwards, the conversion from the
angular coordinate ϕ1 to the physical length s along the stream is implemented (for
a detailed description of the steps, see Subsubsec. ▶ 3.2.2.5). The calculation of the
power spectrum as function of s follows the same procedure as for ϕ1.

3.2.2.3 Power Spectrum I: Computation with csd

As indicated above, the first operation to perform was the binning of the counts along
the stream (see ▶ Power Spectrum, main, Cell 7) and the fitting of the histogram in
accordance with Equation (3.12) (see ▶ Power Spectrum, main, Cell 10). The number

https://github.com/Ocean16151/stream-team-power-spectrum/blob/main/power_spectrum/main.ipynb
https://github.com/Ocean16151/stream-team-power-spectrum/blob/main/power_spectrum/main.ipynb
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Figure 3.6: Structure of the Power Spectrum code. It consists of three
modules, which correspond to the following subsubsections of this the-
sis: computation with csd (I), plotting and normalization (II), and unit
transformation (III). Colored dots indicate the functions used in each step.
These originate from the modules fitting (purple), binning (yellow), trans-
formation (green), and the stream folder, which belongs to the stream
simulation code (blue). The csd algorithm from scipy is marked in red.

The three blocks of the code are represented using lowercase letters.

of bins was set to N = 40 troughout the analysis, following [71]. The density per bin
could now be calculated with Equation (3.13). Subsequently, the power spectrum could
be determined with the csd algorithm (see ▶ Power Spectrum, main, Cell 13). Figure
(3.7) shows the input parameters of the csd algorithm, where the following parameters
are set:

• Sampling frequency fs: The sampling frequency (= the number of data points per
unit length) is set to 1 devided by the size of each bin. This is necessary to ensure
that the resulting frequency axis has a meaningful physical unit of [1/°], allowing
inverse frequencies 1/f to be interpreted as angular scales along the stream.

• Window: A Hann window is chosen per default (see Eq. 3.15).

https://github.com/Ocean16151/stream-team-power-spectrum/blob/main/power_spectrum/main.ipynb
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• Scaling: Selecting spectrum instead of density ensures that a power spectrum is
computed rather than a PSD. Instead of giving the power per unit frequency (as
PSD does) the power spectrum returns the total power in each frequency bin.

• Number of samples per segment: nperseg defines the number of consecutive data
points used to form each segment of the signal for individual spectral estimation.
In this analysis nperseg is set to 40 which corresponds to len(signal). This means,
that no segmentation or averaging is performed, which means the variance of the
spectral estimate is not reduced. However, this approach is advantageous when
the highest frequency resolution is required, as dividing the signal into smaller
segments would broaden frequency bins and diminish spectral detail. It is par-
ticularly suitable for analyses where preserving fine spectral features and direct
comparison to theoretical models is important, despite the increased variance in
the estimate.

Figure 3.7: Input structure of csd: By providing the same array
(dens_fit) as both inputs, the power spectrum (Sxx(f)) is computed
instead of the cross spectral density (Sxy(f)). The sampling frequency
is set to 1/bin − size, since the power spectrum is plotted against the
inverse of frequency. By setting nperseg = 40, which corresponds to the
total number of bins used in the analysis, no segmentation is performed

by csd.

3.2.2.4 Power Spectrum II: Plotting and Normalisation

The plotting approach follows Bovy et al. [26, 27]. The x-axis shows the inverse fre-
quency 1/f , which corresponds to the spatial scale of the fluctuations. The power is
normalized by the total length of the considered stream segment. The power spectrum
thus describes the strength of fluctuations at different spatial scales 1/f , averaged over
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the full length of the stream. This normalization is essential to make results comparable
across stream segments of different lengths. Without it, the total number of possible
fluctuations per unit length and hence the amplitude of the spectrum would depend on
the total length and distort the comparison. In the plot (see ▶ Power Spectrum, main,
Cell 16), the square root of the power is plotted in order to display the amplitude rather
than the power itself (compare with Eq. 2.29). A double logarithmic plot finally makes
it possible to visualize wide value ranges and allows for greater comparability. For the
power spectrum as function of s, the same procedure is applied (see ▶ Power Spectrum,
main, Cell 39).

3.2.2.5 Power Spectrum III: Coordinate Transformation

To compute the power spectrum as a function of s using the same procedure as just
described, the density contrast needs to be derived as function of s. The transformation
according to Equation (3.21) therefore needs to be implemented numerically. To accom-
plish this, two different approaches were used troughout the analysis. In the test version
(Method 1 ), random star positions were first generated based on the counts in each bin
of the counts as function of ϕ1. These positions were subsenquently transformed into
s-values following Equation (3.21). To determine the heliocentric distance D, a formula
provided by [71] was used:

D(ϕ1) = −4.302 ϕ5
1 − 11.54 ϕ4

1 − 7.164 ϕ3
1 + 5.985 ϕ2

1 + 8.595 ϕ1 + 10.36 (3.22)

The integration was performed numerically, using the ode.solver by scipy (see Fig.
3.2). These s-values were binned (with start, end and bin-size according to [71]). This
method is only accurately applicable to the reference data from [71], since the heliocentric
distance as a function of the position ϕ1 along the stream differs between the various
stream simulations. In the main version and modifications (Method 2 ), to be applicable
to different versions of the stream, Equation (3.22) had to be recalculated and adjusted.
For this purpose, the heliocentric distance D was initially derived from the galactocentric
coordinates of the GD-1 member stars

D =
√

(x − x0)2 + (y − y0)2 + (z − z0)2 (3.23)

The positions of the member stars as a function of ϕ1 were determined using the
coordinates.transform function from the stream folder. The heliocentric distance
D of the stars could then be plotted as a function of ϕ1, as shown in Figure (3.8) for
a single dataset (see ▶ Power Spectrum, main, Cell 25). Using a quintic polynomial
fit, an equation equivalent to Equation (3.22) could thus be constructed (see ▶ Power
Spectrum, main, Cell 23). The remaining steps are analogous to Method 1. Figure (3.8)

https://github.com/Ocean16151/stream-team-power-spectrum/blob/main/power_spectrum/main.ipynb
https://github.com/Ocean16151/stream-team-power-spectrum/blob/main/power_spectrum/main.ipynb
https://github.com/Ocean16151/stream-team-power-spectrum/blob/main/power_spectrum/main.ipynb
https://github.com/Ocean16151/stream-team-power-spectrum/blob/main/power_spectrum/main.ipynb
https://github.com/Ocean16151/stream-team-power-spectrum/blob/main/power_spectrum/main.ipynb
https://github.com/Ocean16151/stream-team-power-spectrum/blob/main/power_spectrum/main.ipynb
https://github.com/Ocean16151/stream-team-power-spectrum/blob/main/power_spectrum/main.ipynb
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shows the heliocentric distance as function of the angular coordinate ϕ1 according to
Equation (3.22) (left side) and the own computation (right side).

Figure 3.8: Heliocentric distance D as function of ϕ1 from [71] (left)
and the own data (right). The plot also shows how far away GD-1 is
from us (respectively the sun) in different angular sections. This reveals,
that the stream is several kpc closer to the sun (and thus to the earth)

near its center.

3.2.3 Execution

3.2.3.1 Technical Setup of the ITP Cluster

For the execution, the own cluster computer at the Institute of Theoretical Physics,
Goethe University Frankfurt, was used. A cluster computer is a networked system of
multiple computers working together as a single (high-performance) machine. Charac-
teristics of a cluster include that it consists of many individual computers (called nodes),
which often have specialized roles (e.g. controllers that manage the cluster, compute
nodes that perform calculations, and storage nodes that handle data storage). These
nodes are connected via a high-speed network. The ITP cluster is centrally managed by
a specialized software, called slurm. Figure (3.9) shows the architecture of this software.
A central element is the so-called controller daemon7, which is a specialized background
process responsible for centrally controlling, coordinating, and monitoring the system.
As illustrated in Figure (3.9), the main controller daemon in slurm is called slurmctld.
This system coordinates the entire cluster, decides which jobs run on which nodes,
communicates with slurmd processes on the compute nodes, monitors resources, and

7A daemon in software or an operating system is a background process that runs automatically and
performs specific tasks without being started or directly controlled by a user [7].
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responds to changes in system state. Furthermore, it coordinates the user commands
(e.g. sbatch to execute a bash script). The slurmd daemons (see Fig. 3.9) on the
individual nodes regularly report their status (e.g. source usage, job progress) back to
slurmctld [116].

Figure 3.9: Architecture of slurm. The slurmctld is the central man-
ager that organizes resources and work. Each connected individual com-
puter (node) runs its own slurmd daemons [7], which are comparable to
a remote shell. Possible commands a user can enter in the shell include
srun (= execute jobs), sbatch (= run a Bash script), and squeue (=

display jobs currently in progress) [116].

3.2.3.2 Bash Scripts

The Bash scripts were individually adjusted and tailored for each run of the code. An
important task of them was to manage the iteration and the choice of the subhalo sam-
ples. A central question was how to carry out the computationally intensive calculations,
especially due to the large number of iterations, in the fastest way8. Therefore, also the
use of Message Passing Interface (MPI) [61] was considered. This is a standard for
parallel programming that allows multiple processes to run simultaneously and commu-
nicate with each other, typically used on high-performance computing clusters. In a

8This was particularly relevant for the stream simulation in Part 1, which was the most time-
consuming part of the process.
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Figure 3.10: One of the bash scripts as example. The time is set to
the maximum allowable interval of 14 days on the ITP cluster and the
number of CPUs per task is adjusted to the number of parallel processes
in the multiprocessing tool, used in the stream simulation code. In the
main part, the main loop calls, for each iteration, both part 1 (Stream
Simulation) and part 2 (Power Spectrum). In each case, the environment

variable num_data is passed to the codes.

slurm job, MPI enables a program to be distributed across several CPUs or nodes using
commands like srun or mpirun. This allows tasks to be executed in parallel rather than
sequentially. It is particularly useful for complex computational tasks where coordi-
nation between processes is required to exchange data or status information. However,
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when processes are fully independent, as it was the case in this analysis, no inter-process
communication is necessary. Therefore, dividing the jobs into different slurm arrays and
assigning a suitable number of individual iterations per array (typically 100) proved
to lead to a good balance between the load on cluster resources and the runtime of a
single array job. Figure (3.10) shows an example of such a bash script that was used for
the computations. It illustrates how the individual iterations are invoked using a loop
and distributed across different array jobs. During each run, an environment variable
(num_data, see also Subsubsec. ▶ 3.2.1.2) is passed to the Python codes, choosing the
corresponding sample subhalo in the stream simulation code. This environment variable
is labeled consistently throughout the entire codebase, ensuring a clear association of
each intermediate step and result with its respective subhalo9. To ensure the highest
possible efficiency and to avoid potential performance degradation due to resource con-
tention, the multiprocessing tool (see Subsubsec. ▶ 3.2.2.1) was referenced and the
number of parallel processes aligned with the number of allocated CPU cores.

3.2.3.3 Plots

The plots presented in this work were each generated using a separate Jupyter Notebook.
For this purpose, the data from a single iteration were saved to a file, using the environ-
ment variable num_data to indicate the run (see Subsubsec. ▶ 3.2.1.2). All iterations
were then combined in the plotting routine. The plots shown for each model represent
the median value across all iterations. The shaded regions indicate the range between
the 16th and 84th percentiles, calculated from the full set of iterations.

9This was important, as the computations, performed with different variants over time, produced a
large volume of data and results.
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Chapter 4

Results

4.1 Power Spectra

4.1.1 Main Version

10 100
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Dissipative self-interactions

Figure 4.1: This figure shows the density power spectrum as a function
of ϕ1 for the three models considered. Shown are the median value and the
range between the 16th and 84th percentiles for a total of 1000 iterations.
For comparison, the power spectrum of GD-1 is included (bright blue)

(from [71]).
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Figure (4.1) shows the results for the three different models as a function of ϕ1. Only
subhalos with an impact time of timp < 2 Gyr are taken into account. Shown are the
median values along with the 16th to 84th percentiles in comparison with the power
spectrum of GD-1 (from [71], bright blue). It can be observed that a plateau forms,
beginning at 1/kϕ1 = 20◦. The results from our own simulations for the different models
show a more uniform behavior, with a slight peak around ∆ϕ1 = 30◦ and no significant
difference between the models. A similar picture emerges for the power spectrum as a
function of s. A clear peak can now be seen in the spectrum of GD-1 (bright blue, [71])
at s ≈ 2.6 kpc. This roughly corresponds to a separation of ϕ1 = 20◦ in the Koposov
angular coordinate system1. Again, no difference between the models is observable and
a distinct minimum appears at the position s ≈ 2.6 kpc.
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Dissipative self-interactions

Figure 4.2: This figure shows the density power spectra of the different
models as a function of s, calculated with the same method as in Figure
(4.1). The power spectrum of GD-1 (light blue) clearly exhibits a charac-
teristic peak at s = 2.6 kpc, while the power spectra from the simulations

display a minimum at precisely this scale.
1The conversion can be roughly estimated using the formula s = D ·∆ϕ1 · π

180 [kpc] = 8·20· π
180 [kpc] ≈

2.79 kpc, where D is the heliocentric distance. It is taken into account that the heliocentric distance of
GD-1 is lowest near the central region.
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4.1.2 Bootstrap Version
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Figure 4.3: This figure shows the density power spectrum as a function
of ϕ1 for the three models considered. A bootstrap sampling was now
applied to the stream simulation. Shown are again the median value
and the range between the 16th and 84th percentiles for a total of 100

iterations.

Figure (4.3) shows the density power spectrum as a function of ϕ1. A bootstrap sampling
was applied to the star positions from the stream simulation (see Subsubsec. ▶ 3.2.2.1).
The different models now differ slightly from each other, but no systematic trend is
apparent. In the power spectrum as a function of s (see Fig. 4.4), the minimum at
s = 2.6 kpc is now significantly less pronounced. This could indicate that there is a
systematic cause for it (see Sec. ▶ 4.2). The slight differences now emerging between
the models could be attributed, on the one hand, to the stochastic influence of the
bootstrap sampling and, on the other hand, to the reduced number of iterations by a
factor of 10.
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Figure 4.4: This figure shows the density power spectrum as function
of s, with a bootstrap sampling applied on the stream simulation. The
plot shows the median value and the range between the 16th and 84th

percentiles for a total of 100 iterations.

4.2 Discussion

4.2.1 Gap and Epicyclic Patterns

To put the results into context, it is useful to first revisit the discussion on the origin
of the gap at ϕ1 = 40◦ hinted at in Section ▶ 2.3.2.3. While Bonaca et al. [19] provide
a detailed argument that a subhalo impact is the most likely cause of the gap, Ibata et
al. [71] point out, that the gap could as well be a part of the epicyclic stream-fanning
pattern. This is a consequence of GD-1 having formed from a GC, as described above
(see Subsubsec. ▶ 2.3.1.1). [71] emphasize that there are no unambiguous, distinctive
impact signatures that can only be caused by a subhalo. The feature that [19] put
forward as the main argument for a massive object impact causing the gap at ϕ1 = 40◦

is interpreted by [71] as a geometric part of the stretched stellar stream. The density
power spectrum, as described in this work, is an important tool in this context to
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reveal regular patterns, such as the epicyclic overdensities and underdensities. Due to
the formation process of GD-1 from a GC, this pattern is not random but exhibits
a periodic structure. The peak, which is especially pronounced in the spectrum as a
function of the proper path length s, is significant here as it reflects the periodic length.
Its value lies at 1/ks = 2.64 ± 0.18 kpc and was extracted by the power spectrum of
GD-1 (see Fig. 4.2) [71]. This distance, which corresponds to approximately s ≈ 20◦,
matches exactly the separation between the two gaps at ϕ1 = −20◦ and ϕ1 = −40◦,
which [71] cite as further evidence for a geometric origin. Nevertheless, there are strong
arguments in favor of a DM subhalo as the cause, as discussed above (see Subsubsec.
▶ 2.3.2.3).

4.2.2 Limitations

However, the question arises whether a density power spectrum is an optimal tool for this
particular case. Since this scenario does not involve a regular pattern along the entire
stream, but rather the the effect of a subhalo impact, the result will at least be affected
by other density fluctuations. Another relevant question is whether the density power
spectrum, as constructed here, is in principle capable of capturing subhalo impacts.
Given the total considered stream length of nearly 100◦ and the use of 40 bins, each
bin corresponds to an angular section of 2.5◦. The Nyquist limit, which is the smallest
resolvable structure, is therefore λmin = 2·∆ϕ = 5◦ [95]2. Most studies adopt gap widths
of less than ϕ1 < 10◦ in their models (e.g., [19]), implying that a subhalo impact should
in principle be detectable at this resolution. However, it remains questionable whether
the more subtle differences caused by variations in the density profile of individual
models can be captured in this setup. Even if this were possible, the full length of
the stream is still included in the analysis, making it likely that more precise methods
would be preferable. Finer binning or focusing on a smaller section of the stream are,
in principle, possible alternatives. However, doing so reduces the spectral resolution,
which introduces its own limitations. This could explain why differences between the
models are practically not visible in this setup.

4.2.3 Systematic Effects

Finally, the question arises why the maximum in the GD-1 power spectrum as a function
of s (see Fig. 4.2) appears to be mirrored across the x-axis in the simulation data. The
code was designed to approximately reproduce the result of [71]. However, the streams
simulated in Part 1 of the code do not reproduce the density profile of GD-1 in detail, so

2This follows from the method used to compute the power spectrum, which, as described (see Sub-
subsec. ▶ 2.4.1.1), is based on a DFT of the density along the stream. In order to recognize a sinusoidal
oscillation, at least two data points per period are required.
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an identical result was not expected. At first glance, this mirroring is therefore rather
surprising. The results of the bootstrap simulation, in which stochastic processes also
influenced the outcome and the minimum is much less pronounced, suggest that there
may indeed be a systematic origin for this effect. In principle, this effect could arise from
a phase shift, such as one caused by a shifted binning. However, to produce exactly this
inversion pattern, the phase would need to be shifted by half a period, which corresponds
to about four bins. In the simulation, however, the exact binning from [71] was used. A
cumulative effect can also be ruled out, since the stellar positions as a function of s were
calculated independently from the power spectrum as function of the angular coordinate.
A possible explanation might be, that the simulated streams exhibit a different density
profile than GD-1. Therefore, the minimum could maybe appear as a negative contrast.
Further work is planned to revisit and refine these results.
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Chapter 5

Conclusion and Outlook

In this work, density power spectra were calculated along the GD-1 stellar stream to
investigate the influence of DM subhalo impacts under different DM models. No signif-
icant difference between the various models was found. It is possible that the density
power spectrum is not an optimal tool to precisely capture the effects of different density
profiles arising from various DM models (see Subsec. ▶ 4.2.1). Nevertheless, the deter-
mination of the power spectrum was very helpful in validating the method. Furthermore,
the code is available and can be used to analyse other density profiles. Future work is
planned to revisit and refine these results, which represent only an intermediate step.
Additionally, a paper summarizing the complete findings of the Stream-Team project
sis currently in preparation. Also in the future, stellar streams will remain valuable
tools for probing the properties of DM. In order to be suitable for constraining DM by
considering possible subhalo impacts, stellar streams should ideally exhibit the charac-
teristics discussed in this work. In particular, they should have a sufficient distance from
the Galactic bulge. Moreover, it is advantageous if the streams are narrow and well-
resolved in observational data (see Subsubsec. ▶ 2.3.2.1). Alongside GD-1, Palomar 5 is
considered a promising candidate for DM constraints [55]. It shows significant underden-
sities and asymmetries (see [56]) and exhibits very narrow, kinematically cold structures
stretching over 20◦ across the sky, with a width of only 0.7◦ [135]. Studies (see e.g. [10])
have shown that density gaps within Palomar 5 may have been caused by both DM
subhalos and baryonic structures. A detailed investigation of these gaps could therefore
represent a promising approach to probing the nature of DM [100]. Other streams, like
ATLAS [18], have so far not been mapped as well, or like Jhelum [17], where a lack of
a clear epicyclic structure makes the analysis more difficult. Nevertheless, it could be
an exciting idea for the future to identify further objects and continue to develop new
techniques to make DM visible. Already now, a big variety of approachs is used (see
e.g. [25, 18]). Even though, to close this journey by returning to the beginning, we
still perceive DM only as a shadow on the wall, it is well worth continuing to explore
this fascinating subject. Perhaps one day, humanity will be able to grasp its nature and
rediscover itself beneath the wide and beautiful sky of reality.
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Appendix A

Theoretical Supplements

A.1 Derivation of the Composition of the Universe

Figure A.1: The oldest photo of the universe: The cosmic microwave
background (CMB). This visualisation shows the temperature fluctua-
tions in the early universe as tiny variations in color. These anisotropies
reflect regions of slightly higher or lower density. The different colors
represent warmer (orange) and colder (blue) regions. The overall tem-
perature of the CMB is approximately 2.725K. The shown temperature
fluctuations are only a tiny fraction of that, on the order of ∆T/T ≈ 10−5.
The representation of the entire sky (= all-sky map) in elliptical form is

called a Mollweide projection.

The CMB was accidentally discovered by Arno Penzias and Robert Wilson in 1965 [103]
and can be considered as the oldest photo of the universe (Fig. A.1). It can be used to
determine the composition of the universe. The moment when the CMB was formed,
the recombination, was the time when electrons and protons combined to form neutral
hydrogen. This made the universe transparent for the first time, allowing photons to
travel freely through space. The CMB is indeed electromagnetic radiation (= mediated
by photons), but in the microwave range because the originally very short wavelength
has been greatly stretched due to the expansion of the universe (= redshift), so that it
can now be measured as microwave radiation (hence the name microwave background).
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The CMB can be used to determine the composition of the universe. For the wavelength
in a contracting universe, the following applies:

λ0 − λe

λe
= 1 − a

a
(A.1)

with the scale factor of the universe a, the wavelength at emission λe, and the wavelength
at observation λ0. With T ∝ 1/λ follows

T0
T

= a (A.2)

As the light has been emitted by a black body at 3000K and the universe has expanded
since then by approximately factor 1100, a black-body radiation at T ≈ 2.73 K is result-
ing. The cosmic background radiation is, however, not completely uniform, but shows
temperature fluctuations on the sky on the order of

T

T
≈ 10−5 (A.3)

These anisotropies reflect density variations in the early universe and form the basis of
the structures we observe today. The temperature fluctuations on the sky are described
by a function T in the direction n̂, which can be decomposed into spherical harmonic
functions Ylm.

T (x⃗, t, ⃗̂n) = T0
∑

l

l∑
m=−l

alm(x⃗, t)Ylm(⃗̂n) (A.4)

The coefficients alm of this decomposition contain the information about the anisotropies.
The multipole number l roughly corresponds to the angular resolution, with an angle
scale approximately given by θ ≈ π/l.

⟨alm(x⃗, t)a∗
l′m′(x⃗, t)⟩ = δll′δmm′Cl(t) (A.5)

The transfer function ΘT (k, ℓ) can be derived by solving the Einstein and Boltzmann
equations. The spectrum today can then be expressed by

l(l + 1)Cl

2π
=

∫
Θ2

T (k, ℓ)P(k)dk

k
(A.6)

By decomposing the actually observed temperature fluctuations into spherical harmonics
alm, the currently observed power spectrum can be extracted. As the transfer function
ΘT (k, ℓ) depend on the density parameters trough various effects of cosmological per-
turbation (e.g. the Bardeen potentials, the Sachs-Wolfe effect or the Silk damping), the
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result obtained by varying this parameters can be compared with the real observation.
From this, the composition of the universe can finally be derived [51].

A.2 Derivation of the Thermodynamic Description

In this section, Equation (2.25) is derived following [24]. The second law of thermody-
namics states that

TdS = dQ (A.7)

It can also be expressed, as a function of the specific entropy s, as

T

(
∂s

∂t

)
M

= 1
ρV

(
dQ

dt

)
M

= −1
ρ

∇⃗ · q⃗ (A.8)

Here, q denotes the outward heat flux, under the assumption that there is no inward
flux. In the spherically symmetric case, substituting Equation (2.18) yields

T

(
∂s

∂t

)
M

= − 1
4πρr2

∂L

∂r
(A.9)

The first law of thermodynamics can be written as

dU = TdS − pdV (A.10)

Here, s is the entropy and u is the specific internal energy, the latter being defined as

u = 3
2

kBT

m
(A.11)

Solving equation (A.10) for ds and integrating gives

s = kB

T
ln

(
T 3/2

ρ

)
(A.12)

Substituting (A.12) into (A.9) and using ν2 = kBT/m yields

∂L

∂r
= −4πρr2ν2

(
∂

∂t

)
M

ln
ν3

ρ
(A.13)
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Appendix B

Methodological Supplements

B.1 Testing the code with the results from Ref. [71]

To validate the correctness of the applied methodology, the results of [71] were repro-
duced as a first step. A comparison is shown in Fig.B.1 (Power Spectrum as a function
of ϕ1) and Fig.B.2 (Power Spectrum as a function of s). It can be seen that the results of
[71] were largely reproduced. In both cases, the shape of the spectrum closely matches
the original result, and in particular, the peak at 1/ks = 2.64±0.18 kpc is clearly visible,
which was the key finding in the analysis by [71]. The deviations in both spectra are of
comparable magnitude. In the case of the power spectrum as a function of s, it must
be noted that, due to the lack of precise data, the positions of the stars within each
bin were assigned randomly during the computation. This is a likely explanation for
minor discrepancies. The source of the differences in the power spectrum as a function
of ϕ1 is less clear; they may result from slight differences in the underlying dataset.
Nevertheless, the result could be reproduced in its main structure.

Figure B.1: Power
Spectrum as a function
of ϕ1 (blue) and com-
parison with the re-
sults from [71] (pur-

ple).

Figure B.2: Power
Spectrum as a function
of s (green) and com-
parison with the re-
sults from [71] (blue).
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