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Foreword

Foreword

"You just don’t get it, do you, Jean-Luc? The trial never ends."

- Q (Star Trek: The Next Generation, S7, E25-26 "All Good Things")

In Star Trek: The Next Generation, there is an omnipotent being called Q, who visits the main
characters on several occasions under the pretext of assessing and testing the justification of the
human race’s right to exist. In the first episode of the series, Q puts humanity on trial and accuses
the main cast of being barbarous representatives of a "dangerous, savage, child-race". During the
course of the show, Q begins to see the true potential of humanity and slowly becomes an advocate
(of sorts) for humanity in this metaphorical trial. In the last episode, Q tests humanity again and
pushes the protagonists until he obtains "a glimpse" of what humanity might be capable of. The
quote above is from this exact moment. I think that this trial is not only a judgment but also
a goal to strive for. In the science-fiction world of Star Trek, humanity is no longer preoccupied
with quarrels for power, greed or material wants. Instead, the search for truth and knowledge, and
the will to constantly self-improve to become the best possible version of ourselves are the main
motivating force of human endeavour. I hope that in becoming a scientist I can contribute my part
in pushing the boundaries of our knowledge. I hope that in the future, generations of people will
look back on us and deem us to be the beginning of a more enlightened, wise and more human,
race.
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Abstract

1 Abstract

It is believed that dark matter (DM) could accumulate inside neutron stars and significantly change
their masses, radii and tidal properties. We study what effect bosonic dark matter, modelled as
a massive and self-interacting scalar or vector field, has on neutron stars. We derive equations to
compute the tidal deformability of the full Einstein-Hilbert-Klein-Gordon system self-consistently,
and probe the influence of the scalar field mass and self-interaction strength on the total mass
and tidal properties of the combined system, called fermion boson stars (FBS). We are the first to
combine Proca stars with neutron stars to mixed systems of fermions and a vector field in Einstein-
Proca theory, which we name fermion Proca stars (FPS). We construct equilibrium solutions of
FPS, compute their masses, radii and analyse them regarding their stability and higher modes.
We find that FPS tend to be more massive and geometrically larger than FBS for equal boson
masses and self-interaction strengths. Both FBS and FPS admit DM core and DM cloud solutions
and we find that they can produce degenerate results. Core solutions compactify the neutron star
component and lower their tidal deformability, cloud solutions have the inverse effect. Electromag-
netic observations of certain cloud-like configurations would appear to violate the Buchdahl limit.
The self-interaction strength is found to significantly affect both mass and tidal deformability. We
discuss observational constraints and the connection to anomalous detections. We also show how
models with an effective equation of state compare to the self-consistent solution of FBS and find
the self-interaction strength where both solutions converge sufficiently.

Keywords: dark matter, ultralight bosons, self-interacting dark matter, neutron stars, equation
of state, gravitational waves, tidal deformability, boson stars, Proca stars, scalar field, vector field,
fermion boson stars, fermion Proca stars
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Zusammenfassung

Zusammenfassung

Es wird angenommen, dass sich dunkle Materie (DM) im Inneren von Neutronensternen ansammeln
und deren Masse, Radius und Gezeiteneigenschaften erheblich verändern könnte. Wir untersuchen,
welche Auswirkungen bosonische dunkle Materie, die als massereiches und selbstwechselwirkendes
Skalar- oder Vektorfeld modelliert wird, auf Neutronensterne hat. Wir leiten Gleichungen her, um
die Gezeitenverformbarkeit des vollständigen Einstein-Hilbert-Klein-Gordon-Systems selbstkonsis-
tent zu berechnen, und untersuchen den Einfluss der Skalarfeldmasse und der Stärke der Selbst-
wechselwirkung auf die Gesamtmasse und die Gezeiteneigenschaften des kombinierten Systems,
das wir Fermionen-Bosonen-Sterne (FBS) nennen. Wir sind die ersten, die Proca-Sterne mit
Neutronensternen zu gemischten Systemen aus Fermionen und einem Vektorfeld in der Einstein-
Proca-Theorie kombinieren, die wir Fermionen-Proca-Sterne (FPS) taufen. Wir konstruieren Gle-
ichgewichtslösungen von FPS, berechnen ihre Massen, Radien und analysieren sie bezüglich ihrer
Stabilität und höherer Moden. Wir finden heraus, dass FPS bei gleichen Bosonenmassen und Selb-
stwechselwirkungsstärken tendenziell massereicher und geometrisch ausgedehnter als FBS sind.
Sowohl FBS als auch FPS bilden DM-Kern- und DM-Wolkenlösungen, und wir stellen fest, dass
sie entartete Ergebnisse produzieren können. Kernlösungen verdichten die Neutronensternkompo-
nente und verringern ihre Gezeitenverformbarkeit, Wolkenlösungen haben den umgekehrten Ef-
fekt. Elektromagnetische Beobachtungen bestimmter wolkenartiger Konfigurationen scheinen die
Buchdahl-Grenze zu verletzen. Es wurde herausgefunden, dass die Stärke der Selbstwechselwirkung
sowohl die Masse als auch die Gezeitenverformbarkeit erheblich beeinflusst. Wir diskutieren Ein-
schränkungen durch Beobachtungen und die Verbindung zu anomalen Beobachtungen. Außerdem
zeigen wir, wie Modelle mit einer effektiven Zustandsgleichung mit der selbstkonsistenten Lösung
der FBS zu vergleichen sind, und finden die Stärke der Selbstwechselwirkung, bei der beide Lö-
sungen hinreichend konvergieren.

Schlüsselwörter: dunkle Materie, ultraleichte Bosonen, selbstwechselwirkende dunkle Materie,
Neutronensterne, Zustandsgleichung, Gravitationswellen, Gezeitenverformbarkeit, Bosonen-Sterne,
Proca-Sterne, Skalarfeld, Vektorfeld, Fermionen-Bosonen-Sterne, Fermionen-Proca-Sterne
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2 List of Publications

This thesis is based on the publication [1] listed below. A brief summary of it is provided and the
author’s contributions are highlighted. The author wants to note that this thesis was created in
conjunction with the listed publication in the framework of the B09-project of the CRC-TR 211
collaboration1 .

[1] Robin Fynn Diedrichs, Niklas Becker, Cédric Jockel, Jan-Erik Christian, Laura Sagunski,
and Jürgen Schaffner-Bielich Tidal Deformability of Fermion-Boson Stars: Neutron Stars
Admixed with Ultra-Light Dark Matter. ArXiv: [2303.04089], accepted for publication in
Phys. Rev. D

The tidal deformability of a neutron star admixed with dark matter is investigated. The
dark matter is modelled as a massive, self-interacting, complex scalar field. The equations
to compute the tidal deformability of the full Einstein-Hilbert-Klein-Gordon system self-
consistently are derived and the influence of the scalar field mass and self-interaction strength
on the total mass and tidal properties of the combined system are probed. Observational
constraints are discussed and the connection to anomalous detections are highlighted. The
fully self-consistent model is also compared to models which use an effective bosonic equation
of state. The analysis is performed using the code developed by the authors, which is also
linked in the work. The code is an ODE2-solver with shooting-method solving capabilities.
This publication forms the basis for roughly half of this thesis. This affects Chapters 5, 6 and
7.1. The author of this thesis contributed to all parts of the publication, including analysis
and draft. In particular the author contributed a large share of the code development used
for the analysis. The model using the effective equation of state discussed in Section V as
well as the numerical analysis was implemented and performed by the author of this thesis.
All authors contributed to the published manuscript.

[2] Robin Fynn Diedrichs, Niklas Becker, Cédric Jockel, Jan-Erik Christian, Laura Sagunski,
and Jürgen Schaffner-Bielich FBS-Solver. URL: Github/DMGW-Goethe/FBS-Solver

The code used in [1] was in large parts developed by the author of this thesis. It is a solver
for ordinary differential equations with shooting-method solving capabilities and is capable
of integrating arbitrary fermion boson star configurations and computing global quantities
such as their mass, radius and tidal deformability. The code was further expanded by the
author of this thesis to solve for fermion boson stars which feature a vector field (fermion
Proca stars). The code is explained in detail in Chapter 6. Fermion Proca stars (FPS) are
the main subjects of Chapter 5.3 and 7.2. Fermion Proca stars are not part of [1].

If not mentioned otherwise, the figures presented in this thesis were created by the author. Fig-
ures that were produced by collaborators are indicated explicitly. Some of the figures created by
collaborators were recreated for this thesis to obtain a more consistent colour scheme.

1URL: crc-tr211.org.
2ODE: ordinary differential equation
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Introduction

3 Introduction

Neutron stars (NS) are highly compact remnants of heavy stars. Due to their high densities,
they are excellent laboratories to probe physics under extreme conditions such as nuclear mat-
ter at high densities or gravitational physics in the strong gravity regime. The nuclear matter
equation of state (EOS) describes the relation between pressure and energy density of the mat-
ter found inside neutron stars and is an active field of study. The EOS is needed to close the
Tolman-Oppenheimer-Volkoff (TOV) equations [3, 4], which describe the density distribution of
a spherically symmetric static neutron star as well as the spacetime curvature self-consistently.
Neutron stars are therefore useful systems to constrain the properties of nuclear matter at high
densities. A significant constraint on the EOS is the ability to produce NS with masses of over
two solar masses 2M⊙. There are numerous known NS in this mass range, the most massive NS
known to date is PSR J0952−0607 with a mass of M = 2.35+0.17

−0.17M⊙ [5]. The lighter companion of
the binary system observed in the GW190814 gravitational wave event [6] was also proposed to be
the heaviest NS with a mass of around 2.6M⊙, but there is some evidence [7] that it might be the
lightest known black hole instead. High maximum NS masses require stiff EOS, where the nuclear
matter is difficult to compress and the energy density rises sharply with increasing pressure. Other
constraints include the measurements of the pulsars PSR J0030+0451 [8] and J0740+6620 [9] by
the NICER telescope, which also favour a stiff EOS. In contrast, the gravitational wave event
GW170817 [10, 11] favours softer EOS which produce smaller NS that are more compact and more
difficult to tidally disrupt.

It is additionally possible that dark matter (DM) could accumulate inside or around neutron
stars in sufficient amounts to modify their properties such as mass, radius and tidal deformability.
These properties have been measured using telescopes such as NICER and the gravitational wave
detectors LIGO and Virgo. This allows us to probe the properties of dark matter. The current
status of research suggests that dark matter is a particle, which is only interacting gravitationally
and weakly with standard model (SM) particles. It is also abundant, constituting roughly 26.8%
of the total energy density of the universe [12], making DM an integral part of the standard model
of cosmology (ΛCDM). There exist numerous candidates for dark matter particles. A possible
contender is that DM consists of an additional bosonic field (scalar field or vector field), as was
studied in [13, 14, 15, 16]. Dark matter could arrange itself around neutron stars as a cloud or
inside neutron stars as a core. Neutron stars with DM cores could form

1) from an initial DM ’seed’ through accretion of baryonic matter [1, 17, 18, 19],

2) through mergers of neutron stars and boson stars [1],

3) through accretion of DM onto a NS and subsequent accumulation in the centre [1, 20, 21,
22, 23],

4) through the decay of standard model particles inside the neutron star into DM [24, 25, 26,
27, 28].

The presence of dark matter inside the NS will then affect the observable quantities, thus making
them indirect laboratories for DM properties such as the DM mass and self-interaction strength.
Mixed systems of NS and bosonic fields are also motivated through modified theories of gravity,
where scalar and vector fields appear. The bosonic fields could then form through superradiance
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Introduction

[29, 30] or spontaneous scalarization [31, 32] (or spontaneous vectorization [33, 34]). Some of these
systems are mathematically equivalent to NS with bosonic fields, making them also relevant for
modified gravity.

In this work, we model dark matter as a minimally coupled complex bosonic field (scalar field
or vector field), which only interacts with the standard model through gravity. First proposed
by [35, 36], the mixed systems of a bosonic field and fermionic NS matter are called fermion bo-
son stars (FBS). Until now, FBS have been modelled using a classical complex scalar field for
the bosonic component and an ideal fluid for the fermionic NS component. Mathematically, this
system is realized as the Einstein-Hilbert-Klein-Gordon (EHKG) system of equations minimally
coupled to a matter term. FBS have since been connected to current constraints on the mass and
radii of NS by [37] and to their dynamical properties by [38, 39]. FBS are also related to boson
stars [40, 41] as they can be thought of as a boson star that coexists with a neutron star at the
same location in space. Boson stars which are constructed from a complex vector field are called
Proca stars [42]. We are the first to combine Proca stars with neutron stars to mixed systems of
fermions and a vector field, which we name fermion Proca stars (FPS). Fermion Proca stars are
described mathematically using the Einstein-Proca (EP) equations coupled minimally to a matter
term. We will construct equilibrium solutions of FPS and compute their properties such as mass
and radius.

We additionally study the tidal properties of fermion boson stars (with a scalar field). The tidal
deformability of FBS was first investigated by [43], where the authors considered scalar bosonic
DM in the mass range of MeV to GeV . They constructed an effective EOS for the bosonic particles
and used a two-fluid formalism where they modelled the FBS using modified TOV equations. This
model was further investigated by [44, 45] and the tidal properties were computed. Other authors
[46, 47] studied scalar DM that has a quartic self-interaction potential. They used an effective EOS
derived by [48], which is only valid for strong self-interactions. We will use the two-fluid model
with the effective bosonic EOS to compare the results to the results obtained by solving the full
EHKG equations self-consistently.

Our models for FBS and FPS are applicable for scalar and vector bosons with arbitrary potentials,
including for strong and weak self-interactions. We construct equilibrium solutions of FBS and
FPS and show the effects that the additional scalar or vector field has on the NS properties. We
derive the equations necessary to compute the tidal deformability of FBS and solve them numer-
ically. We subsequently present our results regarding the tidal deformability. We also derive the
equations describing FPS and solve them numerically. We further derive an analytical bound on
the vector field amplitude and find scaling relations between the metric and vector field compo-
nents. We find that both FBS and FPS admit DM core and DM cloud solutions. Core solutions
compactify the NS component and lower their tidal deformability of the combined system. The
inverse was observed for cloud solutions. When only observing the fermionic component, some
solutions would appear to violate the Buchdahl limit. Even small amounts of DM can significantly
affect the properties of the combined system. The tidal deformability of FBS changes significantly
for small DM masses and could be observed using current gravitational wave detectors. FPS tend
to be more massive and geometrically larger than FBS for equal boson masses and self-interaction
strengths. For a given measurement, this would favour larger vector DM masses (compared to
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Introduction

scalar DM), as they produce smaller and less massive objects. We find a significant amount of
degenerate solutions between different choices of FBS, FPS, the DM properties and the EOS. For
different boson masses and DM-fractions, FPS and FBS can both be degenerate with each other
and also be degenerate with pure NS with a different EOS. Using scaling relations for boson stars
and Proca stars, we show that FBS and FPS are virtually indistinguishable if the boson masses
differ by a factor of 1.671 and have no self-interactions. We also confirmed the existence of FPS
in higher modes which are stable under linear radial perturbations.

This thesis is structured as follows: In Chapter 4 we introduce all relevant concepts needed to
understand fermion boson stars and offer a wide overview of neutron stars, gravitational waves,
the tidal deformability, dark matter and boson stars. In Chapter 5 we present the mathematical
framework behind FBS and derive the equations of motion as well as the first-order perturbations
needed to compute their tidal deformability. We also present the equations of motion of fermion
Proca stars and derive some analytical bounds. In Chapter 6 we focus on the algorithms used
to solve the equations of motion and give an overview of the numerical code used for this work.
In Chapter 7 we present our results regarding fermion boson stars with scalar fields and vector
fields. In Chapter 7.1.1 we present mass-radius relations and the tidal deformability of FBS and
compare it to observational constraints in Chapter 7.1.2. In Chapter 7.1.3 we compare the EHKG
solutions to the two-fluid model. In Chapter 7.2 we present all results regarding fermion Proca
stars including radial profiles (Chapter 7.2.1), stability considerations and mass-radius relations
(Chapter 7.2.2) as well as a comparison of FPS with different EOS (Chapter 7.2.3). Finally in
Chapter 8 we summarize our findings and give an outlook on possible future research projects.
Throughout this work, we make use of the Einstein summation convention for tensors. Greek
indices µ, ν, α, β run over all spacetime coordinates (t, x, y, z) and Latin indices i, j, k, l run purely
over spatial coordinates (x, y, z). If not specified otherwise, we use units in which the gravitational
constant, the speed of light and the solar mass are G = c = M⊙ = 1. See also Appendix B for
more information on the unit conventions. Prior knowledge of general relativity is assumed. While
not strictly necessary, knowledge about quantum field theory and the standard model of particle
physics is highly recommended to better understand the particle-physical implications behind our
models.
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Theoretical Background · Neutron Stars

4 Theoretical Background

In this work, we study exotic compact objects known as fermion boson stars. However, before
we start the analysis, we must first develop a solid theoretical groundwork and understanding of
constituent concepts such as neutron stars (NS), gravitational waves (GW), dark matter (DM) and
boson stars (BS). Chapter 4.1 provides a lightweight introduction to the most important properties
of NS and is based upon the reviews [49, 50] and references therein. Following that, Chapter 4.2
introduces the notion of gravitational waves, including their current uses and applications. The
tidal deformability is also covered in detail. Next, in Chapter 4.3, the status of the search for dark
matter is reviewed and a specific type of DM with properties interesting for this work, namely
ultralight dark matter (ULDM), is especially highlighted (see [51, 52, 53] for reviews). This chapter
is closed in Chapter 4.4 by an introduction to boson stars including the theoretical description,
properties and possible formation mechanisms.

4.1 Neutron Stars

Neutron stars (NS) are highly compact and dense stellar remnants of heavy stars. They are often
rapidly rotating and emit a jet, which in some cases aligns with our field of view such that the
jet is observed as a regular pulse – hence why the term pulsar (short for ”pulsating star”) is also
used for these types of NS. These properties make NS excellent laboratories for physics under
extreme conditions such as nuclear matter at high densities or gravitational physics in the strong
gravity regime. They are formed in the aftermath of core-collapse supernova explosions of stars
with masses of more than 8M⊙ [54]. During stellar evolution, main-sequence stars burn hydrogen
into increasingly heavier elements until the nuclear fusion reaction stops and the radiation pressure
provided by the reaction is no longer sufficient to stabilize the star against its own gravity. Grav-
itational collapse ensues and the stellar core consisting of heavy elements is strongly compressed
until the nuclear repulsion force repels the infalling matter, resulting in a violent supernova explo-
sion. The highly compressed stellar core then radiates neutrinos at a high rate, through which it
gradually cools down to temperatures where finite-temperature effects become largely unimportant
[49]. What remains is a highly compact and neutron-rich object, with masses of roughly 1− 2M⊙
and radii of around 10− 15 km [49].
The structure of NS can be divided into the atmosphere, the crust, the outer core and the inner
core [49, 55] (also see the right panel of Figure 1). The atmosphere is a thin envelope of a few
cm in size with densities of ρ ≈ 1 g/cm3, which consists of a mix of light and heavy nuclei. Below
the surface in the upper crust, neutron-rich nuclei form a lattice which is permeated by a free-
flowing degenerate electron gas [50]. With increasing depth, the density also increases. At around
4 · 1011 g/cm3, the lattice structure starts to gradually break up and nuclei become increasingly
deformed. At roughly a quarter nuclear saturation density (ρsat = 2.7 · 1014 g/cm3), the neutron-
rich nuclei start to arrange in macroscopic tube- and sheet-like structures, commonly referred to
as nuclear pasta [49, 50]. The outer core starts at densities above ρ ≈ 0.5ρsat. The nuclear matter
forms a homogenous phase in beta-equilibrium consisting of mainly neutrons and a small fraction
of protons, electrons and muons [49]. At even higher densities, the inner core starts. To date, this
region of neutron stars is largely unknown, as it requires knowledge of the behaviour of nuclear
matter at densities far above nuclear saturation density.
The composition and physical properties of matter inside NS cores is an active field of research.
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Models range from baryons with strange quarks (e.g. hyperons) [50] to deconfined quarks or phase
transitions with colour-superconductive phases [56, 57]. As such, researching the properties of NS
is also linked to understanding strongly interacting matter at densities, where perturbative calcula-
tions using quantum chromodynamics (QCD) are not possible and where lattice-QCD simulations
break down [58].
All these (proposed) microphysical properties of nuclear matter can be described macroscopically
using the nuclear matter equation of state (EOS). The equation of state is a function P = P (e, T )
which relates the pressure P to the energy density e and temperature T of a fluid. In some cases,
other quantities such as the electron fraction Ye may additionally be used to characterize the EOS.
The search for the EOS at densities ρ < ρsat can be carried out on Earth using heavy-ion experi-
ments [49]. Theoretically, efforts are ongoing to describe nuclear matter using chiral effective field
theory (χEFT). χEFT is a framework to describe the interactions between nuclei while also taking
into account their inner quark structure [59]. This has enabled us to study the EOS up to 2ρsat
with 25% theoretical uncertainty [49].
The amount of different models for the EOS is vast and possibilities for different microphysical
considerations are accordingly rich. One project aimed at aggregating EOS models is the online
database CompOSE [60]. CompOSE allows to choose different EOS based in the microphysical
properties and provides a code package to compute macroscopic quantities – like pressure, tem-
perature and energy density – for each EOS. CompOSE was used in this work to obtain all the
equations of state employed in the analysis.
Observationally, neutron stars are well established. One historic example is the pulsar inside the
crab nebula [61, 62]. Other NS detections include the Hulse-Taylor binary pulsar [63] and the obser-
vation of the binary-NS merger GW170817 [64, 65] by the LIGO collaboration. Some quantitative
measurements of NS masses and radii have been taken of PSR J0030+0451 with M = 1.34+0.15

−0.16M⊙
and R = 12.71+1.14

−1.19 km [8] and of J0740+6620 with M = 2.072+0.067
−0.066M⊙ and R = 12.39+1.30

−0.98 km [9]
using the Neutron Star Interior Composition Explorer (NICER) telescope. The most massive NS
known to date is PSR J0952−0607 with M = 2.35+0.17

−0.17M⊙ [5]. The lightest NS where mass and
radius are known is HESS J1731−347 with M = 0.77+0.20

−0.17M⊙ and R = 10.4+1.86
−0.78 km [66].

Theoretically, neutron stars can be modelled as self-gravitating relativistic fluids. We can thus
use general relativity (GR) and hydrodynamics to describe them (see e.g. [55, 67, 68, 69]). The
associated action is the Einstein-Hilbert (EH) action that is minimally coupled to a term Lm

describing the fluid. Minimally coupling means that there exist no interactions between gravity
and the relativistic fluid outside of the back-reaction onto spacetime due to the fluid’s energy-
momentum content. The action assumes the form

S =

∫
M

√
−g

(
1

2κ
R− Lm

)
dx4 , (1)

where R is the Ricci curvature scalar, g is the determinant of the spacetime metric gµν , κ =
4πG/c4 is a constant and the integral is performed over the whole spacetime manifold M. The
corresponding equations of motion can be obtained by computing the variation with respect to the
inverse spacetime metric δgµν . One then obtains the Einstein equations (in units with c = G = 1):

Gµν = 8π Tµν . (2)
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Theoretical Background · Neutron Stars

Here Gµν = Rµν − 1
2
Rgµν is the Einstein tensor, Rµν is the Ricci tensor and Tµν is the energy-

momentum tensor of the relativistic fluid. Formally, the energy-momentum tensor is defined
through the relation

Tµν :=
2√
−g

δLm

δgµν
. (3)

The first solution to the Einstein equations (2) with a self-gravitating spherically symmetric static
matter distribution was found by Tolman, Oppenheimer and Volkoff [3, 4]. They assumed a
spherically symmetric ansatz for the spacetime metric3

ds2 = gµνdx
µdxν = −α2(r)dt2 + a2(r)dr2 + r2dθ2 + r2 sin2(θ)dφ2 , (4)

with the metric functions gtt = −α2(r), grr = a2(r), and for the relativistic fluid they assumed a
perfect fluid with an energy-momentum tensor of the form

Tµν = (e(r) + P (r))uµuν + P (r)gµν . (5)

P and e are the pressure and the energy density of the fluid respectively. uµ is the four-velocity of
the fluid. For a static fluid, the four-velocity takes the form

uµ =

(
− 1

α
, 0, 0, 0

)
, uµ = (α, 0, 0, 0) . (6)

In addition, the conservation of the energy-momentum tensor Tµν (conservation of energy and
momentum) and of the fluid flow Jµ := ρuµ (conservation of restmass) hold. The restmass density
ρ is related to the energy density e through e = ρ(1 + ε), where ε is the internal energy. The
relevant conservation equations are written as the covariant derivatives

∇µT
µν = 0 , ∇µJ

µ = 0 . (7)

Combining the above expressions, one obtains the Tolman-Oppenheimer-Volkoff (TOV) equations:

a′ =
da

dr
=

a

2

[
(1− a2)

r
+ 8πra2e

]
, (8a)

α′ =
dα

dr
=

α

2

[
(a2 − 1)

r
+ 8πra2P

]
, (8b)

P ′ =
dP

dr
= −(e+ P )

α′

α
. (8c)

This system of equations is closed using the EOS P (e). The full TOV equations (8a)-(8c) together
with the EOS therefore provide a way of computing the properties of NS such as pressure P (r),
energy density e(r), mass Mtot and radius R. The radius RNS is defined as the point, where the

3Note that in the original works of Tolman [3] and of Oppenheimer and Volkoff [4] a different convention was
used. However, both conventions are quantitatively equivalent.
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pressure becomes zero: P (RNS) = 0. The total gravitational mass is defined by the expression

Mtot :=
RNS

2

(
1− 1

(a(RNS))2

)
. (9)

It makes use of the fact that outside of the non-rotating NS, the spacetime metric is equal to that
of the Schwarzschild solution (Birkhoff-Jebsen theorem [70]). Another related quantity to consider
is the total restmass Mrm. It is obtained by integrating the conservation equation for the fluid flow
Jµ (7) over the spatial volume of the NS:

Mrm :=

∫ √
−g gtµJµdx

3 . (10)

The difference between the restmass and the total gravitational mass is the binding energy EB :=
Mrm−Mtot. It can be used as a measure of stability of a given self-gravitating object and quantifies
the potential energy released during collapse [49].
A common way of representing NS is a mass-radius (MR) diagram. By graphing the masses and
radii of neutron stars for different central densities ρc, one obtains a unique line for any given
EOS. Since the EOS is intrinsically linked to the TOV equations (8a)-(8c), measurements of the
masses and radii of different NS provide a way to constrain the EOS and thus the microphysical
properties of neutron matter. Mass-radius relations of NS have therefore been intensively studied
in the last years and are part of the standard analysis techniques when researching neutron stars.
Figure 1 shows an example of MR curves of NS with four different EOS.

Figure 1: Left panel: The mass-radius relation for four different EOS (APR[71], DD2[72], FSG[72] and
KDE0v1[73]). The DD2 EOS is a stiff EOS (the fluid is difficult to compress) and produces NS with larger
radii than the softer APR EOS. The NS marked with a star (⋆) has a mass of M = 1.7M⊙ and a radius
of R = 13.27 km. The mass measurement of PSR J0952−0607 [5] is shown by the orange band. Right
panel: Inner structure of the NS marked with a star (⋆) in the left panel. Densities are marked relative
to the nuclear saturation density ρsat = 2.7 · 1014 g/cm3. Radii where the restmass density reaches 0.5ρsat
and 2ρsat have been marked by black lines. The different inner phases are labelled accordingly.
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Neutron stars, however, are not isolated systems. Many of them appear in close binary systems,
where orbital decay due to the radiation of gravitational waves is relevant. The inspiral and merger
of systems of neutron stars have shown to produce a rich phenomenology that can be observed
using gravitational waves. Lately, NS have also come into the spotlight as a place to search for dark
matter. For example, dark matter might accumulate in and around neutron stars, modifying their
global properties such as mass and radius. Both of these topics will be discussed in the following
chapters.

4.2 Gravitational Waves and Tidal Deformability

Another field of research closely related to neutron stars and compact objects is the study of
gravitational waves (GW). Gravitational waves are ripples in spacetime, which propagate at the
speed of light (for detailed introductions see e.g. [69, 74]). Since their first detection in 2015 [75],
GW have become an important tool for probing gravity in the strong field regime [76, 77], testing
modifications of gravity [78], cosmology [79, 80] or searching for dark matter [1, 81, 82, 83].
Mathematically, GW arise from the linearized Einstein equations as small perturbations hµν (with
|hµν | ≪ 1) on top of an approximately flat background ≈ ηµν . The linearized Einstein equations
(to linear order in the perturbation hµν) read [69, 74]

□hµν = −4κTµν (inside a source) , □hµν = 0 (in vacuum) . (11)

In vacuum, equation (11) has the form of a wave equation. It admits – in a suitable gauge –
planar wave solutions, which propagate with the speed of light and are polarized along two linearly
independent directions (degrees of freedom). These polarization modes are commonly called ”plus”
and ”cross” polarization of the gravitational wave. A full GW signal thus consists of an amplitude,
a phase, and the GW polarization.
The sources of gravitational waves are plentiful [74]: from two objects in a binary system, rotating
neutron stars, to cosmological sources such as phase transitions in the early universe [79, 84]. But
in general, any accelerated object in a gravitational field with a quadrupole moment will emit GW.
In this work, we focus on astrophysical sources and specifically on binary compact objects such as
black holes (BH), neutron stars (NS) and exotic compact objects close in size to BH and NS. A
typical merger event will have three main phases (see Figure 2): The inspiral phase, the merger
phase and the post-merger phase. The merger and post-merger phases are to date only accessible
using numerical simulations 4.
The inspiral phase is modelled in the context of the linearized theory of gravity (11). To that end,
it is assumed that the gravitational field produced by the sources is sufficiently weak and that the
velocities are small compared to the speed of light v/c ≪ 1. Then, the background metric can be
assumed as approximately flat and Newtonian forces can be used to compute the motion of the
inspiralling objects. These considerations lead to the quadrupole formula [74], which describes the
gravitational radiation emitted by a source with a quadrupole moment (e.g. a binary system of

4Although note that analytic calculations have been done of post-merger black holes using black-hole perturbation
theory [85].
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Figure 2: Illustration of the GW signal of a merger of a NS-NS binary (red) and a BH-BH binary (grey).
Both systems have equal chirp-masses. The different merger phases are labelled accordingly. The figure
was taken from [49] in accordance with their ”Creative Commons Attribution 4.0 International” License.
Figure originally provided by T. Dietrich.

compact objects):

P =
dE

dt
=

G

5c5

〈 ...
Q ij

...
Q

ij
〉
. (12)

Here, Qij is the quadrupole tensor of the source and the three dots denote the third time-derivative.
Corresponding expressions for the radiated angular and linear momentum also exist [74]. Equation
(12) works well for sources in wide orbits with moderate orbital frequencies and has been confirmed
to high accuracy using e.g. the orbital decay of the Hulse-Taylor pulsar [63, 86]. To extract the
GW signal of close binary objects moving at significant fractions of the speed of light, it has become
necessary to go beyond the quadrupole formula (12). This can be done using the post-Newtonian
(PN) formalism [74]. The PN formalism aims to include general-relativistic (GR) corrections so
that the movement of objects can be described as point-masses (m1, m2, with M := m1 + m2)
using Newtonian dynamics. In the case of circular orbits, corrections to the change of the orbital
frequency ω (note that orbital frequency and velocity are related through v3 = GMω) have been
computed, yielding [87]:

ω̇

ω2
=

96

5

(v
c

)5 m1m2

(m1 +m2)2

∑
k=0

ω(k/2)PN

(v
c

)k
. (13)

The coefficients ω(k/2)PN include the GR corrections of (k/2)PN order. The 0PN order corresponds
to Newtonian gravity. At increasingly higher PN order, additional terms enter the PN expansion.
For example, the mass-ratio of the two binary objects enters at 1PN order; the spin and angular
momentum enter at 1.5PN order. For binary neutron stars, finite-size effects such as the deforma-
tion of the NS due to tidal forces enter the PN expansion at 5PN order [88]. Using increasingly
higher PN orders, the inspiral can be accurately modelled up to times close before the merger
phase. The GW energy flux (12) for non-spinning objects has been computed up to 4.5PN order
[89, 90, 91]. The GW phase is known to even higher orders such as 7.5PN, where effects related
to spin-tidal coupling of rotating NS enter [88]5. In practice, the PN formalism is used with the

5The above list of currently known PN orders and effects should not be regarded as exhaustive. For more
information, the interested reader is referred to the cited sources and references therein.
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desired degree of accuracy (PN orders) and a large amount of GW waveforms are computed. These
calculated waveforms are then used as templates to compare to real measurements of GW (see [92]
for a comparison of different PN expansion methods). The parameters of the inspiralling objects
such as mass, spin, direction of the rotational axis and tidal deformability are encoded in param-
eters in the PN expansion. They can then be inferred by comparing the calculated waveforms to
the measured data, as seen in Figure 3 (also see [75] for more information).

Figure 3: Left panel: GW signal amplitude over time for the inspiral of binary BH, including velocity
(in units of c), separation (in units of the Schwarzschild radius) and images of numerical models of the BH
event-horizons during coalescence. The red line was obtained using a numerical relativity simulation and
the grey band corresponds to GW signal predictions using PN expansions. Right panel: Measurements
of the GW event GW150914 [75] as observed by the two LIGO interferometers in 2015. The upper panels
show the measured amplitude. The next panels show waveform estimates using numerical simulations
(red) and using PN expansions (grey). The residuals between the measurement and numerical simulations
are shown below. The bottom panels show the measured GW frequencies over time. Both figures were
taken from [75] in accordance with their ”Creative Commons Attribution 3.0” License.

The tidal deformability is a measure of how easily an object can be deformed by an external tidal
field. It also appears as a parameter in the post-Newtonian expansion (13) at 5PN order. This
makes it interesting in the context of neutron stars and the search for the EOS since different EOS
lead to different internal matter distributions, masses and radii of the NS and thus also alter the
tidal properties.
To obtain the tidal deformability, one has to consider the effects of an external tidal field Eij
on a spherically symmetric neutron star (we hereafter follow the procedures used by [1, 93, 94]).
This tidal field will then induce a quadrupolar moment Qij in the neutron star. For a distant
and static tidal field, the induced quadrupolar moment will be proportional to the field such that
Qij = −λtidalEij 6. This approach is therefore also relevant for inspiralling binary NS since, in the
large-distance limit, the orbital time scales are larger than the time needed for the NS to adapt its
internal structure to the external tidal field (adiabatic limit). The induced quadrupolar moment

6The tidal deformability λtidal is related to the tidal Love number by k2 = 3
2GλtidalR

−5.
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modifies the gtt-component of the metric. At leading order in the asymptotic rest frame of the NS
and at large radii, it can be written as

gtt = −
(
1− 2M

r

)
− Eij xixj

(
1 +

3λtidal

r5

)
, (14)

where M is the total gravitational mass of the neutron star and the xi are the position vectors
in a Cartesian coordinate system with xixi = r2. The exact magnitude of this perturbation can
be computed using linear perturbations from the Einstein equations. Thereby we consider a small
perturbation hµν on top of the unperturbed metric gµν such that

gµν = gµν + hµν . (15)

For the static, even-parity and quadrupolar (l = 2) metric perturbations in the Regge-Wheeler
gauge, hµν can be written in terms of the spherical harmonic Y20(θ, φ) and radial functions
H0, H2, K which describe the radial dependence of the perturbed metric components:

hµν = Y20(θ, φ)× diag
(
−α2(r)H0(r), a

2(r)H2(r), r
2K(r), r2 sin2(θ)K(r)

)
. (16)

The tidally perturbed metric (15) is then inserted into the perturbed Einstein equations δGµν =
8πδTµν , which is expanded to linear order in hµν . The perturbed energy-momentum tensor is given
by δTµν = diag (−δP/c2s, δP, δP, δP ), where we used the relationship δe = δP ∂e/∂P = δP/c2s
between the energy density e, pressure P and the local speed of sound in the medium cs [1].
Through a series of algebraic manipulations of the perturbed Einstein equations, one then arrives
at H2(r) = −H0(r) and finally one obtains an ordinary differential equation for H0(r):

H ′′
0 =

[
a′

a
− α′

α
− 2

r

]
H ′

0 +

[
−2

α′′

α
+ 2

α′a′

αa
+ 4

α′2

α2
− a′

ra

(
3 +

1

c2s

)
− α′

rα

(
7 +

1

c2s

)
+ 6

a2

r2

]
H0 .

(17)

The primes denote a derivative with respect to the radial coordinate. The second derivative of the
metric component α′′ is given by

α′′ =

[
4πra2P +

a2 − 1

2r

]
α′ +

[
4πr

(
2Paa′ + a2P ′)+ 4πa2P +

aa′

r
+

1− a2

2r2

]
α . (18)

Equations (17) and (18) are the same as the ones used in [1]. However, they were changed to a
different convention for the spacetime metric so that the notation is consistent within this work.
The above equations can be simplified for radii outside of the neutron star, which leads to

H ′′
0 +

(
2

r
+ a2

2M

r2

)
H ′

0 −
(
6a2

r2
+ a4

4M2

r4

)
H0 = 0 . (19)

This equation (19) has a solution in terms of the associated Legendre polynomials (see [1, 93, 94]),
which can be expanded in r/M and matched to the metric component (14) to obtain an expression
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for the tidal deformability:

λtidal =
16

15
M5(1− 2C)2[2 + 2C(y − 1)− y]× {3(1− C)2[2− y + 2C(y − 1)] log(1− 2C)

+ 2C[6− 3y + 3C(5y − 8)] + 4C3[13− 11y + C(3y − 2) + 2C2(1 + y)]}−1 . (20)

Here, C := M/R is the NS compactness. The parameter y = RH ′
0(R)/H0(R) can be obtained by

integrating equation (17), together with the TOV equations (8a)-(8c), from the centre of the star
at r = 0 to the surface at r = R. It is also useful to define the dimensionless tidal deformability
Λtidal := λtidal/M

5.
Knowledge about the tidal deformability can now be used to gain information about the NS
properties, especially the radius. Since different EOS produce NS with different radii (see Figure 1),
the tidal deformability is also a useful tool to constrain the nuclear matter EOS. For example, a
given EOS is said to be stiff, if the NS matter is not easily compressible. This EOS subsequently
produces NS with larger radii and the NS will have a larger tidal deformability since it is more
easily affected by external gravitational forces. The inverse is true for soft EOS. This can be
tested using kilonova events, where a neutron star gets tidally disrupted by a black hole. From the
amount and the brightness of the ejected material, it is possible to infer the stiffness of the EOS
and in turn obtain estimates for the NS radius (see e.g. [95]).
The tidal deformability can also be used in the search for dark matter. If it accumulates inside
of a NS in sufficient amounts, dark matter can change the tidal properties of the NS (e.g. by
compactifying it). One can compute the tidal deformability using different dark matter models
and then use observations to indirectly shed light on dark matter. Due to the still unknown nature
of dark matter, the amount and variety of models is vast, which is why the next chapter will provide
an overview of different models and gradually introduce the dark matter models most relevant to
this work.

4.3 Dark Matter

In this chapter, we review the history and current status of dark matter (DM) research relevant to
this work. Even though dark matter has a long history as an observational science, its properties
remain largely unknown. The current status of research suggests that dark matter is a particle,
that is only interacting gravitationally and weakly with standard model (SM) particles. Most im-
portantly, it is invisible through electromagnetic radiation, hence the name. Large-scale structure
formation in the universe suggests that DM is mostly cold, i.e. slowly moving [51, 96, 97, 98]. It is
also abundant, constituting roughly 26.8% of the total energy density of the universe [12], making
DM an integral part in the standard model of cosmology (ΛCDM). The following historic overview
is loosely based on [51], the subsequent discussion of ultralight dark matter (ULDM) and wave
dark matter (WDM) is based upon [52] and [53].

The history of dark matter goes back more than a few centuries [51]. However, the modern
history of DM kicked off in the beginning of the last century with early models of the galactic
neighbourhood and considerations about the local matter density in and around the solar system
by Poincaré, Öpik, Kapteyn, Oort and others [51, 99, 100]. It was concluded that the unseen ”dark”
matter was likely small compared to visible matter. At that time, dark matter was still considered

19



Theoretical Background · Dark Matter

to consist of faint objects such as planets, low-mass stars, cold interstellar gas and asteroids, which
could not yet be observed using telescopes. Although the past notion of dark matter does not
match the modern understanding, concepts like the local DM density are important to this day
(see [101] for a modern review), for example in DM direct-detection experiments [51].
In 1933, Zwicky studied the velocity dispersion of galaxies in the Coma cluster and found that the
observed velocities corresponded to a mass that is multiple times larger than the visible matter in
the cluster [102]. Over time, explanations of DM such as clouds of gas and faint stars were gradually
ruled out [51, 103]. Historically, the study of galactic rotation curves – i.e. the angular velocity
profile of stars and gas in a galaxy with respect to the distance to the galactic centre – made the
largest contribution to establish the idea that galaxies contain large amounts of dark matter [51].
Measurements of galactic rotation curves were first performed in 1917 using the spectral lines of
the Andromeda galaxy [51]. In the following two decades, these and similar measurements were
used to infer several galactic masses [51, 100, 104, 105]. The quality of rotation curves drastically
increased with the discovery of the 21 cm line of hydrogen in 1951 [51]. Measurements using the
21 cm line culminated in the first accurate measurements of rotation curves [106], with a clearly
flat rotation profile at large galactic radii [107, 108]. With each new measurement, it became
increasingly clear that most galaxies feature flat rotation curves which extend further out than the
optical size of the galaxies. Examples of measured rotation curves can be seen in Figure 4. Purely
from the visible matter, the rotation velocities are expected to decrease with increasing distance
from the galactic centre. The observed flat rotation curves subsequently imply the existence of
additional gravitating mass in the outer regions of most galaxies [108]. This discrepancy between
expected and observed velocity came to be known as the ”missing mass problem” (see [109] for a
contemporary review).

Figure 4: Left panel: Rotation curves of the galaxies M31, M101, M81 and the Milky Way galaxy
(denoted by ”GALAXY”). The data for M31, M101 and M81 was originally published by [108], the data
for the Milky Way galaxy was included by the authors of [51]. Right panel: The rotation curve of the
galaxy M31 as measured using emission lines and the 21 cm line of hydrogen. The measurements come
from [110] (pink circles), [111] (black circles and squares), [112] (red stars) and [113] (green circles). The
blue solid line corresponds to the rotation curve of the ”exponential disk” model from [114]. Figure was
originally produced by Albert Bosma. Both figures were taken from [51].
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As the amount of evidence for the existence of dark matter increased, physicists gradually began to
investigate the nature of dark matter. The most natural explanation attempt at that time was that
DM might consist of faint macroscopic compact objects of planetary or stellar sizes [51] (interstellar
and intergalactic gas was already ruled out previously [51]). These so-called MACHOS (massive
astrophysical compact halo objects) were conjectured to be abundant in the outer regions of galax-
ies, making up the missing mass needed to explain the measured rotation curves (see Figure 4).
There are a number of candidate objects for MACHOS, but the most popular ones are massive
planets, brown dwarves and primordial black holes (PBH) – BH of varying sizes produced in the
early universe. The main way of detecting MACHOS is via gravitational microlensing [51]. Grav-
itational microlensing makes use of the fact that light bends around massive objects. If a massive
object passes between the observer and a distant star, the light is magnified by the gravitational
lens. The amount of magnification depends on the mass of the lensing object. Using the Large
Magellanic Cloud as a background, a number of surveys were performed to measure the frequency
of microlensing events, thus obtaining insight into the abundance of MACHOS in the Milky Way
DM halo. It was found that MACHOS in the sub-solar mass scale could at most account for 8% of
the needed dark matter mass [115, 116]. The current understanding is that MACHOS are excluded
on most mass scales [115, 116] (see [117, 118, 119] for constraints on PBH specifically) as dark
matter candidates, since they can only account for a small fraction of the needed mass. In fact,
through the measurement of the cosmic microwave background, it was later found that baryonic
matter – that is all visible matter consisting of standard-model particles 7 – can only account for
less than 20% of the matter-energy density in the universe (i.e. all dark matter and visible matter
combined) [12].
Another popular approach was – and in some parts still is – to avoid the postulation of additional
invisible matter by modifying how gravity works on large scales instead [51]. The best known
framework is that of modified Newtonian dynamics (MOND), which changes the mechanisms be-
hind the gravitational force at large distances (see [120] for a review). MOND initially became
popular because it was able to accurately explain the rotation curves of a large amount of galaxies
without the need of additional dark matter. Generalizing the MOND framework to be consis-
tent with other predictions such as the equivalence principle and gravitational lensing proved to
be more difficult and was only later achieved using the new framework of Tensor-Vector-Scalar
(TeVeS) gravity [121]. TeVeS gravity however contains a significant amount of new fields and pa-
rameters, losing the simplicity that MOND offered initially. In 2006, modified theories of gravity
came under pressure due to the measurement of gravitational lensing of the Bullet Cluster [122].
The authors found that the mass distribution due to gravitational lensing did not match the ob-
served matter distribution of visible matter, bringing empirical evidence of DM as an independent
massive matter distribution, rather than being a consequence of modified gravity. Furthermore,
some galaxies without – or with negligible amounts of – dark matter were found [123, 124] (i.e. the
star’s motion could be explained solely by the visible matter). In total, these findings disfavour
the hypothesis that dark matter can be explained by modifying gravity alone.
With baryonic matter being largely ruled out as an explanation of dark matter, and modified
gravity failing to explain gravitational lensing in the bullet cluster as well as the apparent lack of
dark matter in some galaxies, the notion of dark matter as a collection of subatomic particles has
received an increasing amount of traction. As most alternatives have been ruled out, this view

7However, note that primordial black holes are often not counted as baryonic matter [51].
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has become the leading paradigm regarding dark matter [51]. Standard model particles, such as
neutrinos, were ruled out quite early as they were not capable to produce the necessary density
abundances needed to explain all DM observations [51] and failed to reproduce the observed large-
scale structures in the universe in simulations [96]. One of the reasons neutrinos were ruled out
is their high velocity compared to the speed of light. The simulations suggest that dark matter
must be slow-moving (also referred to as ”cold dark matter”), to correctly reproduce the structure
formation in the universe [51, 96].

Figure 5: Visualization of possible solutions to the dark matter problem. The main strains of the
search for DM are shown: standard model DM candidates, extensions of the standard model and BSM
physics, modified theories of gravity, macroscopic dark objects and other exotic particles. The figure was
originally produced by [125] and was modified by Ana Lopes [126]. For details regarding every specific
model mentioned, see [125] and references therein.

The search for dark matter has thus increasingly taken the form of the search for physics beyond
the standard model (BSM) of particle physics (see Figure 5). Not much is known about the
properties of the supposed DM particle, apart from that it must have a neutral electric charge, is
”cold”, interacts gravitationally and interacts, at most, weakly with the standard model [51]. These
postulated properties have led to a collective class of particles known as weakly interacting massive
particles (WIMP). Various WIMP candidates have been proposed over the years, a large number
of them motivated through extensions of the standard model. Supersymmetry (SUSY), a specific
extension of the standard model, was studied in detail with respect to DM candidates [51, 127].
SUSY introduces a new symmetry between fermions and bosons and thus predicts a number of new
particles, called ”superpartners”. Especially the gravitino, neutralino and the sneutrino received
a large amount of attention as DM candidates [51, 128, 129]. With the failure of SUSY particles
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to emerge in particle-collider experiments at the predicted energy scales [130], supersymmetry
gradually fell out of consideration for BSM physics.
Current studies of WIMP range from the study on galactic scales through rotation curves, to
stellar scales. The interaction properties of DM with itself – also dubbed self-interacting dark
matter (SIDM) – are also studied extensively, in particular in the context of explaining the inner
regions of galactic rotation curves (see e.g. [131, 132]). The current consensus is that a certain
amount of self-interaction of the DM particle with itself is needed to correctly explain some galactic
rotation curves and galaxy clusters. However, the self-interaction must not be too strong as to have
a significant effect on the large-scale structure formation of the universe, since it is well described
using collisionless (i.e. non-self-interacting) dark matter [131, 132]. The total range of possible
DM parameters is vast. In Figure 6 an overview of possible mass ranges for the DM particle, and
which range can be probed by which astrophysical system, is provided.

Figure 6: A summary of the dark matter mass ranges probed by different astrophysical systems. The
numbers in parentheses refer to the sections in [52]. The figure was taken from [52].

Another BSM dark matter particle candidate actively researched is the QCD axion [1, 51, 52, 125],
which has been proposed to solve the strong CP problem of quantum chromodynamics. The
strong CP problem refers to the experimental finding that QCD is invariant under simultaneous
charge conjugation (C) and parity (P) transformation. However, purely from the mathematical
formulation of QCD, violations of the CP-symmetry are in principle possible. The relevant CP-
symmetry violating term in the QCD Lagrangian is

LQCD ⊃ θ
g2

32π2
F µνaF̃µνa , (21)

where g is the strong coupling constant, F µνa and F̃µνa are the gluon field-strength tensor and
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its dual respectively. θ is a scalar number, related to the phase of the QCD vacuum, which
has to be determined experimentally. The term (21) gives rise to an electric dipole moment of
the neutron. Through experimental measurements, it was found that the parameter θ must be
smaller than 10−10 to be consistent with observations. While there is nothing wrong conceptually
with the parameter θ being small, some scientists have been searching for a way to explain this
observational fact theoretically. It was discovered by [133, 134] that by including an additional
global U(1)-symmetry, the parameter θ can dynamically go to zero. The scalar parameter θ is then
promoted to a pseudo scalar field θ → a(xµ) – the axion field – that arises as a pseudo-Goldstone
boson when the new U(1)-symmetry is spontaneously broken. The mass of the axion is of the
order ma ≈ Λ2

QCD/fa, where ΛQCD is the perturbative QCD energy scale and fa is the energy scale
at which the U(1)-symmetry is broken. To be consistent with current observational bounds like
decay rates of mesons and the cooling of stars [51], the axion must be very light with a mass of
ma < 10−3 eV . Direct detection experiments [135] have also imposed bounds on the axion mass
and coupling to the standard model (see [136, 137] for reviews). It was additionally shown that
axions of masses ma ≈ 10−5 eV could have formed in the early universe in sufficient amounts to
account for the entirety of the dark matter abundance [51].
Due to their weak coupling to the standard model, axions – and similar axion-like particles (ALP)
(for a review see [138]) – have received a large amount of attention as dark matter candidates.
Ultralight particles with masses m ≪ 10−5 eV in particular lead to a rich phenomenology due
to their macroscopic wave-behaviour: they can form Bose-Einstein condensates on astrophysical
scales, similarly sized to stars or even galaxies [14, 53]. Since the Compton wavelength λc is
inversely proportional to the particle mass, a small mass leads to large wavelengths. For ultralight
particles, it can therefore happen that λc gets so large, that the mean distance between particles is
similar to λc even on large length scales. Such ultralight dark matter (ULDM) particles can then
be described using a wave function of macroscopic size. When the ULDM mass is of the order
10−9 − 10−11 eV [1], their Compton wavelength is of the order of kilometres. If such dark matter
were to accumulate in sufficient amounts to form a Bose-Einstein condensate of similar size, it could
have significant effects on neutron stars. The DM condensate could even become self-gravitating
and form gravitationally stable structures on its own, if the total mass of the ULDM present is
large enough. Thus, understanding the macroscopic behaviour of self-gravitating bosonic fields is
relevant to both neutron stars and the search for dark matter. Keeping bosonic ULDM as the
main motivator of this work in mind, we dedicate the following chapter to these self-gravitating
systems and their properties.

4.4 Boson Stars

Boson stars (BS) can be thought of as macroscopically sized Bose-Einstein condensates. They
have been intensively studied in the past (see [31]) as, e.g., a possible explanation for dark mat-
ter, as a source of gravitational waves, as a consequence of modified theories of gravity or as an
alternative to black holes. Formally, boson stars arise as a solution to the Einstein-Hilbert-Klein-
Gordon (EHKG) equations such that they are described by a bosonic scalar (or vector) field that
is stabilized by its own gravity. Boson stars with a vector field are referred to as Proca stars (PS)
[31, 42], although in this chapter, we will mostly use the term boson star to refer to both cases.
If interpreted from a particle-physics viewpoint, BS are either a collection of stable fundamental
bosonic particles or a configuration of decaying particles, which have a reverse-decay channel effi-
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cient enough to form a stable equilibrium when inside a gravitational potential [31]. The following
chapter is loosely based on the review of [31] and references therein. Other reviews about boson
stars cover their astrophysical relevance [139], formation scenarios [140] or relevance for dark mat-
ter [139] such as, e.g., the axion [141] (see Chapter 4.3).

Boson stars have been formulated on scales ranging from ultra compact objects to galactic sizes
and are likewise motivated in a wide range of astrophysical and particle-physical scenarios. In this
work, we focus on astrophysical motivations that are relevant in the wider context of dark matter
in neutron stars (although a brief overview of adjacent topics shall be given here as well). We thus
give an overview of some different types of BS and, in the end, focus on the cases most relevant
for this work.
There are a number of proposed ways how BS could form. On large scales, the DM halos of galax-
ies could themselves be considered boson stars, given that the particle constituting the halo is a
boson [31]. On stellar scales, bosonic particles could clump together due to gravity, or accrete onto
stars and then form boson stars inside them [1, 20]. If the accreting boson is a DM candidate, the
amount of accreting material would depend on the local DM density as inferred from the galactic
rotation curve of the host galaxy. Another widely considered formation channel is that of gravita-
tional collapse of local over-dense regions of bosons in the early universe [140]. In this case, boson
stars could serve as a kind of MACHOS. Other formation scenarios are motivated through modified
gravity [31]. For example, boson stars could form around black holes due to superradiance [29].
Superradiance is a process included in some theories of modified and quantum gravity through
which rotational energy of a rotating (Kerr) BH can be transferred into a scalar (or vector) field,
then forming a boson star as a cloud around the BH. A closely related type of objects are gravita-
tional atoms [142, 143], an accumulation of a scalar field with discrete energy levels around a BH,
which take their name from mathematical similarities to the orbital model describing electrons
around atomic nuclei. Yet another process to produce a large enough abundance of scalar field
is spontaneous scalarization, which is present in some theories of modified gravity such as TeVeS
theory [121] (see Chapter 4.3) or in general scalar-tensor theories [32, 144, 145, 146, 147]. These
theories feature a scalar field (or multiple scalar fields), which is used as a parameter alongside a
spacetime metric to describe the dynamics of gravity. By virtue of the Einstein equations, this
field can however either be interpreted as a modification to curvature or as an additional term to
the energy-momentum tensor. Spontaneous scalarization in these theories is a process in which
the scalar component of the gravity theory can be dynamically produced and then transition to a
non-trivial localized configuration. The scalar field itself could then form a BS since it is mathe-
matically equivalent to the fields used to describe boson stars [31].

Depending on the formation scenario and the specific BS model used, a number of astrophysical
consequences regarding boson stars arise [31]. They can be relevant on astrophysical scales such
as in main-sequence stars and in compact objects, if for example the bosonic component accretes
over time and settles inside the gravitational well of the host object. This capture of bosonic
DM in NS has been studied in the past [148]. It can also be constrained by studying the capture
and annihilation rates of hypothesized bosonic particles [21]. Boson stars can also be used as a
way to describe dark matter clouds or accumulations of bosonic DM – either as single coherent
galaxy-sized configurations to, e.g., explain galactic rotation curves at large [149, 150, 151, 152]
and small [153, 154] distances, or as smaller objects so that the DM halo consists of many smaller

25



Theoretical Background · Boson Stars

boson stars [31, 155].
BS are also studied in the context of black hole mimickers [31, 156]. Since in general, boson
stars do not interact with light (unless a coupling to electromagnetism is explicitly included) and
do not have a hard surface, they could serve as an alternative explanation for highly localized
compact objects such as black holes [31]. Some BS configurations also feature photon spheres
around them, which is otherwise seen as a characteristic feature of black hole spacetimes [157].
According to a number of simulations [17, 156, 158], they would however show distinguishable
torus accretion dynamics compared to black holes. Since BS do not have an event horizon, matter
could accumulate in the centre of boson stars, leaving clear imprints of radiating matter inside
the BS [159, 160, 161], for example in form of thermal or X-ray radiation [162]. Due to their
non-emissivity of light, the absence of an event horizon, and their ability to cover wide ranges of
mass and compactness, BS have also been studied as an option for supermassive black holes in
the galactic centres [163]. In fact, realistic models of rotating boson stars have shown that they
can produce shadow images [161, 164, 165] that are close to the images obtained of M87* [166]
and Sgr A* [167] using the Event Horizon Telescope (EHT). In Figure 7, two shadow images from
a Kerr black hole and from a rotating boson star as expected from the EHT are shown. Due
to the similarity between those images, it might be difficult to definitely rule out boson stars as
alternatives to black holes.

Figure 7: Comparison between the shadow images as would be seen by the EHT, computed for a highly
rotating Kerr black hole (left) and a rotating boson star (right) each surrounded by an accretion torus
[161]. The x- and y-axis show the angular sizes of these objects as seen from Earth if they were placed
at the same position as Sgr A* in the centre of the Milky Way galaxy. The similarity in these images
suggests that ruling out boson stars in the centre of galaxies might prove difficult using shadow images
alone. The figures were taken from [161] and slightly adapted for use in this work.

Nevertheless, a boson star will always differ from a black hole because it has a non-zero tidal
deformability [1, 31, 168]. Due to their tidal deformation, they would produce a distinct signal
in binary mergers [169, 170, 171]. Thus, boson stars could also serve as a source for gravitational
waves. An example for possible GW signals of boson stars is given in Figure 8. If admixed with
neutron stars, they could also significantly change the tidal properties of the neutron star [1]. Then,
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through the comparison of measured GW signals to computed GW waveforms of (inspiralling)
boson stars, one can constrain the parameters of the boson star such as the boson mass and self-
interaction [1, 46, 172] or coupling parameters of specific theories of modified gravity [31], in which
boson stars arise. Boson stars could also serve as a part in a gravitational wave background [173],
if they are numerous and massive enough.

Figure 8: Left panel: Gravitational wave signal, as represented by the l = m = 2 mode of the Newman-
Penrose scalar Ψ4, as a function of time, emitted during the head-on collision of (different types of) two
boson stars. All configurations eventually collapse into a BH. The GW signal from a BH-BH collision is
shown as a reference. The boson star signals are seen to differ significantly from the black hole signal, since
the scalar fields interact before the collision. For more information about the models used, refer to [174].
Figure was taken from [174]. Right panel: GW strain (i.e the GW amplitude) for the event GW190521
as seen from the LIGO Livingston GW detector, together with the best fitting waveforms for a head-on
merger of two black holes (green), two Proca stars (i.e boson star with a vector field) of equal (q = 1) and
unequal (q ̸= 1) masses (red and blue respectively) and for a quasi-circular BH merger (black). Here, the
GW signals from boson stars produce a similar waveform to the BH case. Figure was taken from [175].

Boson stars were first conceived by [40] and [41]. Mathematically, boson stars are described using
a complex scalar field ϕ(xµ) ∈ C coupled minimally to gravity (see [31] for a more detailed review).
The resulting system of equations are the Einstein-Hilbert-Klein-Gordon (EHKG) equations. Since
the Klein-Gordon equation is a wave equation, it will lead to a dispersion of the scalar field. Boson
stars thus can also be understood as a system where the natural dispersion of the field is balanced
by its self-gravity. The EHKG equations are sourced from the Lagrangian

S =

∫
M

√
−g

(
1

2κ
R−∇αϕ̄∇αϕ− V (ϕ̄ϕ)

)
dx4 , (22)

where R is the Ricci curvature scalar, g is the determinant of the spacetime metric gµν , κ = 4πG/c4

is a constant and the integral is performed over the whole spacetime manifold M. ϕ and ϕ̄ are the
scalar field and its complex conjugate respectively and V (ϕ̄ϕ) is the potential depending only on
the magnitude of the scalar field. By construction, the action (22) is invariant under a global U(1)-
transformation (i.e. multiplication by a complex phase ϕ → ϕeiδ) of the field. The corresponding
equations of motion for the spacetime can be obtained by computing the variation with respect to
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the inverse spacetime metric δgµν :

Gµν =κT (ϕ)
µν ,

T (ϕ)
µν =∂µ ϕ̄∂νϕ+ ∂µϕ∂ν ϕ̄− gµν

(
∂α ϕ̄∂

αϕ+ V (ϕ̄ϕ)
)
.

(23)

Here Gµν is the Einstein tensor and T
(ϕ)
µν is the effective energy-momentum tensor of the scalar

field. Equation (23) therefore describes the coupling of the energy-momentum content of the scalar
field to gravity. The equation of motion for the scalar field is obtained by varying equation (22)
with respect to the scalar field ϕ (and analogously for its complex conjugate ϕ̄):

∇µ∇µϕ = V ′(ϕ̄ϕ)ϕ , with V ′(ϕ̄ϕ) :=
dV

d|ϕ|2
. (24)

According to Noether’s theorem, each continuous symmetry admits a conserved quantity. The
invariance of the Lagrangian (22) under U(1)-symmetry thus implies the existence of a Noether
current (see [1, 31]):

jµ = i gµν
(
ϕ̄∇νϕ− ϕ∇νϕ̄

)
. (25)

The conserved quantity (i.e. the Noether charge) associated with the Noether current is obtained
by integrating it over space:

Nb :=

∫ √
−ggtµjµdx

3 . (26)

Nb is called the boson number and is related to the total number of bosons present in the system.
Equivalently, it can also be interpreted as the total restmass energy of the boson star.
There is a large variety of different types of boson stars that have been studied (see [31] for a more
complete overview). They can be formulated using multiple fields, have rotation, or even have an
electric charge. Boson stars have also been studied in Newtonian gravity, in modified theories of
gravity, or without gravity at all (in this case they are sometimes called Q-balls). We here focus
on boson stars in the context of general relativity. In general, however, boson star solutions are
characterized by the potential V (ϕ̄ϕ) that they have. The simplest case is that of the potential
consisting of a mass term V (ϕ̄ϕ) = m2ϕ̄ϕ (m being the boson mass). Such boson stars are often
called mini boson stars due to their maximum mass of the order Mmax ≈ 0.633M2

p/m (where Mp

is the Planck mass) being much smaller than the maximum mass MCh ≈ M3
p/m

2 (Chandrasekhar
mass) found for stars made out of fermions [31]. Boson stars made out of axions – axion stars
– have also been proposed. In that case, the potential describing axions takes the form of the
instanton potential [31, 141]

V (ϕ) = (mafa)
2 |1− cos (ϕ/fa)| , (27)

where ma is the mass of the axion, fa is the axion symmetry breaking scale and ϕ is the scalar field
describing the axion. For more information about axion stars, we refer to the review [141]. One of
the ways to increase the maximum total mass of mini boson stars is to generalize the potential by
including self-interactions. To retain the U(1)-symmetry, all additional terms must be functions
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of the magnitude ϕ̄ϕ = |ϕ|2. The simplest option is then to include a quartic self-interaction term
with the self-interaction parameter λ:

V (ϕ̄ϕ) = m2ϕ̄ϕ+
λ

2
(ϕ̄ϕ)2 . (28)

In this case the maximum mass increases to Mmax ≈ 0.22
√
ΛintM

2
p/m [31, 48] for large Λint :=

λ/8πm2. Other potentials with even higher orders in ϕ̄ϕ were considered in the past, such as the
sixth-order soliton potential (see [31, 176, 177]). The fourth-order potential (28) however remains
perhaps the most interesting scalar field potential, especially in a particle-physics context. This is
due to it also being able to describe a fundamental scalar particle in a renormalizable scalar field
theory. In this work, in accordance to [1], we restrict our study to the potential (28) with a mass
term and a quartic self-interaction term.

To solve the boson star equations, a harmonic phase ansatz is used for the scalar field:

ϕ(xµ) = ϕ(xi)e−iωt , (29)

where the time-dependence was made explicit through a complex phase with frequency ω and
the amplitude depends solely on the spatial coordinates. Although this makes the field explicitly
time-dependent, since the energy-momentum tensor (23) is only dependent on the absolute value
of the scalar field and its gradients, the final solution for the spacetime metric will not depend on
time. The reasoning behind this ansatz is Derrick’s theorem [31, 178], which states that no regular,
static, localized scalar field configuration can exist in three (spatial) dimensional flat spacetime.
Derrick’s theorem has since been generalized to disallow static scalar field configurations without
Noether charges [179] and to hold when including general relativity [180]. This constraint is thus
avoided by adopting the harmonic ansatz (29) for the complex scalar field and by working with
gravity.
The equations of motion for the boson star with generic potential V (ϕ̄ϕ) are (23) and (24). They
can be solved when assuming a spherically symmetric metric (i.e. making the same ansatz as in
(4) for the metric)

ds2 = gµνdx
µdxν = −α2(r)dt2 + a2(r)dr2 + r2dθ2 + r2 sin2(θ)dφ2 , (30)

and a spherically symmetric scalar field (i.e. substituting ϕ(xi) → ϕ(r) in (29)) and be cast into
the following system of differential equations (see e.g. [31])

a′ =
da

dr
=

a

2

[
(1− a2)

r
+ 8πra2

(
ω2ϕ2

α2
+

ϕ′2

a2
+ V (ϕ̄ϕ)

)]
, (31a)

α′ =
dα

dr
=

α

2

[
(a2 − 1)

r
+ 8πra2

(
ω2ϕ2

α2
+

ϕ′2

a2
− V (ϕ̄ϕ)

)]
, (31b)

ϕ′′ =
d2ϕ

dr2
=

[
a2V ′(ϕ̄ϕ)− ω2a2

α2

]
ϕ+

[
a′

a
− α′

α
− 2

r

]
ϕ′ . (31c)

Here V ′ is defined as in (24). The boundary conditions for the system (31a)-(31c) are obtained by
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imposing asymptotic flatness at r → ∞ and regularity at the origin (i.e. no divergence at r → 0):

lim
r→∞

a(r) = 1 , a(0) = 1 ,

lim
r→∞

α(r) = 1 , α(0) = α0 ,

lim
r→∞

ϕ(r) = 0 , ϕ(0) = ϕc ,

lim
r→∞

ϕ′(r) = 0 , ϕ′(0) = 0 .

(32)

Asymptotic flatness requires tuning the initial condition for α0 to some finite non-zero value.
However, since the system of equations (31a)-(31c) is invariant when re-scaling the frequency to
ω̃ = ωα0, it is possible to absorb the initial value for α0 so that α(0) may be set equal to one.
After integrating the equations, one can obtain the physical value of ω by performing the inverse
transformation back to ω using the asymptotic value for α(r → ∞) (see also [1]).
The only parameter which is not directly constrained by the equations of motion (31a)-(31c) is
the scalar field frequency ω. For a given value of ϕc, one has to adjust the value of ω so that the
boundary conditions (32) are fulfilled. This requires tuning ω to specific quantized values, which
are called modes. These modes are characterized by the amount of zero-crossings (i.e. radial
positions with ϕ(r) = 0) the field ϕ(r) has before eventually converging to zero at infinity. This
can be done using a shooting-algorithm, where the system of equations (31a)-(31c) is integrated
until the matching value for ω is found (also see [1, 31] for more information). In the left panel of
Figure 9, an example for radial scalar field profiles of different modes of a boson star is shown.

Figure 9: Left panel: Radial scalar field profiles of the zeroth, first and second mode of a boson star
described by equations (31a)-(31c), where the potential V (ϕ̄ϕ) = m2ϕ̄ϕ corresponds to that of a mini-
boson star. The scalar field mass is m = 1.34 · 10−10 eV . The field is seen to asymptotically reach zero
from positive (negative) values for even (odd) modes. Right panel: The first two modes of a Proca star
with potential V (AµĀ

µ) = m2AµĀ
µ where m = 1.34 · 10−10 eV . The radial profiles show the vector field

components At = E(r) and the Ar = iB(r). In contrast to boson stars with a scalar field, the lowest mode
of a Proca star always has one zero-crossing in the E(r) component. Both E(r) and B(r) asymptotically
approach zero from negative (positive) values for even (odd) modes.

As is the case for neutron stars (see eq. (9)), it is also possible to define the total gravitational
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mass of a boson star. However, boson stars do not have a clearly defined surface because the scalar
field only asymptotically goes to zero (see (32)). The total gravitational mass can thus only be
defined in the limit of large radii:

Mtot := lim
r→∞

r

2

(
1− 1

(a(r))2

)
. (33)

Although a surface does not exist, the radius of a boson star Rb is often defined as the radius, in
which 99% of the restmass (i.e. boson number (26)) is included (see e.g. [37]).

Just as boson stars with a scalar field can be thought of as condensates of spin-08 bosonic particles,
condensates of spin-1 particles have been conceived as well [31]. These objects are called Proca
stars (PS) and are modelled by a complex vector field Aµ(x

µ) ∈ C and were first proposed by [42].
The corresponding action is the Proca action which is coupled minimally to gravity

S =

∫ √
−g

(
1

2κ
R− 1

2
Fµν F̄

µν − V (AµĀ
µ)

)
dx4 , (34)

where Fµν = ∇µAν − ∇νAµ is the field strength tensor and V (AµĀ
µ) is the vector field poten-

tial that depends solely on the magnitude AµĀ
µ. Most of the concepts established for boson

stars with a scalar field also apply to Proca stars, such as the existence of a conserved Noether
current due to the global U(1)-symmetry and the presence of quantized frequency modes due to
the harmonic time-dependence. An example of radial profiles of a Proca star with the potential
V (AµĀ

µ) = m2AµĀ
µ is shown in Figure 9. It can be seen that, in contrast to boson stars, Proca

stars have no mode where the field components do not cross zero.
Although being relatively new as a concept, Proca stars have been studied by a number of groups
analytically [181, 182, 183] and numerically [184], such as in merger simulations [175, 185]. Dif-
ferent types of Proca stars with charge [186] and rotation [42] were also considered. Other works
[164, 165, 187] studied shadow images of Proca stars in different scenarios (similarly to Figure 7).
Proca stars with a quartic self-interaction potential [188] were also studied. It was found that
the maximum Proca star mass scales like Mmax ≈

√
Λint ln(Λint)M

2
p/m, for large self-interaction

strengths Λint := λ/8πm2. This is different to boson stars.

As we have seen, boson stars and Proca stars are interesting objects to study in a variety of
physical scenarios. Especially in the context of dark matter, these objects can provide quantitative
measures to probe the dark matter mass and self-interaction parameters. In astrophysical scenarios
it is likely that dark matter might not accumulate and self-gravitate solely by itself, but that it
forms alongside baryonic matter. If for example a neutron star accumulates a significant amount
of bosonic dark matter particles, the presence of DM might change the NS properties. A combined
system of a boson star and a neutron star would subsequently form. We dedicate the remainder
of this work to study these combined systems of fermions (e.g. neutrons, quarks) and bosons (e.g.

8The reason why spin-0 and spin-1 particles are described using Lorentz scalar and vector fields respectively is
due to the spin representations of the rotational part of the Lie-algebra of the Lorentz group SO(3, 1). The Lorentz
group is the fundamental symmetry group of general and special relativity. The transformation properties of a field
under the Lie-algebra so(3, 1) can be related to its quantum-mechanical spin. Scalar fields transform under the
(0, 0) representation and vector fields under the ( 12 ,

1
2 ) representation.
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bosonic DM), called fermion boson stars. We will especially investigate how the presence of a
bosonic field affects the NS properties and how this can be used to infer the boson properties.
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5 Fermion Boson Stars

Building upon the knowledge introduced in Chapter 4, this chapter is dedicated to fermion boson
stars (FBS). Fermion boson stars are mixed systems of bosons and fermions, that can be seen
as a boson star that coexists with a neutron star at the same location in space. This chapter
as a whole aims to build the analytical framework of fermion boson stars. First in Chapter 5.1
we will consider the physical motivation behind FBS and introduce mechanisms through which
they might form. The part about fermion boson stars with a scalar field (Chapter 5.2) is built
in large parts upon [1]. We discuss the formulation and derivation of the equations of motion of
the Einstein-Hilbert-Klein-Gordon system, including how to compute the tidal deformability of
FBS. The following chapter 5.3 about fermion Proca stars (FPS) – i.e. fermion boson stars with
a vector field – is completely original to this work. In addition to the theoretical framework, some
analytical results constraining FPS will be discussed as well.

5.1 Motivation and Formation

The idea that an astrophysical object consists of a mixture of fermionic and bosonic matter goes
back to [35, 36]. Since then, a multitude of different models of these fermion boson stars (FBS) have
been investigated (see e.g. [21, 31, 189, 190, 191] for reviews). In the simplest case, the fermionic
and bosonic components interact only gravitationally (i.e. they are minimally coupled), which is
why FBS are regarded as interesting objects in the context of dark matter (DM) research (see e.g.
[1, 37, 43]). Fermion boson stars have been studied in connection to neutron stars (NS), where the
NS provides the fermionic component and a bosonic field provides the bosonic component of the
FBS [1, 37]. In that sense, FBS are also related to boson stars (see Chapter 4.4), since the bosonic
component can be modelled via scalar and vector fields. FBS have been studied with regard to
their stability [36] and their dynamical properties were explored as well [38, 39, 192, 193, 194, 195].
Numerical simulations aiming to understand the gravitational wave (GW) signals have also been
done [195]. In all these cases, the NS component was modelled using a perfect fluid for the nuclear
matter and a classical complex scalar field was used for the bosonic component. To our knowledge,
no study of FBS with a vector field for the bosonic component has been done to date.

A number of processes have been proposed with regard to their formation (see e.g. references in
[1]), but the problem in essence is how one can accumulate a large amount of scalar (vector) field
in and around a neutron star. One large motivator is bosonic dark matter. It is possible that
neutron stars could accumulate DM in a sufficient abundance to modify their observables, such as
the mass, radius, and tidal deformability. This would make FBS an adequate description of NS
with admixed DM and could be used to constrain DM properties such as its mass and its self-
interaction strength (see e.g. [1, 22, 44, 189, 196]) on various scales (see Figure 6). Dark matter
could arrange itself around neutron stars as a cloud or inside neutron stars as a core. Neutron
stars with DM cores could form

1) from an initial DM ’seed’ through accretion of baryonic matter [1, 17, 18, 19],

2) through mergers of neutron stars and boson stars [1],

3) through accretion of DM onto a NS and subsequent accumulation in the centre [1, 20, 21,
22, 23],
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4) through the decay of standard model (SM) particles inside the neutron star into DM [24, 25,
26, 27, 28].

Neutron stars with clouds could form in a similar way, given that either the dark matter is the
dominant contribution to the FBS or that the DM properties only allow low-compactness config-
urations (e.g. when the particle mass is small [1]). The fermionic and bosonic components could
conceivably be separated from one another e.g. during a supernova NS-kick [197, 198, 199, 200],
where the stellar remnant gets ejected and rapidly moves away from the remaining stellar envelope.
The dark matter particles most interesting for fermion boson stars are generally (self-interacting)
ultralight DM (ULDM) particles, various WIMP candidates, dark photons [15, 16] (as a candidate
for vector DM) and axions (see Chapter 4.3).
Another formation channel is motivated through theories of modified gravity. As was already
established in Chapter 4.4, one way of producing large amounts of scalar (or vector) fields is su-
perradiance [29, 30]. Likewise, spontaneous scalarization [31, 32] provides a way of producing
significant scalar [31, 201] and vector9 [33, 34] field amplitudes as well. Spontaneous scalarization
has also been studied explicitly in neutron stars [32, 202, 203] and could be a way of forming FBS
with scalar and vector fields. In addition, scalarization might take place dynamically in the late
stages of the evolution of binary NS systems [204], forming either a black hole or an FBS after
merger (depending e.g. on the initial masses of the binary objects).

Be it bosonic dark matter or a bosonic field predicted by some theory of modified gravity, the
possibilities and formation channels of FBS with scalar and with vector fields are vast. The
study of FBS can thus reveal a large amount of knowledge about the underlying theories. In
particular, FBS can be used to constrain the properties of underlying theories using measurements
of macroscopic quantities of FBS – such as their masses, radii and tidal deformabilities. It is
therefore crucial to develop a theoretical framework through which these objects can be described.
In the next chapters, we will develop the mathematical framework to describe fermion boson stars
self-consistently.

5.2 Scalar Fermion Boson Stars

Fermion boson stars (FBS) are combined systems of fermions and (scalar) bosons, which interact
only gravitationally. We will take the bosonic field to describe dark matter (DM) from here
onwards. We model FBS using a complex scalar field for the DM component and neutron matter
for the fermionic component. We here follow the derivations by [1] but adapt our conventions and
notation to be consistent within this work. The action describing FBS is the combination of the
Einstein-Hilbert-Klein-Gordon (EHKG) system (see eq. (22)) minimally coupled to nuclear matter
(see eq. (1)):

S =

∫
M

√
−g

(
1

2κ
R−∇αϕ̄∇αϕ− V (ϕ̄ϕ)− Lm

)
dx4 , (35)

where R is the Ricci curvature scalar, g is the determinant of the spacetime metric gµν , κ = 4πG/c4

is a constant and the integral is performed over the whole spacetime manifold M. Lm is the
9In the case of vector fields, the process is also called spontaneous vectorization.
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Lagrangian describing nuclear matter and V (ϕ̄ϕ) is the potential depending only on the magnitude
of the scalar field. By taking the variation of (35) with respect to the inverse spacetime metric
δgµν , one obtains the Einstein equations

Gµν =κ
(
T (NS)
µν + T (ϕ)

µν

)
, (36)

where T
(NS)
µν and T

(ϕ)
µν are the energy-momentum tensors describing the neutron star matter and

the scalar field matter respectively. The energy-momentum tensor of the neutron star matter,
which is defined in equation (3), is assumed to be that of a perfect fluid

T (NS)
µν = (e+ P )uµuν + Pgµν , (37)

where P and e are the pressure and the energy density of the fluid respectively, where the energy
density e is related to the restmass density ρ through e = ρ(1 + ε) with ε being the internal
energy. uµ is the four-velocity of the fluid. The energy-momentum tensor (37), as well as the fluid
flow Jµ := ρuµ, are conserved (signifying conservation of energy-momentum and of the restmass
respectively) which leads to the conservation equations

∇µT
µν
(NS) = 0 , ∇µJ

µ = 0 . (38)

The conservation of the fluid flow Jµ allows us to define the conserved total restmass of neutron
matter, which we call the fermion number Nf . We obtain the fermion number by integrating the
right part of (38) over space:

Nf :=

∫ √
−g gtµJµdx

3 . (39)

Note that this expression is identical to (10), validating the interpretation of Nf as the total
restmass. The energy-momentum tensor for the scalar part is given by

T (ϕ)
µν =∂µ ϕ̄∂νϕ+ ∂µϕ∂ν ϕ̄− gµν

(
∂α ϕ̄∂

αϕ+ V (ϕ̄ϕ)
)
. (40)

The equations of motion (Klein-Gordon equations) of the scalar field are computed from the action
(35) using the Euler-Lagrange equations for a complex scalar field:

0 =
δL
δϕ̄

−∇µ
δL

δ(∇µϕ̄)
and 0 =

δL
δϕ

−∇µ
δL

δ(∇µϕ)
. (41)

One then obtains the equations of motion for the field and the complex conjugate:

∇µ∇µϕ = V ′(ϕ̄ϕ)ϕ and ∇µ∇µϕ̄ = V ′(ϕ̄ϕ)ϕ̄ , (42)

where the derivative of the potential V ′(ϕ̄ϕ) is defined as

V ′(ϕ̄ϕ) :=
dV

d|ϕ|2
. (43)

The equations (42) directly imply that the energy-momentum tensor of the scalar field (40) is sep-
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arately conserved from the perfect fluid energy-momentum tensor (37). Since the Lagrangian (35)
is invariant under a global U(1)-symmetry transformation of the scalar field ϕ (and ϕ̄), Noether’s
theorem gives rise to a conserved Noether current

jµ = i gµν
(
ϕ̄∇νϕ− ϕ∇νϕ̄

)
. (44)

The conserved quantity (i.e. the Noether charge) associated to the Noether current (44) is obtained
by integrating the conservation equation ∇µj

µ = 0 over space:

Nb :=

∫ √
−ggtµjµdx

3 . (45)

Nb is called the boson number and is related to the total number of bosons present in the system.
It can equivalently also be interpreted as the total restmass energy of the scalar component of the
FBS. We also define the bosonic radius Rb as the radius, at which 99% of the bosonic restmass
energy (Nb) is included.

We proceed by solving the equations of motion (36) and (42) for spherically symmetric configu-
rations in equilibrium. For that, we consider the spherically symmetric ansatz for the spacetime
metric

ds2 = gµνdx
µdxν = −α2(r)dt2 + a2(r)dr2 + r2dθ2 + r2 sin2(θ)dφ2 . (46)

We further consider the perfect fluid to be static, such that the four-velocity can be written as

uµ =

(
− 1

α
, 0, 0, 0

)
, uµ = (α, 0, 0, 0) . (47)

For the scalar field, we use the harmonic phase ansatz detailed in Chapter 4.4:

ϕ(t, r) = ϕ(r)e−iωt , (48)

where ω is the field frequency. Using the spherical symmetric metric ansatz (46) together with
the harmonic phase ansatz (48) for the scalar field, we solve the Einstein equations and obtain the
equations of motion. One quickly sees that the φφ-component and the θθ-component of (36) differ
only by a factor sin2(θ) and therefore are linearly dependent. By re-arranging the tt-component
of (36), one obtains an expression for the radial derivative of a(r). By adding the tt- and rr-
components of (36) in a certain way,

Gtt
1

α2
+Grr

1

a2
= 8π(TNS

tt + T ϕ
tt)

1

α2
+ 8π(TNS

rr + T ϕ
rr)

1

a2
, (49)

we find a direct relation between the first radial derivatives of a(r) and α(r), using which we
can solve for α(r). Using the Klein-Gordon equation (42) results in an equation describing the
radial dependence of the bosonic field. It does not matter which equation of (42) is used since,
due to the chosen ansatz for the field, the complex phase will cancel out and will leave only the
purely radial part ϕ(r) in both cases. Finally, the r-component of the conservation equation for
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the energy-momentum tensor (left side of (38)) provides a differential equation for the pressure
P . We find the full system of equations describing a radially symmetric static fermion boson star
with a complex scalar field

a′ =
da

dr
=

a

2

[
(1− a2)

r
+ 8πra2

(
e+

ω2ϕ2

α2
+

Ψ2

a2
+ V (ϕ̄ϕ)

)]
, (50a)

α′ =
dα

dr
=

α

2

[
(a2 − 1)

r
+ 8πra2

(
P +

ω2ϕ2

α2
+

Ψ2

a2
− V (ϕ̄ϕ)

)]
, (50b)

Ψ′ =
dΨ

dr
=

[
a2V ′(ϕ̄ϕ)− ω2a2

α2

]
ϕ+

[
a′

a
− α′

α
− 2

r

]
Ψ , (50c)

ϕ′ =
dϕ

dr
= Ψ , (50d)

P ′ =
dP

dr
= − [e+ P ]

α′

α
, (50e)

where V (ϕϕ̄) is the scalar field potential and the variable Ψ(r) := ϕ′(r) (see eq. (50d)) was defined
to obtain a system of first-order ordinary differential equations. Primes denote derivatives with
respect to the radial coordinate r. This system of equations is closed by providing an EOS P (e) (or
P (ρ, ε)) for the nuclear matter part. Plugging in the quartic self-interaction potential (28) gives
the same equations as in [37], except for a different normalization of the field ϕ, which differs by a
factor of

√
2. For the considered system and ansatz (46) and (48), the expressions for the fermion

number (39) and boson number (45) simplify to

Nf =4π

∫ Rf

0

aρr2dr , (51a)

Nb =8π

∫ ∞

0

aωϕ2

α
r2dr . (51b)

Here Rf denotes the fermionic radius, which is determined by the radial position at which the
pressure P of the neutron star component reaches zero. This is also the radius relevant to elec-
tromagnetic observations, as only the neutron matter component can be observed visually (by
virtue of dark matter not interacting with photons). As is the case for pure boson stars, the
total gravitational mass can only be defined in the limit of large radii, imposing that the solution
asymptotically converges to the Schwarzschild solution:

Mtot := lim
r→∞

r

2

(
1− 1

(a(r))2

)
. (52)

In order to integrate the equations (50a)-(50e), it is still necessary to provide suitable initial
conditions. By imposing asymptotic flatness at r → ∞ and regularity at the origin (i.e. no
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divergence at r → 0), we obtain [1, 37]

lim
r→∞

a(r) = 1 , a(0) = 1 ,

lim
r→∞

α(r) = 1 , α(0) = α0 ,

lim
r→∞

ϕ(r) = 0 , ϕ(0) = ϕc ,

lim
r→∞

Ψ(r) = 0 , Ψ(0) = 0 ,

ρ(r > Rf) = 0 , ρ(0) = ρc .

(53)

Since the scalar field frequency ω is not directly constrained by the equations of motion (50a)-(50e),
it is necessary to tune its value to specific quantities, corresponding to the modes of the boson star
component (see the discussion on the boundary conditions of boson stars in Chapter 4.4). The
same scaling argument for the scalar field as used in Chapter 4.4 holds here, which is why setting
the initial condition α(0) = 1 is possible for FBS as well (see the discussion after eq. (32)). The
difference between boson stars and FBS is that the initial condition of the NS component (i.e. the
central restmass density ρc) must be specified for FBS in addition to the central field amplitude ϕc.

Every FBS solution is characterized by the initial values for the central density ρc and the central
value of the scalar field ϕc. The question of the stability of FBS thus naturally arises, if one wants
to study them in astrophysical contexts. In the case of pure boson stars and neutron stars, their
stability to radial perturbations has been extensively studied in the past [31] and is now well known:
The stable and unstable solutions are separated by the point at which the total gravitational mass
reaches its maximum with regard to the central density ρc (for NS) and the central scalar field ϕc

(for BS). For example, this makes the NS to the left of the maximum in the MR curves in Figure 1
(left panel) unstable under radial perturbation.
Since FBS are two-parameter solutions, the stability criterion needs to be modified. It was first
presented for FBS by [205] (also see [31] for a review), although the criterion is more general
and can also be applied to systems of two gravitationally interacting fluids. The idea behind the
generalized stability criterion is to find extrema in the total number of particles (fermion number
Nf or boson number Nb) for a fixed total gravitational mass, depending on the central values ρc
and ϕc. The transition between stable and unstable configurations is given by the point at which

dNf

dσ
=

dNb

dσ
= 0 , (54)

where d/dσ denotes the derivative in the direction of constant total gravitational mass. Up to a
normalization factor, (54) can be written as

dNf

dσ
∝ −∂Mtot

∂ρc

∂Nf

∂ϕc

+
∂Mtot

∂ϕc

∂Nf

∂ρc
. (55)

If one is only interested in the precise points where FBS become unstable, the unspecified normal-
ization factor in (55) becomes irrelevant, since the whole relation is set to zero. In summary, the
stability criterion (54) can be used to discriminate between astrophysically stable FBS solutions
and unstable solutions. When perturbed, unstable solutions will either (also see [31]) collapse to
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a black hole, dissipate to infinity (especially in the case of the scalar field) or migrate to a stable
solution through internal re-configuration.

We proceed by deriving the tidal deformability of FBS as was first presented by [1]. Thereby we
follow the same procedure as was used in [93] to obtain the tidal deformability for pure NS (also see
Chapter 4.2), and then combine the method with the one applied to pure boson stars [206, 207].
The matter and gravitational field are first expanded around a static and spherically symmetric
configuration. Then, these expansions are inserted into the equations of motion describing the FBS
(Einstein equations and the Klein-Gordon equations) to obtain a system of differential equations
that allows to solve for the linear perturbations, from which we then extract the tidal deformability.

Similar to the derivation of the tidal deformability of NS (see Chapter 4.2), we start by considering
an external quadrupolar tidal field Eij acting on the FBS. This tidal field induces a quadrupolar
moment Qij as a response, such that at linear order it can be written as Qij = −λtidalEij , where λtidal

is the tidal deformability. The induced quadrupolar moment modifies the gtt metric component.
At leading order in the asymptotic rest frame of the FBS and at large radii, it can be written as

gtt = −
(
1− 2M

r

)
− Eij xixj

(
1 +

3λtidal

r5

)
, (56)

where M is the total gravitational mass of the FBS and the xi are the position vectors in a
Cartesian coordinate system with xixi = r2. We now consider small perturbations on top of the
spacetime metric and the scalar field. For the metric, we consider a small perturbation hµν on top
of the unperturbed metric gµν (46) such that

gµν = gµν + hµν . (57)

For the static, even-parity and quadrupolar (l = 2) metric perturbations in the Regge-Wheeler
gauge, hµν can be written in terms of the spherical harmonic Y20(θ, φ) and radial functions
H0, H2, K which describe the radial dependence of the perturbed metric components:

hµν = Y20(θ, φ)× diag
(
−α2(r)H0(r), a

2(r)H2(r), r
2K(r), r2 sin2(θ)K(r)

)
. (58)

We expand the scalar field in a similar manner by considering small perturbations δϕ on top of
the unperturbed background ϕ such that

ϕ(t, r, θ, φ) = ϕ(t, r) + δϕ(t, r, θ, φ) , (59)

where the unperturbed scalar field background ϕ(t, r) exactly corresponds to the scalar field used
for the static FBS (see eq. (48) and (50a)-(50e)). As was done in [1, 207], we make the following
ansatz for the first-order perturbations of the scalar field

δϕ(t, r, θ, ϕ) = ϕ1(r)
e−iωt

r
Y20(θ, φ) , (60)

where the same time-dependence was chosen for the perturbations in order to ensure that the
energy-momentum tensor remains static. ϕ1(r) describes the radial perturbation of the scalar
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field and fulfils the same role as hµν does for the metric (57). The spherical harmonic Y20(θ, φ) is
chosen since it describes a dipolar deformation, which is present in the case of an external tidal
field. We are now able to obtain a set of differential equations that relates the perturbations to
the background solutions by expanding the Einstein equations (see (36)) and the Klein-Gordon
equation (42) to first order in hµν and ϕ1(r). Inserting the expressions (57) and (59) into equation
(42) and only keeping terms linear in the perturbations results in

ϕ′′
1 =

[
a′

a
− α′

α

]
ϕ′
1 +

[
−ω2 a

2

α2
+ 32πΨ2 + 2ϕ2a2V ′′ + a2V ′ − a′

ra
+

α′

rα
+ 6

a2

r2

]
ϕ1

+

[
ω2rϕ

a2

α2
− rΨ′ +

(
r
a′

a
+ r

α′

α
− 2

)
Ψ

]
H0 ,

(61)

where V ′′ is the second derivative of the potential with the derivative as defined in (43). We
proceed in a similar way with the Einstein equations (36). We insert the perturbed metric (57)
and scalar field (59) and only keep the terms in linear order of the perturbations hµν and ϕ1(r).
We obtain the perturbed Einstein equations

δGµν = 8π
(
δT (NS)

µν + δT (ϕ)
µν

)
. (62)

Here, the perturbed energy-momentum tensor of the fermionic part is given by

δTµν = diag
(
−δP/c2s, δP, δP, δP

)
, (63)

where we used the relationship δe = δP ∂e/∂P = δP/c2s between the energy density e, pressure P
and the local speed of sound in the medium cs (see [1]). The perturbed energy-momentum tensor
of the scalar field δT

(ϕ)
µν is computed by expanding (40) to linear order in hµν and ϕ1(r).

Subtracting the θθ-component from the φφ-component of the perturbed Einstein equations (62)
reveals H2(r) = −H0(r). Adding the θθ-component to the φφ-component allows us to obtain
an expression for δP , which can be substituted into the tt- minus the rr-component to obtain a
differential equation for H0:

H ′′
0 −

[
a′

a
− α′

α
− 2

r

]
H ′

0 (64)

−
[
8πω2ϕ2 a

2

α2

1− c2s
c2s

+ 8πΨ21 + 3c2s
c2s

− 2
α′′

α
+ 2

α′a′

αa
+ 4

α′2

α2
− a′

ra

1 + 3c2s
c2s

− α′

rα

1 + 7c2s
c2s

+ 6
a2

r2

]
H0

= 16π

[
ω2ϕ

a2

rα2

c2s − 1

c2s
+ ϕV ′a

2

r

1 + c2s
c2s

− Ψ′

r

1 + 3c2s
c2s

+Ψ
a′

ra

1 + 3c2s
c2s

+Ψ
α′

rα

c2s − 1

c2s
− 2

Ψ

r2
1 + 3c2s

c2s

]
ϕ1 .

The above equation contains a term depending on the second derivative of the metric component
α′′, which is explicitly given by

α′′ =
4πω2

α

[
2rϕ2aa′ + 2rϕa2Ψ+ ϕ2a2

]
+

[
4πra2

(
−ω2ϕ2

α2
+ P − V +

Ψ2

a2

)
+

a2 − 1

2r

]
α′ (65)

+

[
4πr(2Paa′ − 2V aa′ − 2ϕa2ΨV ′ + a2P ′ + 2ΨΨ′) + 4πa2(P − V ) + 4πΨ2 +

aa′

r
+

1− a2

2r2

]
α .
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As mentioned in [1, 207], for radii larger than the typical size of the combined system, the differ-
ential equation for H0 (64) reduces to

H ′′
0 +

(
2

r
+ a2

2M

r2

)
H ′

0 −
(
6a2

r2
+ a4

4M2

r4

)
H0 = 0 . (66)

This equation (66) has a solution in terms of the associated Legendre polynomials (see [1, 93, 94]),
which can be expanded in r/M and matched to the metric component (56) to obtain an expression
for the tidal deformability:

λtidal =
16

15
M5(1− 2C)2[2 + 2C(y − 1)− y]× {3(1− C)2[2− y + 2C(y − 1)] log(1− 2C)

+ 2C[6− 3y + 3C(5y − 8)] + 4C3[13− 11y + C(3y − 2) + 2C2(1 + y)]}−1 , (67)

where C := Mext/rext is the effective compactness of the FBS, y := rextH
′
0(rext)/H0(rext) and rext

denotes the radial position at which λtidal is calculated. Typically rext is situated at large distances
outside the source. The dimensionless tidal deformability is defined as Λtidal := λtidal/M

5
tot. The

parameter y can be obtained by integrating equation (64), together with the TOV equations (50a)-
(50e), from the centre of the star at r = 0 to the radius r = rext where the integration converges
sufficiently.

We obtain the boundary conditions for the perturbed fields ϕ1(r) and H0(r) with the same pro-
cedure as described in [206]. First, we expand the quantities around the origin (r = 0) such
that

ϕ1(r) =
∑
i=0

ϕ
(i)
1 ri , H0(r) =

∑
i=0

H
(i)
0 ri , (68)

where the coefficients ϕ(i)
1 and H

(i)
0 do not depend on the radius. The expansions are then inserted

into equations (61) and (64). After solving the resulting polynomial equations, the leading-order
behaviour for ϕ1(r) and H0(r) is found to be

ϕ1(r) ≈ ϕ
(3)
1 r3 +O(r5) , H0(r) ≈ H

(2)
0 r2 +O(r4) . (69)

We additionally demand that the perturbation to the scalar field vanishes at large radii (i.e. we
assume asymptotic flatness). This leads to the boundary conditions

lim
r→0

H0 ≈ H
(2)
0 r2 , lim

r→0
H ′

0 ≈ 2H
(2)
0 r ,

lim
r→∞

ϕ1(r) = 0 , lim
r→0

ϕ′
1 ≈ 3ϕ

(3)
1 r2 .

(70)

Since the equations (61) and (64) are invariant under a simultaneous scaling of ϕ1(r) and H0(r)

by a constant, we can fix H
(2)
0 = 1, which only leaves the parameter ϕ

(3)
1 to be determined.

Note that the scaling of H0(r) does not affect the tidal deformability (67), since the parameter
y = rextH

′
0(rext)/H0(rext) is invariant when scaling H0(r) by a constant value. The value of ϕ(3)

1 is
found similarly to the frequency ω by tuning ϕ

(3)
1 so that the boundary conditions (70) are fulfilled.
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We have now a fully developed analytical framework to study FBS, where the bosonic component
is modelled by a complex scalar field. In particle physics, scalar fields describe bosons with spin-0.
The next logical step is thus to consider different types of bosons inside of an FBS. Vector bosons
(spin-1 particles) in particular are interesting candidates as they appear in every gauge theory of
the standard model. Some dark matter candidates, such as the dark photon (see [15, 16, 30]), are
vector bosons as well. If vector bosons were to condensate inside neutron stars, they would form
objects similar to FBS with scalar bosons. The next chapter is dedicated to these systems, which
we call fermion Proca stars (FPS).

5.3 Fermion Proca Stars

For the first time, we present the mathematical framework behind fermion Proca stars (FPS). FPS
are combined systems of fermions and vector bosons, which interact only gravitationally with each
other. Conceptionally, they are similar to fermion boson stars with a bosonic field, in that they
share a number of properties. In particular the physical motivation is similar, as both FBS and
FPS can be seen as a macroscopic Bose-Einstein condensate which coexists inside (or around) a
neutron star (NS) at the same point in space. We model the FPS using a relativistic fluid for the
NS component, and a complex vector field for the bosonic component. The action describing FPS
is the combination of the Einstein-Proca system (34) minimally coupled to a matter term Lm:

S =

∫
M

√
−g

(
1

2κ
R− 1

2
Fµν F̄

µν − V (AµĀ
µ)− Lm

)
dx4 , (71)

where R is the Ricci curvature scalar, g is the determinant of the spacetime metric gµν , κ = 4πG/c4

is a constant and the integral is performed over the whole spacetime manifold M. Fµν = ∇µAν −
∇νAµ is the antisymmetric field strength tensor and V (AµĀ

µ) is the vector field potential that
depends solely on the magnitude of the vector field AµĀ

µ. By taking the variation of (71) with
respect to the inverse spacetime metric δgµν , one obtains the Einstein equations

Gµν =κ
(
T (NS)
µν + T (A)

µν

)
, (72)

where T
(NS)
µν and T

(A)
µν are the energy-momentum tensors describing the neutron star matter and

the vector field matter respectively. The energy-momentum tensor of the neutron star matter is,
analogously to FBS, taken to be that of a perfect fluid (see equation (37)). The conservation
equations for energy-momentum and the restmass (38) apply as well. We also define the fermion
number Nf in the same way as we did for FBS (see eq. (39)). The energy-momentum tensor of
the vector field is given by

T (A)
µν = Fµρ F̄

ρ
ν + F̄µρF

ρ
ν − 1

2
gµνF

ρσF̄ρσ + gµνV (AρĀ
ρ) + V ′(AρĀ

ρ)(AµĀν + AνĀµ) , (73)

where the derivative of the potential V is given by

V ′(AρĀ
ρ) :=

dV (AρĀ
ρ)

d(AρĀρ)
. (74)
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The equations of motion (Proca equations) of the vector field are computed from the action (71)
using the Euler-Lagrange equations for a complex vector field:

0 =
δL
δAµ

−∇µ
δL

δ(∇µAν)
and 0 =

δL
δĀµ

−∇µ
δL

δ(∇µĀν)
. (75)

One obtains the equations of motion for the field and the complex conjugate:

∇µF̄µν = V ′(AρĀ
ρ)Āν and ∇µFµν = V ′(AρĀ

ρ)Aν . (76)

The covariant derivative of (76) being zero – i.e. ∇µ∇νFµν = 0 – leads to a dynamical constraint
on the field derivative, resembling the Lorentz condition used in the Maxwell and Proca equations
(also see [31, 42]):

∇νAν = −
∇ν
[
V ′(AρĀ

ρ)
]

V ′(AρĀ
ρ)

Aν = −∇ν
[
ln
(
V ′(AρĀ

ρ)
)]

Aν . (77)

The global U(1)-symmetry in the Lagrangian (71) under the transformation of the vector field Aµ

(and Āµ) gives rise to a conserved Noether current

jµ = i
(
F̄ µνAν − F µνĀν

)
. (78)

The boson number Nb can be defined analogously to (45) from the conserved Noether current (78).

We proceed by solving the Einstein equations (72) and the Proca equations (76) for spherically
symmetric and static configurations in equilibrium. Exactly as with FBS, we consider the spheri-
cally symmetric metric ansatz (46), which leads to the velocity of the perfect fluid to be (47). For
the vector field, we employ the harmonic time-dependence ansatz and a purely radial vector field
(see [42, 188]), which is similarly motivated as the harmonic phase ansatz for the scalar field (48)
(also see Chapter 4.4). The vector field is given by

Aµ(t, x) = e−iωt(E(r), iB(r), 0, 0) , (79)

where ω is the vector field frequency and E(r), B(r) are purely radial functions (note that E(r)
and B(r) have nothing to do with electromagnetic fields and the similarity in notation is purely
coincidental). Using the metric ansatz

ds2 = gµνdx
µdxν = −α2(r)dt2 + a2(r)dr2 + r2dθ2 + r2 sin2(θ)dφ2 , (80)

together with the field ansatz (79), one can obtain first-order differential equations for the metric
components α(r) and a(r) by following the same algebra steps as explained under equation (48)
in Chapter 5.2. The evolution equations for the vector field components can be computed from
the Proca equations (76). The ν = r component yields the equation of motion for E(r):

E ′ =
dE

dr
= −V ′(AρĀ

ρ)
Bα2

ω
+ ωB . (81)
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Next, we consider the ν = t component of (76) and obtain the equation of motion for B(r):

(E ′′ − ωB′)−
(
a′

a
+

α′

α
− 2

r

)
(E ′ − ωB) = V ′(AρĀ

ρ) a2E . (82)

This equation depends on the second radial derivative E ′′. It is possible to eliminate this depen-
dence by taking the radial derivative of (81) and substituting it into (82). After re-arranging the
resulting equations, one obtains the final evolution equation for B′. A more detailed derivation
with additional in-between steps can be found in Appendix C. Finally, the r-component of the
conservation equation for the energy-momentum tensor (left side of (38)) provides a differential
equation for the pressure P (r). The full equations of motion for the Einstein-Proca system coupled
to matter are thus:

a′ =
da

dr
=

a

2

[
(1− a2)

r
+ 8πra2

(
e+

1

α2a2
(E ′ − ωB)2 + V (AρĀ

ρ) + 2V ′(AρĀ
ρ)
E2

α2

)]
, (83a)

α′ =
dα

dr
=

α

2

[
(a2 − 1)

r
+ 8πra2

(
P − 1

α2a2
(E ′ − ωB)2 − V (AρĀ

ρ) + 2V ′(AρĀ
ρ)
B2

a2

)]
, (83b)

E ′ =
dE

dr
= −V ′(AρĀ

ρ)
Bα2

ω
+ ωB , (83c)

B′ =
dB

dr
=

{
V ′′(AρĀ

ρ)

(
2B2a′

a3
+

2EE ′

α2
− 2E2α′

α3

)
Bα2

ω
− V ′(AρĀ

ρ)

(
a2E +

2Bαα′

ω

)
−
(
a′

a
+

α′

α
− 2

r

)
(E ′ − ωB)

}(
V ′′(AρĀ

ρ)
2

ω

B2α2

a2
+ V ′(AρĀ

ρ)
α2

ω

)−1

, (83d)

P ′ =
dP

dr
= − [e+ P ]

α′

α
. (83e)

This system of equations is closed by providing an EOS P (e) (or P (ρ, ε)) for the nuclear matter
part. Note that all equations are a first-order ODE respectively. This is different to the scalar
field case where the additional variable Ψ(r) (50d) has to be introduced to make the system first-
order. Another difference is that no derivative of the potential enters the equations of motion for
the metric components (50a)-(50b) in the scalar field case, but it does for the vector field case
(83a)-(83b). For the considered system and ansatz for the metric (80) and vector field (79), the
expressions for the fermion number (39) and boson number (45) simplify to

Nf = 4π

∫ Rf

0

aρr2dr , (84a)

Nb = 8π

∫ ∞

0

B
(ωB − E ′)

αa
r2dr . (84b)

Rf denotes the fermionic radius, which is determined by the radial position at which the pressure
P of the neutron star component reaches zero. The total gravitational mass is defined analogously
to FBS (52) in the limit of large radii, imposing that the solution asymptotically converges to the

44



Fermion Boson Stars · Fermion Proca Stars

Schwarzschild solution:

Mtot := lim
r→∞

r

2

(
1− 1

(a(r))2

)
. (85)

In the following, we derive the boundary conditions of equations (83a)-(83e) at r = 0 and at
r = ∞. The values at the origin will later serve as initial conditions for the numerical integration.
We first consider the equations of motion in the limit r → 0 while imposing regularity at the
origin (i.e. the solution must not diverge). We first analyse equation (83a) in this limit. The term
proportional to 1/r will dominate at small radii and will diverge if r → 0. Thus, the only way to
maintain regularity is to set a(r = 0) = 1. It directly follows that a′(r = 0) = 0 and also, by virtue
of equation (83b) that α′(r = 0) = 0. The exact value of α(r = 0) = α0 is a priori undetermined
and can be chosen in a way thought suitable.
The initial conditions for the vector field components E(r) and B(r) can be obtained in a similar
manner. We first consider eq. (83d). In the limit r → 0, the term proportional to 1/r will
dominate and regularity then demands, that E ′ = ωB. It follows immediately that B′(r = 0) = 0.
This result can be inserted into equation (83c), which leads to the relation

E ′ = ωB = −V ′(AρĀ
ρ)
Bα2

ω
+ ωB =⇒ 0 = V ′(AρĀ

ρ)Bα2 . (86)

Since at r = 0, α(r = 0) ̸= 0 and V ′ ̸= 0 in general, this relation can only be fulfilled if we demand
that B(r = 0) = 0. Plugging this new finding back into eq. (83c) yields E ′(r = 0) = 0. The
central value of the field E ′(r = 0) = E0 is therefore undetermined by the equations of motion and
thus is a free parameter of the theory.
A similar analysis at large distances reveals the boundary conditions at r → ∞ for all variables. At
large radii, we impose the flat spacetime limit, which necessitates that a(r → ∞) = α(r → ∞) = 1.
All terms proportional to r in the equations (83a) and (83b) must vanish at infinity to fulfil the flat
spacetime limit. Therefore, the vector field components must vanish at infinity: E(r → ∞) = 0
and B(r → ∞) = 0. Also, pressure P (r) and energy density e(r) must be zero outside of the NS
component of the FPS, as well as the restmass density ρ. In fact, the pressure and energy density
of the neutron star component will become zero at some final radius Rf (the fermionic radius). We
summarize all boundary conditions in the following:

lim
r→∞

a(r) = 1 , a(0) = 1 ,

lim
r→∞

α(r) = 1 , α(0) = α0 ,

lim
r→∞

E(r) = 0 , E(0) = E0 ,

lim
r→∞

B(r) = 0 , B(0) = 0 ,

ρ(r > Rf) = 0 , ρ(0) = ρc .

(87)

The initial condition for the metric component α(0) = α0 is fixed by its behaviour at infinity.
In the case of boson stars, and subsequently FBS with a scalar field, it was possible to scale the
frequency to absorb the initial value of α0 so that it may be set to one (see the discussion after
eq. (32)). We investigate whether a similar scaling relation also exists for the metric component
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α(r) of (fermion) Proca stars. The equations of motion (83a)-(83e) are in fact invariant when
simultaneously scaling the following variables as

α̃ = σα , ω̃ = σω , Ẽ = σE , where σ ∈ R . (88)

The potential V (AρĀ
ρ) is always invariant with respect to the scaling since it is a function of the

magnitude of the vector field AρĀ
ρ. The expression AρĀ

ρ reads

AρĀ
ρ =

(
B2

a2
− E2

α2

)
=

(
B2

a2
− Ẽ2

α̃2

)
. (89)

The invariance of the equations of motion (83a)-(83e) under the scaling relation (88) thus allows
us to chose σ in such a way that the initial condition for α(0) = α0 may be set to α0 = 110. We will
make use of this relation in the numerical analysis. All pre-scaling physical values can be recovered
from the asymptotic behaviour of α(r → ∞) by performing the inverse transformation to (88). In
contrast to the scaling relation of boson stars with a scalar field, where only the frequency ω and
the metric component α are re-scaled, the vector field component E is also affected in the case of
Proca stars. To our knowledge, this is the first time the scaling relation (88) has been mentioned
explicitly. [188] briefly mentioned scaling the frequency but not the vector field component.

We continue the analytical analysis of equations (83a)-(83e) by studying the Proca equations (83c)
and (83d), which govern the dynamics of the vector field. Note that the term in the denominator
of the equation of motion for B(r) (83d) could in some cases lead to singularities. We analyse the
behaviour of the denominator by setting it equal to zero. We obtain:

0
!
= V ′′(AρĀ

ρ)
2B2

a2
+ V ′(AρĀ

ρ) . (90)

This leads to a remarkable behaviour when considering a quartic self-interaction potential V of
the form

V (AµĀ
µ) = m2AµĀ

µ +
λ

2
(AµĀ

µ)2 , (91)

where m is the mass of the vector boson and λ is the self-interaction parameter. When inserting
the potential (91) into (90), one obtains

λ = −m2

(
3B2

a2
− E2

α2

)−1

. (92)

We analyse the behaviour of this expression in the limit r → 0, i.e. we apply the initial conditions
given in equation (87). When inserting B → 0, E → E0 for the vector field components and
a → 1, α → α0 for the metric components, one then obtains a critical value for the central field

10Or one could, in principle, also re-scale E0 to always be equal to one.
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amplitude E0:

E0,crit =
mα0√

λ
. (93)

This expression constitutes an analytical upper bound for the central amplitude of the vector field,
meaning that any FPS with initial conditions for the field larger than E0,crit will be physically for-
bidden, since the ODE (83d) will become singular and diverge. This result matches the analytical
bound found by [188]. Equation (93) can also be rewritten using the dimensionless interaction
parameter Λint = λ/8πm2:

E0,crit =
α0√
8πΛint

. (94)

The relation has as a consequence that for strong self-interaction strengths Λint, the allowed range
for Proca stars becomes increasingly small and vanishes in the limit of very strong interactions.
This fact could conceivably be used to constrain the vector field parameters m and λ, but we leave
a thorough investigation for future work.

In this chapter, we have developed the theory behind the description of fermion boson stars. In
particular, we considered FBS with a complex scalar field and FPS with a complex vector field.
We derived the tidal deformability for the scalar field case. For the vector field case, we analysed
the equation of motion and discovered that it obeys a scaling relation. When choosing a quartic
self-interaction potential, we derived an analytical upper bound for the vector field component E
that depends on the interaction parameter. To complete our understanding of fermion boson stars,
the next step is to solve the equations numerically and to gain insight into how these equilibrium
solutions behave and what their global quantities are. To that end, we will first introduce the
numerical methods in the following Chapter 6, after which we present the results in Chapter 7.
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6 Numerical Methods

In this chapter, we introduce the algorithms and numerical methods employed to solve the differen-
tial equations that describe fermion boson stars (FBS) (50a)-(50e) and fermion Proca stars (FPS)
(83a)-(83e). The aim is to provide a pedagogical explanation of the workflow and to encourage
reproducibility of this work. In particular, we will go into detail on how the frequency modes ω
of FBS and FPS are found and how to extract the global quantities such as the total mass Mtot,
the fermionic radius Rf and the tidal deformability Λtidal. We will also highlight some algorithmic
subtleties to avoid numerical pitfalls for future scientists trying to study these, or similar, systems.
Most of the methods discussed here are also found in [1] and were implemented in the code [2].

We start by considering FBS with a complex scalar field. As already stated in Chapter 5, the
equations of motion of FBS (50a)-(50e) have one undetermined variable, the field frequency ω. In
the following, we will explain the shooting-algorithm used to find ω numerically. For given ρc and
ϕc, there exist only discrete values of ω, such that the boundary conditions at infinity (53) are
fulfilled. These discrete values are called eigenvalues or modes. There are infinitely many of these
modes and they are characterized by the number of roots (i.e. zero-crossings) the field ϕ(r) has.
Usually we are only interested in the lowest mode with zero roots, since only they are believed
to be dynamically stable [31]. The following algorithm can however be used to find any desired
mode.
When the system of ordinary differential equations (50a)-(50e) is integrated (in [2] we use a Runge-
Kutta-Fehlberg ODE solver) for some fixed value of ω, the scalar field will diverge to positive or
negative infinity at some finite radius. The system will only converge at infinity if any frequency
mode is hit directly, which is impossible to achieve numerically with finite precision. We thus make
use of this diverging property to find the wanted frequency mode. In fact, when the frequency ω
is close to the wanted mode, the divergence will happen at increasingly large radii, the closer the
chosen value for ω is to the mode. A higher accuracy in finding ω will therefore push the diver-
gence to larger radii. When ω is not exactly tuned to the mode, the scalar field profile will diverge
towards +∞ or −∞ and change its direction of divergence when ω passes a mode. In Figure 10 we
have illustrated this behaviour. The direction of divergence will depend on which mode is solved
for in detail: if we search for zeroth mode, the field will diverge to +∞ if the frequency ω is below
the mode, and it will diverge to −∞ if ω is above the mode. This will be the case for every even
mode, and will be reversed for every odd mode. By making use of the direction of divergence, we
gain a binary criterion to find the correct mode. The value of ω can then be adapted – increased
or decreased – based on the direction of divergence and the wanted mode. This procedure requires
to integrate the system of equations multiple times with different values for ω, until the correct
value is found. In our code [2], we implement this method using a bisection algorithm, which
converges exponentially fast. We start with an upper and a lower value of ω, which are guaranteed
to be smaller/larger than the wanted value of ω at the mode. In practice, lower and upper bounds
of ωbound = [1, 10] have proven to be numerically robust. Then, we perform the bisection search
by taking the middle value of ω in this range and counting the number of roots in ϕ(r) at each
step. This also allows us to discriminate between different modes and to target specific modes by
demanding a certain number of roots in the field ϕ(r), corresponding to the wanted mode. The
bisection is complete when the current value of ω found through bisection is close enough to the
value of the mode. In our experience, the absolute accuracy needed to obtain robust solutions is
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on the order of ∆ω = |ωmode − ωbisection| ≈ 10−15.

Figure 10: Scalar field profile corresponding to a purely bosonic FBS (i.e. a boson star) with a quartic
self-interaction profile (28) and m = 1.34 · 10−10 eV , λ = 0. The scalar field profile is shown for the zeroth
mode (black solid line) and for two configurations for which the frequency ω is smaller (dotted orange
line) and larger (dashed orange line). The solution can be seen to diverge when the frequency is not tuned
to the correct value ωmode corresponding to the mode. Even small differences in ω from ωmode manifest
as a divergence at relatively small radii (note that the bosonic field can easily reach sizes of several dozen
kilometres or more). A divergence is thus unavoidable due to finite machine precision (in our case 64-bit
floating-point numbers). Tuning ω more accurately to ωmode increases the radius where the field ϕ(r)
diverges. The bisection algorithm makes use of the direction of divergence to find the correct value of ω.

Once a sufficiently accurate frequency ω is found, we modify the integration, such that ϕ(r) is set
to zero at a finite radius r∗B. This radius r∗B is defined at the point where the field ϕ(r) and its
derivative ϕ′(r) are small. This roughly corresponds to the last minimum of ϕ(r) before it diverges.
The condition can be summarized as the point where ϕ(r∗B)/ϕc < 10−4 and ϕ′(r∗B) ≪ 1. This is
necessary because the interplay of the scalar field and the neutron star matter can complicate
the numerical solution. In some parts of the parameter space, especially for small initial densities
ρc, the scalar field could diverge while still inside of the neutron star component, i.e. before the
pressure P (r) reaches zero (within numerical precision, we consider the pressure to be zero when
P < 10−15). This divergence would make finding physical values such as the fermionic radius Rf

impossible. Therefore, we artificially set ϕ = 0 for r > r∗B, which allows us to circumvent the di-
vergence and accurately resolve the rest of the neutron star component. The condition was chosen
so that the remaining contribution of the scalar field to the other quantities (i.e. the metric com-
ponents) is minimized. We have checked for different thresholds and confirmed that all extracted
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results are the same.

After integrating the solution to radii outside of the matter sources, we can extract global observ-
ables such as the total gravitational mass and radius. The outside of the source is located at radii
r larger than the fermionic radius Rf and r > r∗B, i.e. the regime where neither the NS matter nor
the scalar field contribute significantly. There, we can extract the total gravitational mass Mtot

(52) and then compute the integrals (51a) and (51b) to obtain the fermion/boson numbers Nf , Nb.
For some configurations, due to numerical precision limits, the scalar field convergence condition
ϕ(r∗B)/ϕc < 10−4 cannot be fulfilled. This generally happens for small initial field values ϕc ≲ 10−4,
where the scalar field extends far outside the neutron star component. In these cases, we extract
the total gravitational mass Mtot = 1

2
rext(1 − a−2(rext)) at the point where its derivative has a

global minimum. When the scalar field diverges, also the metric components do, and with it also
Mtot. By taking the point where the derivative of the mass has a global minimum, which roughly
corresponds to where the scalar field and its derivative is closest to zero, we get the best possible
estimate of the mass of the system before the divergence.

To compute the tidal deformability Λtidal, the system of equations (61) and (64) needs to be solved
on top of the unperturbed background described by the equations of motion of the FBS (50a)-(50e).
In practice, we first find a solution to the unperturbed FBS by tuning ω, and then later integrate
the perturbed equations to obtain the tidal deformability. Then, we perform a bisection algorithm
similar to the one to find ω, but for the initial value of the perturbed field ϕ

(3)
1 (see equation (69)),

so that the boundary conditions (70) are fulfilled. The perturbation ϕ1(r) converges to zero in the
same way as the unperturbed field ϕ(r) does. Therefore, we also set ϕ1(r) = 0 for r > r∗B. This
allows us to avoid the divergence of the perturbed field ϕ1(r) while having no effect on the tidal
deformability. This process is valid since the equations for ϕ1 (61) and H0 (64) decouple when the
unperturbed field ϕ(r) ≈ 0 (see eq. (66)). Since the tidal deformability is constant for any r > r∗B,
we can compute it directly using (67).
In the cases where the scalar field convergence condition ϕ(r∗B)/ϕc < 10−4 cannot be fulfilled, we
follow the same procedure as in [207] and extract y := rH ′

0(r)/H0(r) at a radius rext such that
y(rext) is a local maximum. Since there are two components in the fermion boson star at play,
there can be multiple local maxima, of which we choose the one at the largest radius.

We further note that it can be numerically difficult to integrate the full system at high self-
interaction strengths Λint ≳ 400 and for small masses m because

1) the frequency ω must be tuned up to higher accuracy than what is possible using 64-bit
floating-point numbers,

2) increasingly small step-sizes are needed and

3) the integration has to be performed up to larger radii, to solve the equations correctly and
accurately.

This may increase the run-time of the code up to more than an order of magnitude.

In the case of FPS with a complex vector field (83a)-(83e), we perform an algorithm which is
very similar to the one for FBS (see above). We perform a bisection in the same way, with the
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difference that we count the roots of the vector field component E(r) instead of the scalar field
ϕ(r). Another difference is that for FPS, the lowest mode has always one root in E(r). The
remaining steps are analogous to the step performed to solve the FBS with the scalar field. During
our numerical analysis, we encountered the phenomenon that the bisection algorithm to find the
frequency ω could fail for some specific initial conditions for E0 and ρc. We found this to be the
case due to the bisection algorithm jumping over multiple modes in one iteration step, thus also
skipping the wanted mode, such that the mode ended up outside of the bisection bounds. The
bisection then converged on an unwanted ω-value, or ended up failing entirely. We solved this
problem by employing a backup algorithm that activates if the bisection fails. The backup algo-
rithm restarts the bisection for ω but with different lower and upper bounds of ωbound. We tested
the backup algorithm for 4800 FPS configurations with different masses m and self-interaction
strengths Λint = λ/8πm2 with equally distributed initial conditions for E0 and ρc. We found that
330 (≈ 6.8%) of all configurations needed one restart of the bisection and only 3 (≈ 0.06%) of all
configurations needed two restarts. In none of the cases tested, the bisection had to be restarted
three times or more.

We close this chapter by providing a flowchart of the complete algorithm to compute FBS and
FPS in Figure 11.

Initial con-
ditions ϕc,
ρc or E0, ρc

Bisection
search for ω

Compute
Mtot, Rf , Nf ,
Nb, λtidal

Find perturbed
solution: Bi-

section for ϕ
(3)
1

Save solutions
into a file

Post-processing
using Python

FBS
Backup algorithm:
restart bisection

Figure 11: Schematic of the total algorithm used to compute solutions of FBS and FPS. We implemented
this algorithm in our C++ code [2]. We start with initial conditions for FBS (ϕc, ρc) and FPS (E0, ρc). We
then use the bisection algorithm described in this chapter to find the wanted mode and the corresponding
value of ω. For FBS (with a scalar field), there is the option to also compute the perturbed FBS solutions.
After the solutions have been found, the global quantities are computed. In the end, we save the global
quantities computed for all FBS/FPS into a file. The post-processing, for example the computation of
the stability curves (55) or the creation of plots, is performed using a separate code in Python, which was
developed alongside the C++ code (see [2]).
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7 Results

In this chapter, we present our results. We solve the equations of motion for fermion boson
stars with a scalar field (50a)-(50e) and with a vector field (83a)-(83e) numerically using the
methods described in Chapter 6 with a quartic self-interaction potential. We compute a number of
configurations with different masses and self-interaction strengths and analyse the solutions with
respect to their masses, radii and tidal properties. The results regarding fermion boson stars with
a scalar field (FBS) are congruent with the results presented in our publication [1]. Some figures
have been remade with a different colour scheme to be more consistent with the remainder of this
work. The results regarding fermion Proca stars (FPS) are original to this work and are presented
here for the first time.

7.1 Fermion Boson Stars

We consider fermion boson stars with a quartic self-interaction potential with a mass term

V (ϕ̄ϕ) = m2ϕ̄ϕ+
λ

2
(ϕ̄ϕ)2 , (95)

where m is the boson mass and λ is the self-interaction parameter. For easy comparability with
previous works, we define the effective self-interaction parameter Λint = λ/8πm2, which was first
introduced by [48]. Λint can be used to quantify the self-interaction strength and the effect of self-
interaction on the total gravitational mass of boson stars, as illustrated by the scaling relations
Mmax ≈ 0.633M2

p/m [31] (for small Λint) and Mmax ≈ 0.22
√
ΛintM

2
p/m [48] (for large Λint); also see

Chapter 4.4. In the regime of large Λint, the energy-momentum tensor of the scalar field becomes
approximately isotropic and can be described using an effective equation of state. A comparison of
the full system and the effective system is the subject of Chapter 7.1.3. Note that the parameter
Λint was originally introduced in the context of pure boson stars and thus the scaling relations will
not be generally valid for the mixed system. Scaling relations can however be useful to understand
the limiting cases where the FBS is dominated by either the fermionic or the bosonic component.
Nonetheless, we regard Λint to be a useful measure to compare different choices of the mass and
self-interaction strength.

We hereafter investigate nine different models with parameters m = {0.1, 1, 10} × 1.34 · 10−10 eV
and Λint = {0, 10, 100}. This mass range is chosen so that the reduced Compton wavelength
of the bosonic field is half the Schwarzschild radius of the Sun. m = 1 then corresponds to
1.336 · 10−10 eV (see a detailed explanation in Appendix B) . The range for the self-interaction
parameter was chosen so that it fulfils the observational constraints for the DM cross-section of
1 cm2/g obtained from the bullet cluster [208, 209]:

πΛ2
intm =

λ2

64πm3
=

σ

m

!
< 1

cm2

g
⇐⇒ Λint

!
< 1050

√
1.34 · 10−10eV

m
. (96)

For the fermionic component of the FBS, we use the DD2 equation of state (with electrons) [72]
taken from the CompOSE database [60]. It was chosen due to it being widely used by a number of
groups and thus being well known in the literature. The DD2 EOS is based on a relativistic mean-
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field model with density-dependent coupling constants, which has been fitted to the properties of
nuclei and results from Brueckner-Hartree-Fock calculations for dense nuclear matter. Therefore,
the DD2 EOS describes also the EOS of pure neutron matter from chiral effective field theory, see
[210]. For the purpose of our investigations, the particular choice of the nuclear equation of state
is not of importance and has no effect on our general conclusions.

7.1.1 Mass-Radius Relations and Tidal Deformability
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Figure 12: Left panel: Total gravitational mass of various FBS as a function of the restmass density
ρc and central scalar field amplitude ϕc. The black line corresponds to the stability curve computed using
(55). All configurations within the stability curve, i.e. in the lower left corner of the parameter space,
are stable with respect to linear radial perturbations. The presence of DM can increase the possible
maximum central densities. Right panel: Mass-radius diagram displaying the fermionic radius vs the
total gravitational mass for FBS configurations that are within the stability region displayed in the left
panel. Each point corresponds to a single configuration and is colour-coded according to the restmass
fraction of the dark matter component. The solid black-white line shows the mass-radius curve for pure
fermionic matter. In both cases, a scalar field with a mass of m = 1.34 · 10−10 eV and no self-interactions
was considered in addition to the DD2 EOS for the fermionic part. Figures adapted from [1].

We compute a grid of FBS with varying values of the central restmass density ρc and central scalar
field amplitude ϕc. Using this, we compute the stability curve as explained in Chapter 5.2. The
stable solutions can then be filtered and analysed further. We illustrate this method in Figure 12
for an FBS with m = 1.34 · 10−10 eV and no self-interactions. The left panel of Figure 12 shows a
grid of FBS with different ρc and ϕc, coloured with respect to the total gravitational mass. The
black line is the stability curve as obtained from the condition (55). The stability curve marks
the region of stable configurations, which corresponds to the lower left part of the plot, which is
enclosed by the stability curve. In the bottom left corner of the diagram, the total gravitational
mass can be seen to increase. This effect is related to the EOS as at those densities, the white dwarf
solutions start to emerge. The presence of DM can increase the possible maximum densities in the
centre of the FBS, which might be relevant for phase transitions that happen at high densities [50].
In the right panel of Figure 12, all FBS within the stability region are plotted in an MR diagram,
where the fermionic radius Rf is the radius where the fermionic component of the FBS vanishes.

53



Results · Fermion Boson Stars

Note that, instead of a mass-radius curve, the stable configurations form a mass-radius region for
the FBS with different fermionic and bosonic content. The points are coloured with respect to the
dark matter mass fraction, which is defined by Nb/(Nb + Nf). It is therefore a measure of how
much of the total restmass of the FBS is dark matter.

We show the mass-radius relations of various FBS in Figure 13 and Figure 14. We follow the
same steps as described to obtain Figure 12 and only consider the stable FBS from here on. It
is important to note that in Figure 13 we show the fermionic radius Rf . The bosonic radius Rb,
i.e. the radius where 99% of the bosonic restmass-energy is included, can be orders of magnitude
smaller or larger than Rf , depending on the mass m and self-interaction parameter Λint. In Fig-
ure 14 we show the effective gravitational radius RG – the radius where 99% of the total restmass is
contained. Using the total gravitational mass Mtot and RG, it is possible to infer the compactness
C = Mtot/RG of the FBS. The compactness can also be understood as a measure of how relativistic
a given compact object is. For pure NS, this effective gravitational radius is always smaller than
the fermionic one. Which radius (Rf or RG) is more relevant for a given problem depends on the
observation. The fermionic radius is crucial for electromagnetic signatures, such as those observed
by the NICER telescope. The effective gravitational radius is more relevant for the inspiral of
binary FBS, since it also is a measure of the size of the combined system. It also is related to
the tidal deformability through the compactness. An observed effective gravitational radius larger
than the fermionic radius would be an indication that dark matter might be present around the NS.

We note general trends in the figures. As expected, FBS with small DM-fractions are dominated
by the fermionic component and thus show similar behaviour to pure NS in the MR diagram.
Likewise, stars with high DM-fraction are dominated by the bosonic component and thus behave
similarly to pure boson stars. For masses of m = {1, 10}×1.34 ·10−10 eV in Figure 13, the region of
stable configurations extends to lower masses and similar compactness to pure NS. These results are
consistent with the lines shown in [39]. Comparing these trends to Figure 14 provides more insight
into the structure of these FBS configurations. For m = 1.34 · 10−9 eV , the bosonic component is
concentrated inside of the fermionic one and forms a DM core. For m = 1.34 ·10−10 eV , the bosonic
and fermionic components have roughly similar sizes. For low DM-fraction, the compactness is
increased, while for DM dominated configurations, the overall compactness decreases and the DM
forms a cloud which envelopes the fermionic component. Increasing the self-interaction strength
also leads generally to geometrically larger DM distributions. The general trend is that a lower
boson mass m leads to DM cloud-like configurations, while a higher DM mass leads to core-like
systems. This is consistent with the behaviour found by [211] for a different mass range, where
increasing the DM mass fraction leads to cloud formation. For DM masses of m = 1.34 · 10−11 eV ,
the bosonic component is significantly larger than the fermionic one and forms a DM cloud. This
can significantly decrease the compactness of the FBS (notice the different scales on the x-axis).
However, the apparent compactness of the fermionic part is seen to increase significantly. Only
observing the fermionic radius as in Figure 13 would lead to an apparent violation of GR, as the
apparent compactness exceeds the Buchdahl limit of C = 4/9. The core-cloud behaviour can
further be understood when considering the correlation length of the boson. For higher masses,
the Compton wavelength is smaller and thus the DM Bose-Einstein condensate is found to be more
strongly localized, i.e. extends to smaller radii. The opposite is the case for small DM masses.
Observing a Buchdahl-limit violating NS could therefore be an indication for the presence of DM.
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Figure 13: Relation between total gravitational mass Mtot and fermionic radius Rf for different FBS.
The rows correspond to bosonic masses of m = {1, 10, 0.1} × 1.34 · 10−10 eV , columns correspond to self-
interactions of Λint = {0, 10, 100} respectively. We use the DD2 EOS for the fermionic part. Notice the
different scale of the bottom plots. The grey region marks the Buchdahl limit, where no stable NS can
exist. Observing only Rf of these systems would appear to violate the Buchdahl limit, even though the
FBS as a whole does not. Figures adapted from [1].
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Figure 14: Relation between total gravitational mass Mtot and effective gravitational radius RG for
different FBS. RG is the radius where 99% of the restmass is contained. The rows correspond to bosonic
masses of m = {1, 10, 0.1} × 1.34 · 10−10 eV , columns correspond to self-interactions of Λint = {0, 10, 100}
respectively. We use the DD2 EOS for the fermionic part. Notice the different scales of the bottom
plots. For pure NS, because the crust has comparatively low density, RG is significantly smaller than Rf

(compare to Figure 13). For low DM-fractions, the bosonic component tends to form a core and the total
compactness of the object increases. For higher DM-fractions, the bosonic component forms a cloud and
can significantly decrease the compactness of the object. Figures adapted from [1].
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Figure 15: Relation between dimensionless tidal deformability Λtidal = λtidal/M
5
tot and total gravitational

mass Mtot for different FBS. The rows correspond to bosonic masses of m = {1, 10, 0.1}× 1.34 · 10−10 eV ,
columns correspond to self-interactions of Λint = {0, 10, 100} respectively. We use the DD2 EOS for the
fermionic part. Even small DM-fractions can have a significant influence on the tidal properties of NS.
Figures adapted from [1].
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We show the relation between the dimensionless tidal deformability Λtidal = λtidal/M
5
tot and the

total gravitational mass Mtot in Figure 15. The solution corresponding to pure NS and pure BS
are marked by thick black and thick red lines respectively. The lines corresponding to pure boson
stars agree with the trend lines shown in [207]. For m = 1.34 · 10−9 eV and low DM-fractions,
where the DM is mostly confined in a DM core, the tidal deformability is only weakly modified
compared to a pure NS. For increasing self-interaction strength Λint ≈ 100, the effect is magnified
and the tidal deformability decreases significantly. Only for FBS dominated by DM, the results
are close to that of pure boson stars.
For smaller boson masses, the effect on the tidal deformability is more pronounced. Since the
tidal deformability of boson stars is much higher than that of pure NS, even small amounts of
DM can significantly impact the tidal properties of FBS. This is especially apparent when m =
1.34 · 10−11 eV . Here, for constant central densities ρc, the tidal deformability increases orders
of magnitude as ϕc increases. At the point where the bosonic component starts to dominate,
there is a turning point where the tidal deformability decreases while the total gravitational mass
increases. The tidal deformability converges to the purely bosonic solutions for high DM-fractions.
This opens up vast possibilities to probe DM, even for small DM-fractions. While the presence of
DM in small quantities would barely be visible in the MR plane, it can significantly change the
tidal deformability, even in small quantities, as evidenced in Figure 16.
For masses of m = 1.34 · 10−11 eV , the tidal behaviour is more dependent on the self-interaction
strength Λint. For weaker self-interactions, the tidal deformability stays roughly in the same order of
magnitude for constant central densities ρc while gradually converging to the pure bosonic solution
when increasing ϕc. For strong self-interactions, the tidal deformability can be seen to increase as
it tends towards the pure boson star solutions. The configurations of high Λtidal correspond to DM
cloud solutions. This behaviour is consistent with the findings of [46], where an effective EOS was
used for modelling the bosonic component.
For some parameters for the boson mass and self-interaction, degeneracies in the mass, radius
and/or tidal deformabilities arise. That is, there exist FBS configurations with different DM-
fractions which produce identical (fermionic) radii and masses. By combining measurements of
mass and fermionic radius with measurements of the tidal deformability, it might be possible to
break the degeneracy. In this study we used the DD2 EOS to model the fermionic component. We
note that using different EOS for the fermionic component might lead to further degeneracies. For
example, a NS with a given EOS and no DM might produce an identical total gravitational mass
and fermionic radius to an FBS with a non-zero DM-fraction and a different EOS.

7.1.2 Comparison to Observational Constraints

Measurements of the fermionic radius of neutron stars with known masses have been performed
by the NICER telescope, which tracks X-ray-emitting hotspots on the NS surface. The measure-
ments include the pulsars PSR J0030+0451 with M = 1.34+0.15

−0.16M⊙ and R = 12.71+1.14
−1.19 km [8]

and J0740+6620 with M = 2.072+0.067
−0.066M⊙ and R = 12.39+1.30

−0.98 km [9]. Even though these mea-
surements only provide two data points in the MR diagram, they can be used to constrain which
FBS configurations could exist or which are excluded. These observational constraints also serve
to constrain the DM properties. We show the posteriors of these measurements in Figure 16.
The measurements should be compared to Figure 13, where the fermionic radius is shown. FBS
solutions with a DM core generally become more compact with increasing DM-fraction. For higher
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Figure 16: Left panel: Total gravitational mass and fermionic radius of FBS with boson masses of
m = 1.34 · 10−10 eV and m = 1.34 · 10−11 eV and no self-interaction, shown together with observational
constraints from PSR J0030+0451 [8], PSR J0740+6620 [9], J0952-0607 [5], HESS J1731-347 [66] and
PSR J1311-3430 [212] . The percentage number denotes the DM-fraction. For the NICER and HESS
measurements, dashed lines display the 1σ regions, while the total coloured areas show the 2σ regions.
Right panel: Dimensionless tidal deformability for the same set of parameters shown together with the
constraint coming from the GW170817 event [11, 64]. Figures taken from [1].

DM-fraction, they are not able to fulfil all observational constraints since they reduce the maximum
mass of the FBS compared to pure NS. In contrast, DM cloud solutions can easily reach higher
maximum masses due to the FBS being dominated by the bosonic component, which mass scales
like Mmax ≈ M2

p/m. This is consistent with [211], where the FBS is modelled with an effective
EOS and also includes the changing photon geodesics due to the DM cloud, and [44] where the
authors performed a Bayesian analysis with the effective EOS.

Another constraint comes from the neutron star HESS J1731−347 with M = 0.77+0.20
−0.17M⊙ and

R = 10.4+1.86
−0.78 km [66]. This is the lightest known NS, which is difficult to explain using standard

stellar evolution, see [213]. The authors of [66] propose it to be a strange star (a star made out of
hadrons that include strange quarks), but when considering Figure 13, this MR region can also be
reached using FBS with DM core solutions. To obtain accurate constraints specifically for FBS,
one would have to repeat their analysis with an actual bosonic component, which we leave for
future work. But as it stands, the measurement of HESS J1731−347 favours DM core solutions
and disfavours DM cloud solutions.

There is also the observation of the binary neutron star merger GW170817 [11]. The authors de-
rived constraints on the tidal deformability with minimal assumptions on the nature of the involved
compact objects. They use a mass-weighted linear combination of the individual tidal deformabil-
ities and obtained a limit of Λtidal < 630. Alternatively, assuming that all neutron stars have the
same EOS, [10] derived constraints on the tidal deformability with the help of universal relations
(see [214, 215]). These constraints are not perfectly applicable to FBS, as the I-Love-Q relations
are not necessarily applicable. The use of universal relations is further complicated by the fact that
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two FBS might have the same EOS but different DM-fractions. Some authors [216] have argued
that the relations might be applicable, but we leave this for future work. However, the present mea-
surements should be enough to get a rough understanding of which types of FBS might be favoured
or disfavoured. It can be seen in Figure 16 that generally low tidal deformabilities are favoured.
We leave a more thorough quantitative analysis of constraints on these FBS models for future work.

Previous studies using an effective EOS for the bosonic component reach similar conclusions and
have placed initial constraints on different DM mass ranges, such as [45, 46, 217]. Overall, mea-
surements of mass, radius and tidal deformability seem complementary and combining them in
a quantitative analysis might be able to significantly constrain the parameter space. FBS with
DM cloud solutions can have large tidal deformabilities, even for small DM-fractions. These large
tidal deformabilities would most likely be observable in GW measurements of inspiralling binary
systems. The effects on Λtidal of DM cores inside of NS on the other hand can be obscured since
they tend to only slightly change the global tidal properties, even for large DM-fractions. This is
especially true for large DM masses. DM core solutions are however able to explain the HESS mea-
surement, and assuming different DM-fractions for different FBS, these DM masses are not ruled
out by the constraint on the maximum total gravitational mass. As noted before, these effects are
somewhat degenerate with the neutron star EOS, since different EOS with different DM-fractions
might lead to very similar observables. These degeneracies could be broken for example by looking
at correlations between the DM-fraction inside FBS and the local DM density distribution in the
galactic disc [45, 217].

7.1.3 Comparison with an effective EOS

Due to the significant numerical effort needed to solve the full system of equations for FBS (50a)-
(50e) self-consistently, earlier studies [47, 48] have used an effective EOS P (e) for the scalar field,
which treats it like a perfect fluid with pressure P and a total energy density e. The effective
EOS was originally derived in [48] for the cases where the self-interaction strength is large Λint =
λ/8πm2 ≫ 0 . The effective EOS models exclusively the ground state of the scalar field and
assumes that the energy-momentum tensor of the scalar field (40) is isotropic (which is only valid
in the given limit). The effective EOS has the advantage that the scalar field must not be solved
for directly, and the evolution equations simplify to the default TOV equations. For a scalar field
with self-interaction potential (95), the effective EOS is given by

P =
4

9
ρ0

[(
1 +

3

4

e

ρ0

)1/2

− 1

]2
, (97)

where ρ0 = m4/2λ. Note that our expressions for ρ0 and Λint differ from [47, 48] by a factor of two
due to the different normalization of the scalar field ϕ and the self-interaction parameter λ in the
potential (95). The authors of [47] used the effective EOS in a two-fluid system of two minimally
coupled perfect fluids (i.e. which interact only gravitationally) to compute the tidal deformability
Λtidal of FBS. One of the fluids was taken to be that of nuclear matter, just as was done in this
work for the fermionic component. The other fluid describes the scalar field using the effective
EOS. Hereafter, we compare the results obtained from integrating the two-fluid model (see [47]
for details) and from solving the full system of equations for the FBS (50a)-(50e). In addition, we
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compute the tidal deformability in two ways. First, as one would for a single-fluid system (details
in [47]) for the two-fluid model, and second, as was described in Chapter 5.2 for the full system.
We further note that the effective EOS is only valid for λ > 0 because otherwise, the pressure (97)
would become negative.
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Figure 17: Distribution of the relative error (e.g. |Λtidal,full − Λtidal,eff |/Λtidal,full) of the observables ob-
tained using the full system and the effective EOS. Shown are values for the dimensionless tidal deforma-
bility Λtidal (upper panel) and total gravitational mass Mtot (lower panel) as a function of the interaction
strength Λint. The continuous line shows the boundary, below which half of the FBS configurations lie,
meaning that half of them have a relative error of less than the shown value for a given Λint. Similarly the
dashed/dash-dotted/dotted lines show the line below which 68%/95%/100% of configurations lie. Only
stable FBS configurations were considered for the relative error at a given Λint and all computations were
performed for m = 6.7 · 10−11 eV . The agreement between the full system and the effective EOS becomes
generally better for large Λint, however, at some point, numerical inaccuracies in the full system dominate
the relative error, which starts to be problematic for Λint ≳ 400. Figure taken from [1].

Regarding the initial conditions of the two-fluid model, we choose the same conditions as were used
in [47]. For better comparability between the full system and the effective EOS, we first want to
find an expression that relates the scalar field ϕ(r) to the energy density eeff of the effective fluid.
To derive this relation, we set the Ttt-component of (40) equal to the Ttt-component of a perfect
fluid. We therefore take T

(ϕ)
tt

!
= eeff · α2 and then use the approximations used in [48] (i.e. local

flatness and neglecting spatial derivatives, which is valid in the limit of strong self-interactions).
We obtain an expression that depends only on the scalar field value ϕ(r) (see (48)), the scalar field
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mass m and the self-interaction parameter λ

eeff(ϕ) = 2m2ϕ2 +
3

2
λϕ4 , (98)

where ω2/α2 = m2 + λϕ2 was substituted using the Klein-Gordon equation (50c). Equation (98)
is a generic result and holds for all radii (under the approximations stated above). To obtain the
initial conditions for the central energy density of the scalar field eeff,c, one simply plugs in the
corresponding central value of the scalar field ϕc.

In Figure 17, we show the relative error for the total gravitational mass Mtot and the tidal de-
formability Λtidal, computed using the full system and the effective two-fluid system, with respect
to the self-interaction strength Λint. We observe that the errors (the shaded regions) generally
decrease when the self-interaction strength Λint increases. This is consistent with the assumption
that the effective EOS (97) becomes exact only in the limit of strong self-interactions. For small
Λint, the relative error reaches 100% for the total mass and diverges for the tidal deformability.
This is to be expected since the total mass converges to zero for pure boson stars when using the
effective EOS in the limit Λint → 0 (see Fig. 2 in [48]), whereas it reaches a constant value when
computing the mass using the full system. Likewise, due to the definition of the dimensionless
tidal deformability Λtidal = λtidal/M

5
tot, a diverging error is to be expected. For Λint ≈ 100 the

maximal error of the total mass (tidal deformability) is on the order of 88% (> 104%), whereas
the lower 95-th percentiles of errors are noticeably smaller at around < 47% (< 240%). This
means that only 5% of the computed configurations have relative errors higher than 47% (250%).
The median error denoted by the solid blue line is around 1% (2%). At Λint = 300 the maximal
error reaches 85% (> 104%) and the median error reaches 0.4% (0.8%). Asymptotically, the error
is constrained by floating-point precision and the inherent non-exactness of the effective EOS as
compared to the full system.
To gain a better understanding of how the effective EOS and the full system compare, we com-
pute the tidal deformability Λtidal using both systems. In the left panel of Figure 18, we show
the tidal deformability of pure boson stars computed for different self-interaction strengths of
Λint = {10, 100, 200, 400}. The solid lines show the solutions using the full system and the dashed
lines are the values obtained using the effective EOS. The effective EOS is able to reproduce the
solution of the full system qualitatively, even for a small self-interaction strength Λint. With in-
creasing Λint, the agreement between the full and the effective system becomes better. At around
Λint = 400, the quantitative agreement reaches a few percent of relative difference.

Next, we consider mixed configurations where both the scalar field and central density are non-
zero. The right panel of Figure 18 shows the tidal deformability with respect to the total gravita-
tional mass of the FBS. We compute several curves of constant central scalar field ϕc at different
Λint = {10, 100, 200, 400}. The choice of a constant ϕc is per se arbitrary but was made to make
our work more easily reproducible in future works. The solid lines show the solutions obtained
using the full system and the dashed lines were computed using the effective EOS (all other values
being equal). With increasing self-interaction strength Λint, the solutions using the effective EOS
converge to the solutions with the full system with increasing accuracy. Even though at lower
Λint < 200 the deviations are quite large, the qualitative trend is correctly reproduced by the ef-
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Figure 18: Left panel: Tidal deformability Λtidal with respect to the total gravitational mass Mtot

for pure boson stars with various self-interaction strengths Λint. For all cases, the boson mass is m =
6.7 ·10−11 eV . The solid lines are the values obtained using the full system (50a)-(50e) and the dashed lines
correspond to the solutions using the effective bosonic EOS (97). Right panel: Tidal deformability Λtidal

with respect to the total gravitational mass Mtot of different FBS for different self-interaction strengths
Λint. For all cases, the boson mass is m = 6.7 · 10−11 eV . All lines have a constant central value of the
scalar field ϕc = 0.02, but different central densities ρc. Only stable FBS are shown. The solid lines are the
values obtained using the full system (50a)-(50e) and the dashed lines correspond to the solutions using
the effective bosonic EOS (97). Figures taken from [1].

fective EOS. At Λint = 400, both systems produce reasonably similar results (within a few percent
of relative difference). This justifies the usage of the effective EOS for large Λint ≳ 400 also to
compute the tidal deformability Λtidal.

We close the analysis by providing a few notes on the usefulness of the effective EOS (97) and
the two-fluid system. For most FBS configurations, we were able to verify the general notion that
the effective EOS becomes asymptotically more accurate and is able to reproduce the behaviour
of the full system. However, we find that a significant percentage of FBS configurations with
high relative errors remain, especially when considering the tidal deformability, where the relative
error surpasses 200% for roughly five percent of all configurations. This can be explained by the
different low-mass limits of the full and the effective system while considering the definition of the
dimensionless tidal deformability Λtidal = λtidal/M

5
tot. Nevertheless, we conclude that the usage of

the effective EOS is justified in the cases where the self-interactions are strong (roughly Λint ≳ 400),
as the errors are acceptable for most configurations with high total gravitational mass. Of course,
solving the full system (50a)-(50e) will always yield the exact results in theory. In practice, it can
be numerically difficult to integrate the full system for strong self-interactions Λint ≳ 400 because

1) the frequency ω must be tuned up to higher accuracy than what is possible using 64-bit
floating-point numbers and

2) increasingly small step-sizes are needed, to solve the equations correctly.

During our tests, we could determine that the more relevant constraining factor is the needed
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accuracy for ω, rather than the step-size. Smaller initial values for the scalar field ϕc lead to
larger bosonic radii ≫ 10 km, for which the numerical integration becomes problematic. This
concerns roughly 5% of the considered configurations. In contrast, when the two-fluid system
is used together with the effective bosonic EOS, the solution is numerically robust and does not
require numerical root-finding for ω, and can manage well with larger numerical step-sizes. With
equal step-sizes and initial conditions, we found that the two-fluid system takes around two orders
of magnitude less computation time than solving the full system. The speedup can be increased
further when considering that the two-fluid system also tolerates larger step-sizes while staying
numerically accurate.

7.2 Fermion Proca Stars

We present our results regarding fermion Proca stars (FPS), mixed systems of neutron stars and
vector dark matter, modelled by a complex vector field. We consider a quartic self-interaction
potential with a mass term of the form

V (AµĀ
µ) = m2AµĀ

µ +
λ

2
(AµĀ

µ)2 , (99)

where m is the vector boson mass and λ is the self-interaction parameter. Similar to the case with
the scalar field, we define the effective self-interaction parameter Λint = λ/8πm2. As is the case
for the scalar boson case, the parameter Λint is a useful measure for the self-interaction strength
and parametrizes scaling relations for the total gravitational mass Mmax ≈ 1.058M2

p/m (for small
Λint) and Mmax ≈

√
Λint ln(Λint)M

2
p/m (for large Λint), as found by [42] and [188] respectively. We

further note that the self-interaction parameter Λint in our work differs from the one used in [188]
by a factor of two, even though they are defined in the same way. This discrepancy is due to the
different normalization used for the vector field.

We hereafter consider a variety of different cases of FPS, starting with radial profiles in Chapter
7.2.1. In Chapter 7.2.2, we analyse the stability of FPS and show the mass-radius relations of
stable configurations. For that, we use the same parameter range – namely m = {0.1, 1, 10} ×
1.34 · 10−10 eV and Λint = {0, 10, 100}, see Chapter 7.1 – as was used for FBS to enable simpler
comparison between the scalar field and vector field cases. Arguments about the mass-range and
self-interaction ranges chosen apply here in the same way. We further use the DD2 EOS in our
analysis of FPS. In Chapter 7.2.3, we briefly study higher modes of FPS as well as FPS with
different EOS for the neutron star component. This is mainly done to solidify the analysis of the
FPS properties and decrease the effect of the choice of the EOS on our conclusions.

7.2.1 Radial Profiles

One of the first steps when analysing self-gravitating objects is to consider radial profiles of the
matter-fields constituting the object. In the context of FPS, we consider three main relevant phys-
ical quantities: the radial dependence of the pressure P (r) and the vector field components E(r),
B(r). Even though the radial distribution of physical quantities is not yet possible to be observed
directly (although one could infer the DM-field distribution using the geodesic motion of light
[211]), a good understanding of the internal structure of FPS can be used to deduce their global
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Figure 19: Left panel: Radial profiles of the pressure P (r) (orange) and the vector field components E(r)
(black), B(r) (blue) of the zeroth mode of different FPS with potential (99). The mass is m = 1.34·10−10 eV
and Λint = 0. The FPS have a central density of ρc = 5ρsat and differing central vector field amplitudes E0.
The pressure has been re-scaled by a factor of 3 for convenience. The DM forms a core and compactifies
the fermionic component. Right panel: Same as in the left panel, but this time the vector boson mass
is set to m = 1.34 · 10−11 eV . The DM forms a cloud around the fermionic component. The radius of
the fermionic component is barely affected by the field. A kink can be seen in the profile for B(r) at
roughly 11.5 km, corresponding to the point where the fermionic radius is located. This illustrates the
gravitational back-reaction between the vector field and NS matter.

quantities and vice-versa. Knowledge about the internal distribution is also relevant for numerical
applications. We also include the radial profiles here to facilitate reproducibility of this work and
for the sake of code-validation for future works.
Radial profiles of pure Proca stars have already been discussed by [42] and for the case of a quartic
self-interaction potential like (99) by [188]. We used the results of [188] in particular to verify that
our code [2] reproduces the results correctly and consistently.

In Figure 19, we show radial profiles of the pressure P (r) (orange) and the vector field components
E(r) (black), B(r) (blue) of the zeroth mode of different FPS with potential (99). In the left panel,
we take a boson mass of m = 1.34 · 10−10 eV and an interaction strength of Λint = 0. The FPS
have central densities of ρc = 5ρsat and differing central vector field amplitudes E0. The radial
profile of a pure NS is shown with the orange continuous line and has no corresponding vector field
(because it would be zero everywhere). The presence of the DM can be seen to compactify the NS
component with increasing central field amplitude E0. The field forms a DM core configuration.
In the right panel of Figure 19, all parameters are left equal except for the vector boson mass,
which is set to m = 1.34 · 10−11 eV . Due to the low mass, the correlation length increases, which
increases the size of the vector field component and forms a DM cloud configuration. Since the
amount of energy density of the vector field is distributed inside and outside of the NS component,
the effect on the radius is small. At around r = 11.5 km, a kink can be seen in the radial profile of
the field component B(r). This point coincides with the point where the fermionic radius of the
FBS is located. This illustrates the gravitational back-reaction between the vector field and the
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Figure 20: Left panel: Radial profiles of the pressure P (r) (orange) and the vector field components E(r)
(black), B(r) (blue) of the first mode of different FPS with potential (99). The mass is m = 1.005·10−10 eV
and Λint = 0. The FPS has a central density of ρc = 4ρsat and differing central vector field amplitudes
E0. The pressure has been re-scaled by a factor of 3 for convenience. Right panel: Radial profiles of
the pressure P (r) (orange) and the vector field components E(r) (black), B(r) (blue) of an FPS in the
zeroth mode with potential (99). The mass is m = 1.34 · 10−10 eV and the self-interaction strength is
Λint = 50. The FPS has a central density of ρc = 5ρsat and differing central vector field amplitudes E0.
The pressure has been re-scaled by a factor of 3 for convenience. Due to the analytical bound on E0 (94),
the maximal amplitude is roughly E0,crit ≈ 0.0282. The limited field amplitude strongly limits the effect
on the fermionic component.

NS component of the FBS.
In Figure 20, radial profiles of the pressure P (r) (orange) and the vector field components E(r)
(black), B(r) (blue) of an FPS are shown. In the left panel, we show an FPS in the first mode,
which can be identified by the fact that the E(r) component crosses the x-axis twice and B(r)
crosses it once. The boson mass is m = 1.005 · 10−10 eV and Λint = 0. This time, the central
density is taken to be ρc = 4ρsat and the central vector field amplitudes vary. The right panel of
Figure 20 shows an FBS in the zeroth mode with a vector boson mass of m = 1.34 · 10−10 eV and
the self-interaction strength is Λint = 50. Due to the analytical bound on E0 (94), the maximal
amplitude is roughly E0,crit ≈ 0.0282. The limited field amplitude strongly limits the possible
effect on the fermionic component and thus on the fermionic radius, especially in the limit of large
Λint . It may therefore be difficult to detect strongly self-interacting vector DM within a NS if
one only considers measurements of the fermionic radius. It is also conceivable that the maximum
amplitude E0,crit implies a maximum amount of possible accretion of vector DM, which could be
used to set bounds on the DM self-interaction strength. We leave the analysis of this aspect for a
future work.

7.2.2 Stability and Mass-Radius Relations

We compute a grid of FPS with different central densities ρc and central vector field amplitudes
E0. This can be seen in the left panel of Figure 21, where we compute FPS with a quartic self-
interaction potential (99) with m = 1.34 · 10−10 eV and Λint = 0. We additionally compute the
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Figure 21: Left panel: Total gravitational mass of different FPS as a function of the restmass density ρc
and central vector field amplitude E0. The black line corresponds to the stability curve, which separates
stable solutions (in the lower left region) from unstable solutions (everywhere else). The qualitative
behaviour of the stability curve of FPS is similar to the case with FBS (see Figure 12) Right panel: Mass-
radius diagram displaying the fermionic radius vs the total gravitational mass for FPS configurations that
are within the stability region displayed in the left panel. Each point corresponds to a single configuration
and is colour-coded according to the DM-fraction Nb/(Nb + Nf). The solid black-white line shows the
mass-radius curve for pure fermionic matter. In both cases, a vector field with mass of m = 1.34 ·10−10 eV
and no self-interactions was considered in addition to the DD2 EOS for the fermionic part.

stability curve, which defines the boundary between configurations stable under linear radial per-
turbations and configurations which are unstable. We use the same methods as were used for the
FBS, because the stability criterion (55) generalizes for systems of two gravitationally interacting
fluids. The shape of the stability curve for FPS is qualitatively very similar to the FBS case. For
pure neutrons stars and Proca stars respectively, the curve converges on the ρc- and E0-axis at
the point, where the non-mixed configurations have their maximum gravitational masses. Taking
only the FPS inside of the stability region, enclosed by the stability curve, and plotting them in
an MR diagram leads to the graph in the right panel of Figure 21. As with the scalar case, stable
FPS configurations now form an MR region instead of an MR curve (in the case of single-fluid
systems). The stable configurations can be seen to form core or cloud solutions, depending on
their DM-fraction Nb/(Nb +Nf). The FPS with high DM-fractions have masses of roughly 1M⊙,
which is higher than in the scalar field case with equal boson mass m. This can be explained
through the differing scaling relations for pure Proca stars and boson stars. Another point where
FPS differ from FBS is the existence of a maximal amplitude E0,crit (93) for the bosonic vector
field. When increasing the self-interaction strength Λint, the maximal possible vector field ampli-
tude shrinks, which affects the shape of the stability curve as well. In Figure 22 (left panel), we
show such a case where the self-interaction strength is Λint = 5. The stability curve does not reach
the E0-axis any more and instead rises vertically from the pure NS configurations until it reaches
the FPS with maximal central vector field amplitude E0,crit ≈ 0.089. We have manually extended
the stability curve so that it proceeds horizontally until it reaches the E0-axis. It is noteworthy
that this behaviour starts at surprisingly small self-interaction strengths and persists up to higher
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Figure 22: Left panel: Total gravitational mass of different FPS as a function of the restmass density ρc
and central vector field amplitude E0, with m = 1.34 · 10−10 eV and Λint = 5. The black line corresponds
to the stability curve, which separates stable solutions (in the lower left region) from unstable solutions
(everywhere else). The stability curve reaches configurations with the maximum possible vector field
amplitude E0,crit ≈ 0.089. This is a feature unique to FPS. Right panel: Mass-radius diagram displaying
the fermionic radius vs the total gravitational mass for FPS configurations that are within the stability
region displayed in the left panel. Each point corresponds to a single configuration and is colour-coded
according to the DM-fraction Nb/(Nb +Nf). The solid black-white line shows the mass-radius curve for
pure fermionic matter. A vector field with mass of m = 1.34 · 10−10 eV and Λint = 5 was considered in
addition to the DD2 EOS for the fermionic part.

Λint. In principle, also a third behaviour of the stability curve of FPS is conceivable. For some
specific Λint, it should be possible that the stability curve does not admit one continuous shape
like in Figure 21 or Figure 22, but that the stability curve is cut into two parts. Namely one part
which starts at the E0-axis and then rises to reach the edge where E0,crit is located, and another
part which starts at the ρc-axis and then rises roughly vertically until it too reaches the analytical
bound for the vector field amplitude E0,crit (think of a horizontal line cutting through the stability
curve in Figure 21 at e.g. E0 = 0.06). During our testing, we did not find any case where the
stability curve follows this behaviour. However, there is also no reason, that we are aware of, why
such a behaviour of the stability curve should be forbidden, which is why we presume that such a
case might exist.

We compute various FPS with different values of the vector boson masses m = {1, 10, 0.1}× 1.34 ·
10−10 eV and self-interaction strengths Λint = {0, 10, 100}. In Figure 23, we show the mass and
fermionic radii of all stable FPS configurations in an MR diagram. In Figure 24, we show the
mass plotted against the effective gravitational radius. The stable solutions have been obtained
using the stability curve, in the same way as was done previously for FBS. We hereafter discuss
some general trends and compare the results to the one obtained for FBS. We find that many of
the general conclusions regarding FBS can also be applied to FPS. FPS with small DM-fractions
are dominated by the fermionic component, leading to only small changes in the fermionic radius.
In the case of DM dominated FPS, the solutions behave similar to pure Proca stars. This leads
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Figure 23: Relation between total gravitational mass Mtot and fermionic radius Rf for different FPS.
The rows correspond to bosonic masses of m = {1, 10, 0.1} × 1.34 · 10−10 eV , columns correspond to self-
interactions of Λint = {0, 10, 100} respectively. We use the DD2 EOS for the fermionic part. Notice the
different scale of the bottom plots. The grey region marks the Buchdahl limit, where no stable NS can
exist. Observing only Rf of these systems would appear to violate the Buchdahl limit, even though the
FPS as a whole does not.
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Figure 24: Relation between total gravitational mass Mtot and effective gravitational radius RG for
different FPS. RG is the radius where 99% of the restmass is contained. The rows correspond to bosonic
masses of m = {1, 10, 0.1} × 1.34 · 10−10 eV , columns correspond to self-interactions of Λint = {0, 10, 100}
respectively. We use the DD2 EOS for the fermionic part. Notice the different scales of the bottom plots.
For pure NS, because the crust has comparatively low density, RG is significantly smaller than Rf (compare
to Figure 23). RG tends to be higher as compared to FBS (see Figure 14).
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to higher masses as compared to FBS, where the total gravitational mass of pure boson stars will
be roughly half that of a Proca star with the same boson mass, as can be seen well for the cases
where m = {1, 0.1} × 1.34 · 10−10 eV . FPS can thus reach higher total gravitational masses as
compared to FBS with the same DM mass and self-interaction strength. For m = 1.34 · 10−9 eV ,
the bosonic component is concentrated inside of the fermionic one and forms a DM core. Even
small amounts of DM can have a significant impact on the fermionic radius, since the whole vector
field is concentrated entirely inside of the NS component. More massive DM particles can thus
have larger effects on the fermionic radius compared to low-mass DM at similar DM-fractions.
This is due to the cloud-like structure of low-mass DM. For small DM masses, the majority of
the DM will be concentrated outside of the NS part – due to its larger correlation length – and
will thus have smaller effects on the fermionic radius. The general behaviour of FBS hence also
holds for FPS. The smaller the mass and the larger the self-interaction strength, the more likely
the formation of a DM cloud is. The opposite is true for DM core solutions. Fermion Proca stars
however tend to produce configurations with larger total masses and their halos also extend to
larger radii, as can be seen from the gravitational radius in Figure 24.
In general, the gravitational radius of FPS is larger in size as compared to scalar FBS (note the
different scale of the x-axis of the cases where m = {1, 10} × 1.34 · 10−10 eV in Figure 14). The
larger gravitational radius suggests that FPS have larger tidal deformabilities, compared to their
scalar field counterparts (FBS) with equal m and Λint, since objects with larger radii are generally
easier to tidally disrupt. This could favour higher vector boson masses compared to the corre-
sponding scalar boson mass in the case of FBS. Without an explicit quantitative analysis of the
tidal deformability of FPS however, it is not possible to definitively verify this hypothesis. When
considering the gravitational radius of FPS with small boson masses of m = 1.34 · 10−11 eV (see
bottom row of Figure 24), the transition between DM-dominated and NS-dominated configurations
appears more abrupt than in the FBS case (compare to Figure 14). For example, when starting
with a system with a DM-fraction of roughly 0% or 80%, increasing the DM-fraction by small
amounts can massively impact the total mass and gravitational radius of the combined system.
Finally, note the outlier points in Figure 24 for m = 1.34 · 10−11 eV and Λint = 100 at roughly
RG = 350 km. These are likely to be numerical artefacts and should thus not be regarded as phys-
ical. This is to be expected since for small DM masses and large self-interactions, the numerical
solution gets increasingly difficult. This problem could be avoided by using smaller step-sizes and
higher numerical precision, but would also warrant longer run-times of the code.

Next, we show mass-radius relations of fermion Proca stars with a fixed DM-fraction. In the
left panel of Figure 25, we show different FPS with the DDS EOS [72] for vector boson masses
m = {1, 0.1}× 1.34 · 10−10 eV , no self-interactions and constant DM-fractions Nb/(Nb +Nf). This
figure should be explicitly compared to Figure 16 (left panel) as the same masses and DM-fractions
were chosen. The MR curve of a pure NS with the DD2 EOS is shown as a reference. Just like FBS,
FPS can either increase or decrease the maximum total gravitational mass of the combined system,
depending on the boson mass. Overall, FPS tend to produce configurations with larger gravita-
tional masses compared to FBS with equal parameters (mass, self-interaction and DM-fraction).
This is not surprising, when considering the scaling relations of pure BS and PS respectively. The
presence of light bosonic DM can help to increase the total gravitational mass of a NS, making
EOS which do not fulfil the observational constraints for the maximum NS mass possible again.
Vector dark matter has a larger effect on the gravitational mass than scalar DM and thus, smaller
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Figure 25: Left panel: Mass-radius relations of FPS with the DDS EOS [72] for vector boson masses
m = {1, 0.1} × 1.34 · 10−10 eV , no self-interactions and constant DM-fractions Nb/(Nb +Nf). This figure
should be compared to Figure 16 (left panel) as the same masses and DM-fractions were chosen. In both
figures, the orange band marks the observational constraint of J0952-0607 [5] and the percentage numbers
denote the respective DM-fractions. Right panel: Mass-radius relations of FPS (orange and green lines)
and FBS (blue lines) with the DD2 EOS for different boson masses, no self-interactions and different
DM-fractions. The black lines correspond to the pure NS with the DD2 EOS and KDE0v1 EOS [73]
respectively. FPS and FBS solutions with different masses and DM-fractions can both be degenerate with
each other or also degenerate with pure NS with a different EOS.

amounts of vector DM are needed to produce an equal increase in the total gravitational mass.
In the right panel of Figure 25, we now show different FPS (orange and green lines) and FBS
(blue lines) with the DDS EOS [72] for different boson masses, no self-interactions and constant
DM-fractions Nb/(Nb + Nf). The parameters were chosen in a way to illustrate the degeneracies
that can arise from different DM models or EOS for the NS component. For example, FPS and
FBS with boson masses of m = 1.34 · 10−11 eV (dashed lines) produce virtually indistinguishable
mass-radius relations, when the FPS and the FBS have a DM-fraction of 60% and 75% respec-
tively. A similar behaviour can be seen for the cases where the boson mass is m = 1.34 · 10−10 eV
(dot-dashed lines). Here, FBS with 15% DM-fraction produce very similar MR curves to FPS with
20% DM-fraction. In addition, the resulting MR curves are comparable to the curve corresponding
to a pure NS with the KDE0v1 EOS [73] and also to the curve corresponding to an FPS with 10%
DM-fraction and a different vector boson mass of m = 2.24 · 10−10 eV (green line). In conclusion,
FPS can produce degenerate results in the MR plane with both FBS and pure NS, given that dif-
ferent DM-fractions and EOS are allowed. Additional observables, such as the tidal deformability,
are needed to break the degeneracy. However it seems difficult to prevent degenerate solutions
from existing in general, since FPS themselves can be degenerate with other FPS-solutions that
have different boson masses and DM-fractions.

We further explore the notion of degeneracy between FPS and FBS solutions. In Figure 26, we
show the stable FBS/FPS solutions in an MR diagram of total mass vs fermionic radius. We made
use of the scaling relations of the maximum mass for pure boson stars (Mmax ≈ 0.633M2

p/m) and
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Figure 26: Left panel: Mass-radius diagram displaying the fermionic radius vs the total gravita-
tional mass for stable FBS configurations with scalar boson mass of m = 1.34 · 10−10 eV and no self-
interaction. Each point corresponds to a single configuration and is colour-coded according to the DM-
fraction Nb/(Nb+Nf). The solid black-white line shows the mass-radius curve for pure fermionic matter.
Right panel: Mass-radius diagram displaying the fermionic radius vs the total gravitational mass for sta-
ble FPS configurations with vector boson mass of m = 2.24 · 10−10 eV and no self-interaction. Each point
corresponds to a single configuration and is colour-coded according to the DM-fraction Nb/(Nb + Nf).
The solid black-white line shows the mass-radius curve for pure fermionic matter. The vector boson mass
has been chosen so that in the limit of pure BS/PS, the same total gravitational mass is produced. Both
diagrams show only marginal differences.

pure Proca stars (Mmax ≈ 1.058M2
p/m), to match the masses in a way that both FPS and FBS

will have the same mass in the pure BS/PS limit. To guarantee matching solutions in this limit,
we chose a scalar boson mass of m = 1.34 · 10−10 eV and we chose a mass of 1.058÷ 0.633 ≈ 1.671
times the mass of the scalar boson – i.e. m = 2.24 ·10−10 eV – for the vector boson. We find a high
degree of similarity between the MR region of FBS and FPS with the scaled masses, making both
solutions almost indistinguishable. The small differences present between the left and right panel
of Figure 26 can be attributed to a slightly different grid-spacing used for the initial conditions
ρc, ϕc (and ρc, E0) – see the bottom parts of the MR regions at small total gravitational masses
Mtot < 0.5M⊙ and also at radii Rf > 15 km. Apart from that, the colour shading reveals a
different distribution of DM-fractions for a given Mtot and Rf , even though the difference is slight.
We expect a similar behaviour to hold when considering different scalar and vector boson masses
(with zero-self-interaction), given that they differ by the same factor of ≈ 1.671. This adds
further confidence to the observation that FBS and FPS might be difficult to distinguish, since a
given solution might be another system but with different boson mass (or DM-fraction). Because
similar scaling relations also exist for BS and PS in the large Λint limit, a similar procedure
might be possible when also matching the self-interaction strength appropriately. An independent
measurement of the DM particle mass will make it possible to break this degeneracy to a certain
degree, but it would also be necessary to constrain the self-interaction strength and the DM-fraction
through other means, such as correlations of the DM abundance in the galactic disk (see [45, 217])
or using the bound on the maximal vector field amplitude.
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7.2.3 Study of Higher Modes and Different EOS

We close our analysis of fermion Proca stars by broadening our analysis to FPS with different
EOS for the fermionic component and to FPS, where the bosonic component exists in a higher
mode. Higher modes are usually assumed to be unstable, but as numerical simulations of scalar
boson stars have shown [39, 218], higher modes might be dynamically stable, when gravitationally
interacting in a multi-component system. We therefore start by considering FPS in the first and
second mode in Figure 27.
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Figure 27: Left panel: Mass-radius diagram displaying the fermionic radius vs the total gravitational
mass for stable FPS configurations in the first mode with vector boson mass of m = 1.34 · 10−10 eV and
no self-interaction. Each point corresponds to a single configuration and is colour-coded according to the
DM-fraction Nb/(Nb + Nf). The solid black-white line shows the mass-radius curve for pure fermionic
matter. Right panel: Mass-radius diagram displaying the fermionic radius vs the total gravitational
mass for stable FPS configurations in the second mode with vector boson mass of m = 2.24 · 10−10 eV
and no self-interaction. Each point corresponds to a single configuration and is colour-coded according to
the DM-fraction Nb/(Nb+Nf). The solid black-white line shows the mass-radius curve for pure fermionic
matter.

In the left panel of figure Figure 27, we show the total gravitational mass and the fermionic radius
of stable FPS configurations, where the bosonic component is in the first mode (as opposed to
the ground mode, which is the zeroth mode). The vector boson mass is m = 1.34 · 10−10 eV and
the self-interaction is set to zero. We first note the fact, that stable solutions under linear radial
perturbations, according to the stability criterion (54), exist at all. This is a non-trivial statement
as higher modes of PS (and also of boson stars) are usually believed to be unstable. Note that our
stability analysis does not consider the dynamical stability of the higher modes, so they might still
be unstable in non-static scenarios. It is however possible that the higher modes of the bosonic
part might be stabilised through the gravitational interaction with the fermionic part of the FPS.
Generally, the FPS in the first mode exhibits higher gravitational masses in the configurations dom-
inated by the bosonic component, compared to FPS in the zeroth mode (compare to Figure 21).
The numerical value of the frequency ω in the higher mode is also larger than the frequency in
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lower modes. This behaviour is consistent with earlier works, which studied pure Proca stars ana-
lytically [188] and numerically [184], and also observed that higher frequencies lead to larger total
gravitational mass. The left panel of figure Figure 27 shows a number of outlier points at around
11 km and 2.3M⊙. These are likely to be numerical artefacts due to the increased difficulty of
finding accurate numerical solutions for higher modes. The right panel of Figure 27 shows stable
FPS configurations in the second mode. The vector boson mass is m = 1.34 · 10−10 eV and the
self-interaction is set to zero. Here also, the existence of stable solutions is to be acknowledged.
In the limit of high DM-fractions, the FPS converge to the solution of pure PS and reach total
gravitational masses of 2.5 times that of Proca stars in the zeroth mode (compare to Figure 21).
In comparison to the case in the first mode, the quality of the overall solution can be seen to
deteriorate further. We believe the outlier points at roughly < 13 km and 1M⊙ to be non-physical
numerical artefacts. Solutions of FPS in even higher modes should be considered with great care,
given that the difficulty of obtaining accurate numerical solutions increases further. The quality
of the solution is however sufficient to gain a qualitative understanding of FPS in higher modes.
In conclusion, higher modes are stable under linear radial perturbations and increase the total
gravitational mass of FPS by substantial amounts.
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Figure 28: Left panel: Total gravitational mass of different FPS as a function of the restmass density ρc
and central vector field amplitude E0. The black line corresponds to the stability curve, which separates
stable solutions (in the lower left region) from unstable solutions (everywhere else). The qualitative
behaviour of the stability curve of FPS is similar to the case with FBS (see Figure 12) Right panel: Mass-
radius diagram displaying the fermionic radius vs the total gravitational mass for FPS configurations that
are within the stability region displayed in the left panel. Each point corresponds to a single configuration
and is colour-coded according to the DM-fraction Nb/(Nb + Nf). The solid black-white line shows the
mass-radius curve for pure fermionic matter. In both cases, a vector field with a mass of m = 1.34·10−10 eV
and no self-interactions was considered in addition to the APR EOS [71] for the fermionic part.

We investigate the effect that different EOS have on FPS. In the first case in Figure 28, we use
the APR EOS [71] for the fermionic part and we chose a vector boson mass of m = 1.34 · 10−10 eV
with no self-interaction for the bosonic part. When considering the left panel, we notice that the
shape of the stability curve (black curve) is affected by the choice of the EOS. On the ρc-axis, it
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Figure 29: Left panel: Total gravitational mass of different FPS as a function of the restmass density ρc
and central vector field amplitude E0. The black line corresponds to the stability curve, which separates
stable solutions (in the lower left region) from unstable solutions (everywhere else). The qualitative
behaviour of the stability curve of FPS is similar to the case with FBS (see Figure 12) Right panel: Mass-
radius diagram displaying the fermionic radius vs the total gravitational mass for FPS configurations that
are within the stability region displayed in the left panel. Each point corresponds to a single configuration
and is colour-coded according to the DM-fraction Nb/(Nb + Nf). The solid black-white line shows the
mass-radius curve for pure fermionic matter. In both cases, a vector field with a mass of m = 3.01·10−11 eV
and no self-interactions was considered in addition to the FSG EOS [72] for the fermionic part.

converges to a value of around 7.5ρsat, which is higher than the corresponding value of ρc when the
DD2 EOS is used (compare to Figure 21). This is due to the fact that the APR EOS is softer than
the DD2 EOS, meaning that the nuclear matter is easier to compress and higher central densities
can be supported by the EOS. The easier compressibility also shows itself through smaller NS radii
(see the right panel). In the limit of pure PS, the stability curve converges to the same value as it
does when the DD2 EOS is used (compare to Figure 21). The MR region shows similar qualitative
behaviour as in the DD2 case. The high DM-fraction limit in particular shows a convergence to
the solution to pure Proca stars. The APR EOS also evidently allows higher central amplitudes
of the vector field E0, compared to the DD2 EOS with equal boson mass and self-interaction
strength. Figure 29 shows different FPS configurations but this time, the FSG EOS [72] was used
for the fermionic part. For the bosonic part we used a boson mass of m = 3.01 · 10−11 eV and
no self-interaction. Again, the FSG EOS is a soft EOS and thus reaches higher central densities
ρc for pure NS. For the case of pure NS, the FSG EOS is excluded as a possible EOS by current
observational constraints (see Figure 16), as it cannot reach the bound of M = 2.35+0.17

−0.17M⊙ [5].
However, adding dark matter to the pure NS can significantly increase the maximum gravitational
mass of the combined system so that the FSG EOS is able to reach the observational bound on the
maximum NS mass in the presence of DM. In fact, the MR curve of the pure DDS EOS is entirely
contained within the stability region of the FPS with the FSG EOS. This again raises the point
that some FPS solutions are degenerate with some NS solutions (see Figure 26), when allowing for
different DM-fraction and DM masses. To ascertain whether and which types of mixed DM-NS
systems might exist, it will be crucial to perform sophisticated parameter searches of the system
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and obtain more measurements to constrain the DM and NS properties in future studies.
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8 Conclusions and Outlook

In this work, we studied the impact that bosonic dark matter has on the radius and tidal deforma-
bility of neutron stars. The dark matter was modelled as either a massive, self-interacting complex
scalar field or as a massive, self-interacting complex vector field. The DM was further assumed
to only interact gravitationally with the fermionic neutron star matter. We derived the equations
of motion describing static spherically symmetric fermion boson stars (with a scalar field) and
fermion Proca stars (with a vector field) and computed their properties numerically. We derived
the equations describing linear perturbations of fermion boson stars induced by an external grav-
itational tidal field and computed their tidal deformability numerically. For fermion Proca stars,
we presented their equations of motion for the first time, found a scaling relation between the
frequency, field and metric components and we derived an analytical upper bound on the vector
field amplitude.

For FBS, we found that the presence of the scalar field can lead to DM core and cloud solutions.
For the scalar field masses m and the self-interactions λ, which result in core-like configurations,
we found an increased compactness and smaller tidal deformability Λint compared to pure NS. This
was found to be the case for DM masses of m ≳ 1.34·10−10 eV . However, large self-interactions Λint

can also lead to cloud-like solutions in certain cases. For some FBS, observing only the fermionic
radius and the total gravitational mass would appear to violate the Buchdahl limit.
The comparison of our results to available observations of NS masses and radii shows that their
uncertainties are currently too large (apart from some pulsar mass measurements) to derive clear
quantitative constraints on the DM properties (mass and self-interaction strength). The degen-
eracy between different FBS models and different EOS further complicates this. For some small
boson masses m ≲ 1.34 · 10−11 eV , the presence of DM can significantly increase the NS gravi-
tational mass while leaving the fermionic radius approximately constant. This makes previously
excluded EOS possible again, if they are used in a combined NS-DM system. Additionally, the
unusually light neutron star HESS J1731−347 is difficult to explain using current EOS models of
pure NS matter, but might be explained by a NS which also contains a significant fraction of DM.
The observational constraint on the tidal deformability from the event GW170817 (Λtidal ≤ 800 at
Mtot ≈ 1.4M⊙) is currently not strong enough to significantly constrain the DM properties, even
though the results seem to favour DM core-like configurations. With the ongoing joint run of the
GW detectors LIGO, Virgo and KAGRA, we expect to obtain more observational data, which will
enable us to derive quantitative constraints. We leave the quantitative analysis of constraints for
future works.
In addition to solving the FBS self-consistently by integrating the scalar field, we also considered
an effective EOS for the scalar field to reduce the complexity of the FBS system to a two-fluid
model. The two-fluid model was recently used by [47] to compute the tidal deformability of FBS.
In this work, we compared the results obtained using the two-fluid system and by solving the full
system self-consistently. We found that for scalar boson masses of m = 6.7 · 10−11 eV and self-
interaction strengths of Λint > 300− 400 with Λint = λ/8πm2, the usage of the effective EOS and
the two-fluid system is typically justified. We do not expect this conclusion to be dependent on m
but rather only on Λint. The agreement between the full system and the two-fluid system increases
with larger Λint. Still, even for large Λint, we find that a significant number of configurations show
large relative errors of > O(102).
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In the future, it would be interesting to study the impact that the scalar field has on the inspiral
of binary compact objects. This was already studied for non-self-interacting scalar fields [195]. It
will however be necessary to extend these simulations to the self-interacting case, since the self-
interaction can significantly modify the tidal properties of a NS, even at small DM-fractions, and
thus modify the observed GW signal.

For FPS, we found an overall similar qualitative behaviour to FBS. We showed that the pres-
ence of the vector field can lead to core-like and to cloud-like solutions. Similarly to FBS, we
found core-like solutions for m ≳ 1.34 · 10−10 eV and small Λint and cloud-like solutions when
m ≲ 1.34 · 10−11 eV and Λint is large. We computed radial profiles of FPS and found that the
existence of a maximum possible vector field amplitude limits the effect of DM on the NS when
the self-interaction Λint is large. The maximum amplitude implies a maximum possible amount of
vector boson DM accretion and could thus be used to set bounds on the DM properties.
For stable FPS configurations, we found that many of the general qualitative trends that apply to
FBS also apply to FPS, but vector DM leads to higher FPS masses and larger gravitational radii
for equal m and Λint. This could imply a larger tidal deformability of FPS compared to FBS. Also,
a measurement of the gravitational radius would favour larger vector boson masses compared to
scalar boson masses.
For FPS configurations of constant DM-fraction, we found that the effect of vector DM on NS
properties (total gravitational mass and fermionic radius) is larger compared to FBS with equal
DM-fraction, mass m and self-interaction strength Λint. One therefore needs a larger amount
of scalar DM to cause the same effect as vector DM. The degeneracies between different EOS
and mixed systems are also present for FPS. For different boson masses and DM-fractions, FPS
and FBS can both be degenerate with each other and also be degenerate with pure NS with a
different EOS. We found an especially high degree of similarity between FBS solutions with no
self-interaction and a boson mass of m = 1.34 · 10−11 eV with FPS solutions where the vector
boson mass is larger by a factor of 1.671. We expect the similarity in the behaviour to hold also
for different boson masses (and also for non-zero self-interactions), as long as the vector boson
mass is scaled accordingly by the right factor. The prevalence of degenerate solutions highlights
the importance of measuring additional observables, such as the tidal deformability, to break the
degeneracies.
We confirmed the existence of higher modes that are stable under first-order radial perturbations.
Also, we found that higher modes lead to higher total gravitational masses of the mixed FPS
systems. Using FPS with different EOS for the fermionic part, we could explicitly confirm that
for certain DM masses, previously excluded EOS are able to fulfil observational bounds if DM is
present. Mixed systems of DM and NS matter can therefore be consistent with all current obser-
vational constraints, if suitable boson masses and self-interaction strengths are chosen.

Mixed systems of fermions and bosons are a fascinating field of research and can, as we have shown,
be relevant to the search for dark matter within neutron stars. In the future, it will be crucial
to obtain more observational data and constraints to narrow down the allowed ranges for the DM
properties. For example as a next step, the tidal deformability of fermion Proca stars could be
computed to gain an additional observable to constrain their properties. One could build upon the
work of [219], where the tidal deformability of pure Proca stars was computed. More knowledge
about the nuclear matter EOS is also needed to accurately constrain the DM properties and to
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reduce degeneracies between EOS effects and effects due to the presence of DM. In future works,
measurements of the total gravitational mass, the fermionic radius and the tidal deformability
can be used to systematically constrain the DM mass and self-interaction. But first, it would
be useful to find an EOS-independent method of characterizing FBS/FPS to exclude EOS effects
when probing DM properties. We leave this question for a future work.
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9 Appendix

A List of Abbreviations

ALP – axion-like particle(s)

BH – black hole(s)

BS – boson star(s)

BSM – (physics) beyond (the) standard model

CP – charge (and) parity (symmetry/transformation)

DM – dark matter

χEFT – chiral effective field theory

EH – Einstein-Hilbert (action)

EHKG – Einstein-Hilbert-Klein-Gordon (action/equation(s))

EHT – Event Horizon Telescope

EOS – equation(s) of state

EP – Einstein-Proca (action/equation(s))

FBS – fermion boson star(s)

FPS – fermion Proca star(s)

GR – general relativity / general relativistic

GW – gravitational wave(s)

KAGRA – Kamioka Gravitational Wave Detector

ΛCDM – Λ (cosmological) cold dark matter / the standard model of cosmology

LIGO – Laser Interferometer Gravitational-Wave Observatory

MACHOS – massive astrophysical compact halo object(s)

MOND – modified Newtonian dynamics

MR – mass-radius (diagram)

NICER – Neutron star Interior Composition Explorer

NS – neutron star(s)
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ODE – ordinary differential equation(s)

PBH – primordial black hole(s)

PN – post-Newtonian (expansion/formalism)

PS – Proca star(s)

QCD – quantum chromodynamics

SIDM – self-interacting dark matter

SM – standard model (of particle physics)

SUSY – Supersymmetry

TeVeS – Tensor-Vector-Scalar (gravity/theory)

TOV – Tolman-Oppenheimer-Volkoff (equations)

ULDM – ultralight dark matter

WDM – wave dark matter

WIMP – weakly interacting massive particle(s)

B Units

In this work, we use units in which the gravitational constant, the speed of light and the solar mass
are set to G = c = M⊙ = 1. As a direct consequence, distances are measured in units of ≈ 1.48 km,
which corresponds to half the Schwarzschild radius of the Sun (also called the gravitational radius
of the Sun). The Planck mass is Mp =

√
ℏc/G ≈ 1.1×10−38M⊙. Since G = c = M⊙ = 1 it follows

that ℏ ≈ 1.2× 10−76 ̸= 1.

Boson stars (with a scalar field) are described using the Klein-Gordon equation, which in SI units
and flat spacetime reads (□−(mc/ℏ)2)ϕ = 0. The term mc/ℏ is the inverse of the reduced Compton
wavelength λc = ℏ/mc, which sets the typical length scale for the system even in the self-gravitating
case. We assume that the typical length scale of the boson is similar to the gravitational radius
GM⊙/c

2, which in the case of mass scales of ∼ 1M⊙ is approximately 1.48 km. With m = ℏ/cλc,
this therefore leads to a mass scale of the bosonic particle of 1.336 · 10−10 eV . Previous works such
as e.g. [37] thus specify the mass of the scalar particle in these units. A mass of m = 1 in our
numerical code [2] then also corresponds to 1.336 · 10−10 eV . This choice of the boson mass then
automatically leads to boson stars with masses in the range of ∼ 1M⊙. The same reasoning can
also be applied to the case where the boson is a vector boson. This is valid since all components
of a vector field also fulfil the Klein-Gordon equations individually.
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C Derivation of Fermion Proca Stars

We here provide additional in-between algebra steps of the derivation of equation (83d) in the
main text. To obtain the equations of motion for the vector field component B(r), one uses the
ν = t component of the Proca equation (76). Given the spherical symmetric static metric ansatz
(80) and the ansatz for the vector field (79) chosen in this work, one obtains, after minor algebra,
equation (82):

(E ′′ − ωB′)−
(
a′

a
+

α′

α
− 2

r

)
(E ′ − ωB) = V ′(AρĀ

ρ) a2E . (100)

This equation contains derivatives of the vector field components E and B. The end goal is to
find a first-order differential equation for the component B(r). We therefore need to eliminate the
second radial derivative E ′′ by taking the radial derivative of the equation of motion for E ′ (81):

E ′′ =
dE ′

dr
=

d

dr

{
−V ′(AρĀ

ρ)
Bα2

ω
+ ωB

}
. (101)

We define the second derivative of the potential V by using the chain rule

V ′′(AρĀ
ρ) =

d

dr
V ′(AρĀ

ρ) =
dV ′(AρĀ

ρ)

d(AρĀρ)

d(AρĀ
ρ)

dr
. (102)

The potential depends on the magnitude of the vector field. The radial derivative of the magnitude
is given by

d(AρĀ
ρ)

dr
=

d

dr

(
B2

a2
− E2

α2

)
=

(
2BB′

a2
− 2B2a′

a3
− 2EE ′

α2
+

2E2α′

α3

)
. (103)

Using these expressions, we can write the second derivative of the E(r)-component (101) as

E ′′ = −V ′′(AρĀ
ρ)

(
2BB′

a2
− 2B2a′

a3
− 2EE ′

α2
+

2E2α′

α3

)
Bα2

ω
+ ωB′ − V ′(AρĀ

ρ)

(
B′α2

ω
+

2Bαα′

ω

)
.

(104)

Then, we re-arrange equation (104) to isolate terms with B′:

E ′′ = −B′
(
V ′′(AρĀ

ρ)
2

ω

B2α2

a2
+ V ′(AρĀ

ρ)
α2

ω

)
+ V ′′(AρĀ

ρ)

(
2B2a′

a3
+

2EE ′

α2
− 2E2α′

α3

)
Bα2

ω

+ ωB′ − V ′(AρĀ
ρ)

2Bαα′

ω
.

(105)

Now we can substitute this expression for E ′′ in the equation of motion for B (100). Note that
the terms with ωB′ cancel out. The final expression for B′ can now be obtained by solving the
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resulting expression for B′, leading to

B′ =

{
V ′′(AρĀ

ρ)

(
2B2a′

a3
+

2EE ′

α2
− 2E2α′

α3

)
Bα2

ω
− V ′(AρĀ

ρ)

(
a2E +

2Bαα′

ω

)
−
(
a′

a
+

α′

α
− 2

r

)
(E ′ − ωB)

}(
V ′′(AρĀ

ρ)
2

ω

B2α2

a2
+ V ′(AρĀ

ρ)
α2

ω

)−1

.

(106)
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