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Abstract
Gravitational waves emitted by a compact binary give a direct measurement of the gravitational
wave luminosity distance dGW

L between the source and the observer. This property is the reason
why coalescing black holes at a cosmological distance are called standard sirens. If the redshift z
of the binary is also known, the standard siren gives a test of cosmology.

In this work, we explore the possibility to statistically estimate redshifts of gravitational waves
sources using the cosmological redshift of masses: mz = m0(1 + z), where mz is the source mass
in the detector-frame and m0 the source mass in the source-frame, and using the source-frame
mass population of binary black holes.

We test the possibility to constrain the values of cosmological parameters such as H0 and Ωm,0
using only detections of gravitational waves and we also test the possibility to measure modified
gravitational waves propagation by constraining the values of the (Ξ0, n) parametrisation of the
ratio dGW

L /dEML = Ξ0 + (1−Ξ0)/(1 + z)n [dEML being the electromagnetic luminosity distance].
Data is analysed by applying Bayesian hierarchical inference and using a Markov chain Monte

Carlo method.
This method is working: on mock data that simulates 5 years of advLIGO observation, we

are able to constrain the value of Ξ0 at ∼ 30%. By analysing the BBHs detections of catalogs
GWTC-1 and GWTC-2 we obtain Ξ0 = 0.66+1.20

−0.42, and if we neglect GW190521, we obtain
Ξ0 = 1.93+4.44

−1.43 (both values at 68% C.L. for a flat prior on (0.1, 10)). The value without
GW190521 is in accordance with previous results and in particular is compatible with GR
(Ξ0 = 1) and with the largest prediction by available cosmological model (Ξ0 ≈ 1.8).

Keywords: Standard sirens – Black hole mass gap – Modified gravity – Modified gravitational
waves propagation – Bayesian hierarchical inference – MCMC.



Introduction

Gravitational waves provide an amazing possibility to test physical theories. Since the first
detection of a gravitational wave (GW) in September 2015 [2], more than fifty other events
have been detected [3, 4]. A famous example of test of cosmology by using GWs is given by the
constraint on the value of the Hubble constant using the events GW170817 (a gravitational wave
observation) and GRB 170817A (a gamma-ray burst) [5]. GW170817 was caused by two neutron
stars (NS) of 1.46+0.12

−0.10 M� and 1.27 ± 0.09 M� that merged at 40+7
−15 Mpc from us [3]. The

gamma-ray burst GRB 170817A was the electromagnetic (EM) counterpart of this gravitational
wave [6]. From the amplitude of the GW, it is possible to measure the luminosity distance dL
between the source and the observer, while the cosmological redshift, z, is measurable from the
electromagnetic counterpart. At nearby distance, the Hubble constant is given by:

H0 = cz

dL
,

and for GW170817 and GRB 170817A used together, one gets: H0 = 70.0+12.0
−8.0 km s−1 Mpc−1 [5].

The credible intervals on this value are large (i.e. the accuracy on the measurement is pretty
bad), but that measurement was done on a single observation. With the next generation of GW
detectors, expected in the mid-2030s, there will have O(102) NS–NS GWs with EM counterpart
detections over a few years of observation [7]. The accuracy of the measurement of the Hubble
constant by using GWs are going to be quickly improved. In a short term it could become precise
enough to decide in the Hubble tension between standard candles and CMB measurements.
In analogy with the standard candle, merging compact binaries are called standard sirens.

In addition to the measurement of H0, standard sirens can be used to test modified GW
propagation and consequently modified gravity theories. In general relativity (GR), the distance
that is measured from GWs, dGW

L , (the gravitational wave luminosity distance) is equal to the
classical definition of the luminosity distance dEML (see e.g. ref. [8]). However in modified gravity
theories, these two distances can be different (see e.g. ref. [9]). The ratio between these distances
is parametrisable as [9]:

dGW
L
dEML

= Ξ0 + 1−Ξ0
(1 + z)n

where Ξ0 is the most important parameter, since n gives the shape of the ratio while Ξ0 gives its
maximal amplitude. Since GR predicts dGW

L = dEML , it predicts Ξ0 = 1.

When a GW does not have any EM counterpart, it is impossible to measure the redshift of its
source and it is called a dark siren. However there exist a few techniques to statistically estimate
the redshift. A first technique consists in using a galaxy catalog (that gives the redshift of the
galaxies) and correlate the origin of the GW with a galaxy in the catalog. This technique was
used e.g. in ref. [10]. Another technique uses the cosmological redshift of the masses to estimate
the redshift of the GW source [11]. In other words, the detected mass is not the source-frame
mass m0 but rather the detector-frame mass mz = m0(1 + z). By using the mass population of
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2 INTRODUCTION

binary black holes, we can statistically estimate the redshifts of GW sources. This method was
used e.g. in refs [11,12], and it is this second method we use in this master’s project.

The statistical analyses are performed by using the framework of Bayesian probability and
more especially Bayesian hierarchical inference, the calculations being made with a Markov chain
Monte Carlo method.

This thesis is composed of three chapters. In chapter 1, we start from GR and show how it
predicts GWs, how they can be created by astrophysical binaries and how we detect them with
ground-based interferometers. We then recall some basics of cosmology and in particular the
ΛCDM and wCDM models. It is then possible to look at propagation of GWs in an expanding
Friedmann–Lemaître–Robertson–Walker Universe and how standard sirens work. We then
dedicate a section to the introduction of modified gravity theories and modified GWs propagation.
The chapter ends with a review of binary black holes mass populations.

In chapter 2, we first introduce Bayesian interpretation of probability, that is necessary to
perform Bayesian inference. More precisely, we are interested in performing hierarchical Bayesian
inference with a selection bias [13], a method introduced just after an example of Bayesian
inference to better understand it. At the end of the chapter, we explain in details the specific
inference we use in order to constrain modified gravitational waves propagation with the black
hole mass gap.

Chapter 3 presents the main results we obtain by applying our method, first on mock data
and then on the real GW data of advLIGO and advVirgo [3, 4].

The thesis ends with two appendices: in appendix A we present the working of Markov
chain Monte Carlo methods and in particular the algorithm we use. Appendix B gives more
information on the selection bias of the GWs detections.
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In the present chapter, we first present some properties of Gravitational Waves (GWs), especially
the properties we are interested in for this master’s project. Then there is a short introduction
to cosmology and to the cosmological models we use. After a small presentation of standard
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4 1. THEORY

sirens, we discuss some modified gravity theories and particularly modified gravitational wave
propagation. The chapter ends with a presentation of the binary black holes population models
we use.

1.1 Basics of Gravitational waves

The existence of gravitational waves is one of the main consequences of the theory of General
Relativity. One can find an introduction (and more) to gravitational-wave physics in number
of textbooks or lecture notes about gravitation, e.g. refs [14–20]. Refs [8, 21] are focused more
especially on gravitational waves, and we mostly use them for this section.

1.1.1 How General Relativity predicts gravitational waves

Gravitational waves can emerge in GR with different approaches. Here we expose the most
straightforward way to find GWs, using linearized theory (one expands the GR metric g around
the flat Minkowski metric η). But exact gravitational wave solutions are possible (see e.g. ref. [19],
sect. 2.4), and a field-theoretical approach to GWs is also possible (see e.g. ref. [8], chap. 2).

If the metric is (at least locally) nearly flat, one can expand it at the first order:

gµν = ηµν + hµν with hµν = hνµ and |hµν | � 1, (1.1)

where ηµν is the Minkowski spacetime metric and where hµν is the (first order) perturba-
tion: for example in the Solar System (the Sun being approximately the total mass), we have
|hµν | ∼ |φ|/c2 . (G M�)/(c2 R�) ∼ 10−6 [14].

The goal is now to compute the Einstein’s equations (with c = 1):

Gµν ≡ Rµν −
1
2gµνR = 8πG Tµν , (1.2)

with the metric of eq. (1.1). Since h is small, we can write the Ricci tensor as:

Rµν = ∂λΓ
λ
µν − ∂νΓ λλµ +O(hh), (1.3)

where the Christoffel symbols are linearized:

Γαµν = 1
2η

αβ (∂νhνβ + ∂µhβν − ∂βhνµ) . (1.4)

(We raise or lower the indices with the flat metric η. It is as if hµν were a tensorial field on the
flat Minkowski spacetime.) In eq. (1.3), we can neglect terms of order h2: for example, in the
Solar System h2 ∼ 10−12 � h. The Ricci tensor (eq. (1.3)) is then:

Rµν = 1
2
(
hλµ,λν −�hµν − hλλ,µν + hλν,λµ

)
, (1.5)

and the Ricci scalar is:

R = hλσ,λσ −�h, (1.6)

where h is the trace of the perturbation: h ≡ hνν = ηµνhµν , � is the flat space d’Alembertian
operator: � ≡ ∂µ∂µ = ηµν∂

µ∂ν , and the comma indicates a partial derivative ∂.

At this approximation, the Einstein’s equations (eq. (1.2)) give the linearized field equations:
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�hµν + h,µν − hλµ,λν − hλν,λµ − ηµν�h+ ηµνh
λσ
,λσ = −16πGTµν . (1.7)

To obtain a shorter expression, we define the trace reversed perturbation as:

h̄µν = hµν −
1
2ηµνh, (1.8)

(h̄µν is also often written γµν or Hµν) and eq. (1.7) becomes:

�h̄µν + ηµν h̄
,ρσ

ρσ − h̄ ,ρ
µρ,ν − h̄ ,ρ

νρ,µ = −16πGTµν , (1.9)

this equation is still complicated but it can be simplified by a gauge transformation.

Let us consider an infinitesimal coordinate transformation:

x′α ≡ xα + ξα, where ξα = ξα(t,x) and |ξα| � 1, (1.10)

that induces:

gµν(x) = ∂x′σ

∂xµ
∂x′ρ

∂xν
g′σρ(x′) (1.11)

= g′µν(x′) + g′σν(x′) ξσ,µ + g′µσ(x′) ξσ,ν , (1.12)

and at first order in ξα and hµν , one gets:

h′µν(x′) = hµν(x)− ξµ,ν − ξν,µ (1.13)
⇒ h̄′µν = h̄µν − ξµ,ν − ξν,µ + ηµνξ

ρ
,ρ . (1.14)

Such a coordinate transformation lets the Riemann tensor invariant (at the order we are
interested in):

R′αβµν = Rαβµν , (1.15)

then, if hµν satisfies the Einstein’s equations (eq. (1.2)) then also does h′µν . If we know a small
(trace reversed) perturbation hµν (h̄µν) that is solution of the Einstein’s equations, then we can
transform it in a small (trace reversed) perturbation h′µν (h̄′µν) that also satisfies the Einstein’s
equations. In particular, we can choose h̄µν satisfying the Lorenz gauge (also called Hilbert gauge
or harmonic gauge):

∂ν h̄µν = 0. (1.16)

In this gauge, the three last terms of equation (1.9) vanish, and we get:

�h̄µν = −16πGTµν . (1.17)

Since the d’Alembertian operator is invertible, eq. (1.17) always admits a solution. Its
retarded solution being:

h̄µν = 4G
∫
Tµν(x0 − |x − x ′|,x ′)

|x − x ′| d3x′. (1.18)

If we are in vacuum (so outside the source, where Tµν = 0), eq. (1.17) becomes:

�h̄µν = 0, (1.19)
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so we have plane waves solutions, with the ansatz:

h̄µν = εµν cos(kαxα). (1.20)

The trace reversed perturbation h̄µν is then a plane wave with undulations in the plane
perpendicular to the propagation direction k, with a velocity v = ω/k. The Einstein’s equations
imply k2 = 0, then v = 1 (remember we use units with c = 1). Thus gravitational waves propagate
with the velocity of light. The matrix εµν is called the polarisation tensor. By symmetry h̄µν has
ten independent components. By imposing the Lorenz gauge (eq. (1.16)), it has six degrees of
freedom left.

Let us now consider another coordinates transformation xµ 7→ x′µ = xµ + ξµ, with �ξµ = 0,
then

�
(
ξµ,ν + ξν,µ − ηµνξρ,ρ

)
= 0. (1.21)

From eq. (1.14), we see that to the six independent components of h̄µν we can impose four
conditions by choosing carefully the four functions ξµ. In particular, one can choose ξ0 such
that the trace h̄σσ vanishes. One then has: h̄µν = hµν , thus the metric perturbation hµν and the
trace reversed perturbation h̄µν (that follows the wave equation) are the same. The three other
functions ξi can be chosen such that h0i = 0.

Since hµν = h̄µν , the Lorenz gauge eq. (1.16), for ν = 0 is:

∂0h00 + ∂0h0i = 0 (1.22)
⇒ ∂0h00 = 0, (1.23)

where the second equation comes from the gauge choice h0i = 0. A time-independent h00
corresponds to the Newtonian potential of the source that generated the wave. Therefore if
the potential does not vary in time as the wave propagates, it means that it is zero. Hence h00 = 0.

To summarise, we have a gauge in which:

h0µ = 0 (transverse), (1.24)
hii = 0 (traceless). (1.25)

This gauge is then called the transverse-traceless gauge (or TT gauge) and we denote a metric
perturbation in the TT gauge by hTTµν .

Let us use a plane wave that propagates in the ẑ-direction as standard example. We then
have: kσ = (−ω, 0, 0, ω). With the TT and Lorenz gauges we have that εtµ = εzν = 0 and
εxx = −εyy. The only non-vanishing components are then:

εxy = εyx ≡ ε× (1.26)
εxx = −εyy ≡ ε+. (1.27)

Thus, in the TT gauge, a plane gravitational wave is the linear combination of two types of
solutions:
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εµν = ε+


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

+ ε×


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 , (1.28)

and the perturbation is:

hTTij (t, z) =


h+ h× 0
h× −h+ 0
0 0 0


ij

, (1.29)

also written:

hTTab (t, z) =

h+ h×

h× −h+


ab

, (1.30)

where a, b = 1, 2 are indices in the transverse (x, y) plane and where h+,× = ε+,× cos (kαxα). The
tensors ε+ and ε× are respectively called the “plus” and “cross” polarisations of the GW.

1.1.2 Generation of gravitational waves from a binary system

In this subsection we discuss some results about generation of gravitational waves by a binary
system of massive compact objects. The equations we present (and many more) are proved in
ref. [8], chapters 3 & 4.

Two bodies in gravitational interaction emit gravitational waves. This process is highly non lin-
ear: the dynamics of the binary system is described by GR (which is itself non linear), the system
emits GWs, then the waves have a back-reaction on the system, etc. The general technique is to
use a multipolar expansion of the mass distribution of the system (and also of its spin distribution).

We only consider here the easiest case where the velocity of the bodies is small: (v/c)� 1.
This approximation is not always good: just before the coalescence of two black holes, their
radial velocity is v/c ∼ 0.6 (see e.g. ref. [2] and particularly their fig. 2, that is reproduced in fig.
1.1 below), so one needs to take into account higher order terms. In this first approximation, the
amplitude of GWs is given by the change of the mass quadrupole moment (hence l = m = 2 in a
multipole expansion) and has order (v/c)2. When the expansion is stopped after the v2 term, we
get the Post Newtonian approximation (1PN) and the cut after the vn term gives the (n/2)PN
approximation. At higher order, higher mass multipole moments and spins have effects. The
(highly complicated, but amazing) multipolar expansion using the Blanchet–Damour approach is
explained in the lectures ref. [22] (by Thibault Damour himself) and in chapter 5 of ref. [8].

On the historical aspect, the 1PN approximation is known from the beginning of GWs (by
Einstein, Lorentz and others), while the 2PN approximation dates from the early 1980s and
the 4PN from 2014 [22]. Since ∼2005, numerical relativity (NR) is also another possibility to
compute h. In practice multiple techniques are used to compute precise waveforms. To have a
precise template of the GW, in general, the amplitude of the wave can be computed at 1PN,
while its phase is computed at much higher order (see last paragraph of the present subsection).
Let us see the main equations of the 1PN approximation, keeping c explicit.

We saw in eq. (1.18) that GWs always admit a solution that is a function of the stress-energy
tensor Tµν . If we are far away from the source, we can take the approximations:
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Figure 1.1: Top: Estimated gravitational-wave strain amplitude from GW150914 projected onto
H1. This shows the full bandwidth of the waveforms, without the filtering. The inset images
show numerical relativity models of the black hole horizons as the black holes coalesce. Bottom:
The Keplerian effective black hole separation in units of Schwarzschild radii (RS = 2GM/c2) and
the effective relative velocity given by the post-Newtonian parameter v = (GMπf/c3)1/3, where
f is the gravitational-wave frequency calculated with numerical relativity and M is the total
mass. This figure (and its caption) is fig. 2 of Abbott et al., ref. [2].

|x| ≈ r, (1.31)

t− |x − x’ | ≈ t− r

c
+ x · x̂

c
, (1.32)

where x̂ is the unit vector x/|x|. The metric perturbation hTTij can be rewritten as:

hTTij = 1
r

4G
c4 Λij,kl(x̂)

∫
Tkl

(
t− r

c
+ x · x̂

c
, x̂
)

d3x′, (1.33)

where the projection operator Λij,kl is defined as:

Λij,kl(x̂) = PikPjl −
1
2PijPkl (1.34)

with Pij(x̂) = δij − xixj . (1.35)

With some work (see e.g. ref. [8], chap. 3), one can find that:

hTTij (t,x) = 1
r

4G
c4 Λij,kl(x̂)×

[
Skl + 1

c
xmṠ

kl,m + 1
2c2xmxpS̈

kl,mp + · · ·
]
, (1.36)

where:
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Sij(t) =
∫
T ij(t,x) d3x (1.37)

Sij,k(t) =
∫
T ij(t,x) xk d3x (1.38)

Sij,kl(t) =
∫
T ij(t,x) xkxl d3x (1.39)

...

and we define M = S00, M i = S00,i, M ij = S00,ij , etc. Let us note that M is the ADM mass
(Richard Arnowitt, Stanley Deser and Charles W. Misner): the total mass measured by an
observer at infinity, in an asymptotically flat spacetime. It is the definition of the mass we use in
the equations below. The leading term in eq. (1.36) gives:[

hTTij (t,x)
]
quad

= 1
r

2G
c4 Λij,kl(x̂)M̈kl

(
t− r

c

)
. (1.40)

The mass term M̈kl can always be decomposed in two irreducible representations:

Mkl =
(
Mkl − 1

3δ
klMii

)
+ 1

3δ
klMii (1.41)

≡ Qkl + 1
3δ

klMii, (1.42)

thus one gets:

[
hTTij (t,x)

]
quad

= 1
r

2G
c4 Λij,kl(x̂)Q̈kl(t− r/c) (1.43)

≡ 1
r

2G
c4 Q̈

TT
kl (t− r/c). (1.44)

The power radiated by the GW, per solid angle dΩ is given by(dP
dΩ

)
quad

= r2c3

32πG
〈
ḣTTij ḣ

TT
ij

〉
, (1.45)

and the total radiated power (also called the total gravitational luminosity L) of the source is:

Pquad = G

5c5

〈...
Qij

...
Qij

〉
. (1.46)

This is the famous Einstein’s quadrupole formula.

Before using these formulae in an explicit example, let us have a few comments. In the
wave form (see e.g. eqs (1.33) or (1.44)), we see that h ∝ 1/r, where r is the distance between
the source and the observer. This is a classical property of spherical waves’ amplitudes, and
we will use this property in the following (see sect. 1.4). At the first order, a GW is sourced
by the change of the mass quadrupole. In analogy with other waves (such as electromagnetic
(EM) waves) we could have guessed that a gravitational wave come from the time variation of
a mass multipole. Indeed, EM waves come from the variation of an electric charge dipole and
the equivalent of the electric charge in gravity is the mass, while the main multipole must be
different from the EM case, because of the transformation of the field under an infinitesimal
coordinate transformation (see eq. (1.13)) that is different in the case of gravity than in the case
of electromagnetism. Last comment, the factor 1/5 in the Einstein’s quadrupole formula, eq.
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(1.46), comes from the fact that GWs have spin 2 (2s+ 1 = 5) [22].

Let us now apply the above equations in the simple case of a binary system in circular orbit,
with masses m1 and m2 (we suppose w.l.o.g. m1 ≥ m2). We define the total mass of the system:
M = m1 +m2; the reduced mass: µ = m1m2/(m1 +m2); the mass ratio: q = m2/m1 and the
symmetric mass ratio: η = ν = µ/M = m1m2/(m1 +m2)2 from which we define the chirp mass:

Mc = µ3/5M2/5 = η3/5M = (m1m2)3/5

(m1 +m2)1/5 . (1.47)

The waveforms produced by such a binary system is given by (see eq. (4.3) of ref. [8]):

h+(t) = 4
r

(
GMc
c2

)5/3 (
πfGW
c

)2/3 1 + cos2 θ

2 cos (2πfGWtret + 2φ)

h×(t) = 4
r

(
GMc
c2

)5/3 (
πfGW
c

)2/3
cos θ sin (2πfGWtret + 2φ) , (1.48)

where we introduce the frequency of the gravitational wave fGW, the retarded time tret and the
coordinates (θ, φ) to go from the observer to the source-frame. The frequency of the GW in term
of τ ≡ t− tcoal, i.e. the time before the coalescing time tcoal, is given by:

fGW(τ) = 1
π

( 5
256

1
τ

)3/8 (GMc
c3

)−5/8
, (1.49)

we have numerically:

fGW(τ) ≈ 134 Hz
(1.21 M�

Mc

)5/8 (1 s
τ

)3/8
. (1.50)

In the case of an elliptic orbit with semi-major axis a and eccentricity e, the total radiated
power is given (exactly) by (Philip Carl Peters and Jon Matthews, 1963):

P = 32G4µ2M3

5c5a5 f(e), (1.51)

with

f(e) = 1
(1− e2)7/2

(
1 + 73

24e
2 + 37

96e
4
)
. (1.52)

And it is possible to express the change in time of the semi-major axis and of the eccentricity
as differential equations:

da
dt = −64

5
G3µM2

c5a3 f(e) (1.53)

de
dt = −304

15
G3µM2

c5a4
e

(1− e2)5/2

(
1 + 121

304e
2
)
, (1.54)

despite the unusual coefficients, these equations are exact. The evolutions of the semi-major
axis and of the eccentricity say that from any elliptic orbit, the GWs emission first circularise
the orbit (the eccentricity goes to zero) then the orbit decreases in size, until the merger of the
two bodies (remember that at the merger, the 1PN approximation we use here does not hold
anymore). Equation (1.53) has already been checked to be exact long before the first detection
of a GW (15 September 2015 [2]) by looking at the change on the orbital period of the binary
pulsar PSR B1913+16, also known as “Hulse–Taylor binary” (see fig. 1.2).
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Figure 1.2: Orbital decay of PSR B1913+16. The data points indicate the observed change in
the epoch of periastron with date while the parabola illustrates the theoretically expected change
in epoch for a system emitting gravitational radiation, according to general relativity (see eq.
(1.53)). This figure (and the caption) is fig. 1 of Weisberg & Taylor, 2004, ref. [23].

The change in the orbits can be understood in (at least) two ways: the orbit loses mechanical
energy by emitting GWs, or since the GW has a finite velocity (= c), the information of the mass
position takes a certain time to go from one body to the other, time during which the first body
has moved, this delay continuously modifying the orbit.

What is the minimum accuracy that should be used to compute the waveforms? As we will
see in subsection 1.1.3, very accurate waveforms are used in experiments to distinguish a GW
signal from the noise background. This model of waveform has to be precise enough to match
the real GW signal. For the amplitude of h, a very high precision is not needed, 1PN can be
enough in a first approximation. But for the phase, it is different. The number of cycles N (f)
that a wave of frequency f spent in the detector bandwidth can be written as (see subsection
5.6.1 of ref. [8] for the derivation):

N (f) ≡ 1
32π8/3

(
GMc
c3

)−5/3
f−5/3, (1.55)

with the PN corrections given by:

N (x) = x−5/2

32πη
[
1 +O(x) +O(x3/2) +O(x2) +O(x5/2) + · · ·

]
, (1.56)

where η is the symmetric mass ratio, and x ≡
(
GMωs/c

3)2/3, for ωs the orbital frequency of
the source and for M the total mass of the source. The goal is to have a template of the
wave to a precision of at least O(1). From eq. (1.56), we can see that we need corrections
of at least O(x5/2) on the phase of the GW to have N (x) ∼ O(1). Hence we need to use at
least a 2.5PN approximation of the phase to construct waveform models. In fact it is even not
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Figure 1.3: Basic Michelson with Fabry–Perot cavities and Power Recycling mirror. LIGO’s
interferometers actually use multiple power recycling mirrors but for simplicity only one is shown
in the diagram. This figure and its caption are taken from ref. [28].

enough: an error of O(1) on the number of cycles would totally put the template out of phase
with the GW signal (an error of O(1) on a function changes greatly the cosine of the function).
So in general, for ground-based detectors (the only we have yet), one needs waveforms of at
least 3PN level or even 3.5PN level for the phase (see refs [8, 22, 24]). Taking the 1PN expan-
sion for the amplitude and higher order expansion for the phase is called a restricted PN expansion.

1.1.3 Detection of gravitational waves

Gravitational waves are currently detected by ground-based detectors (such that advanced
LIGO [25], advanced Virgo [26] and KAGRA [27]) that are Dual Recycled, Fabry–Perot Michelson
interferometers. It is basically a Michelson interferometer with arm’s length L ∼ 3− 4 km. In
addition to the Michelson interferometer, Fabry–Perot cavities are used in order to artificially
increase the traveled distance by the lasers: the lasers go back and forth around 300 times in the
arms, so the effective arm’s length is ∼ 1 000 km. Power Recycling mirrors are also used in order
to increase the laser power from 40 W to 750 kW [28]. A sketch of a Dual Recycled, Fabry–Perot
Michelson interferometer is shown on fig. 1.3.

A detected signal is given by the ratio:

δL(t)
L

= hobs(t), (1.57)

of the change in length δL (function of time) by the length L of the arms. The detected signal is
composed of the gravitational wave plus a noise:

hobs(t) = n(t) + hsignal(t), (1.58)
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Figure 1.4: Plots of power spectrum densities (PSD) for some current and future GWs detectors.
We can see that the maximum of sensitivity for current detectors (such as aLIGO, aVIRGO and
KAGRA) is of about 300 Hz. This figure is fig. A2 of Moore et al., 2014, ref. [29].

with |n(t)| ∼ 5 × 10−19 � |hsignal| ∼ 10−21 [24]. Hence the gravitational wave signal is lost in
the noise, and if one does not filter the detected data, then the signal cannot be seen.

The noise n(t) is a colored noise (i.e. it has correlations in time), it is then possible to define
the correlation of the noise, at two different times t1 and t2, as:

n(t1) n(t2) =
∫

ei2π(t2−t1)fSn(f) df, (1.59)

where Sn(f), the noise spectral density, is mathematically the Fourier transform of the correla-
tion noise, and experimentally is measured by the signal that a detector sees when there is no
gravitational wave passing through (Sn(f) then depends of the detector). Typical

√
Sn(f) are

plotted in fig. 1.4.

To extract the signal from data, a Wiener filter (or matched filter) is used. (The notations
we use here closely follow those of ref. [22], lecture 4. For a deeper introduction, see e.g. ref. [8],
sect. 7.3. and ref. [29]) To do this, we introduce a Hilbert space structure on the space of real
functions h’s, with the (Wiener) scalar product:

〈h1(t), h2(t)〉 =
∫
h̃1(f) h̃∗2(f)
Sn(f) df, (1.60)

where h̃i(f) is the Fourier transform of the signal hi(t) (h̃∗i (f) being the complex conjugate of
h̃i(f)).

A Wiener filter consists in computing the scalar product eq. (1.60) between the observed
data hobs(t) and the expected signal hθ(t) normalised by the norm of the expected signal:
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〈hobs(t), hθ(t)〉√
〈hθ(t), hθ(t)〉

= 〈h
signal(t), hθ(t)〉√
〈hθ(t), hθ(t)〉

+ 〈n(t), hθ(t)〉√
〈hθ(t), hθ(t)〉

. (1.61)

The expected signal hθ(t) is the waveform of a gravitational wave generated by a binary
system with parameters θ = {m1,m2, dL, · · · }. A lot of expected signals with different parameters
θ are computed and the normalised scalar product between the data and these hθ(t) (i.e. the
filters) is evaluated. In general, the scalar product looks random, but when hθ(t) matches the
gravitational wave signal hsignal(t), then it takes a large value.

Since the noise n(t) is the Fourier transform of the noise spectral density that is used in the
Wiener scalar product, eq. (1.60), then 〈n(t), hθ(t)〉· (〈hθ(t), hθ(t)〉)−1/2 is a random variable.
And if the noise is Gaussian, then it is a Gaussian random variable, that can be defined such
that σ2 = 1. So if eq. (1.61) is much larger than 1, one can neglect the noise contribution in the
scalar product.

We can thus define the signal-to-noise ratio (written SNR, S/N or ρ), as:

ρ2 ≡ |〈h
signal(t), hθ(t)〉|2
〈hθ(t), hθ(t)〉

, (1.62)

and if hsignal(t) = hθ(t) ≡ h(t), then we have the maximum SNR:

ρ2
max = 〈h(t), h(t)〉 =

∫ |h̃(f)|2
Sn(f) df. (1.63)

The Wiener theorem affirms that taking a filter (hθ(t)) that is the most accurate representa-
tion of the true signal (hsignal(t)) is the best way to extract the signal from the noise data.

The latter equation can be re-written as:

ρ2
max =

∫ |f h̃(f)|2
f Sn(f)

df
f

=
∫ |hs(f)|2

h2
n(f) d(ln f), (1.64)

in order to see the signal-to-noise ratio as the area over a curve on a log-axis (generally a log10
plot). This formula is computable analytically, using the waveform given by numerical relativity
(NR), analytical Effective One Body (EOB)1 (+ numerical) or even using the quadratic formula,
eq. (1.44) [22] (in that case, the computed SNR is not very accurate but the main idea is the
good one: see appendix B and particularly its eq. (B.7)).

By doing so, we see that the SNR is inversely proportional to the distance:

ρ ∝ 1
D
, (1.65)

and we will use this property, see appendix B.

When the maximum SNR is larger than a threshold ρthr � 1, the observed signal is (with
high probability) a gravitational wave detection. Often, one takes ρthr = 8 for two detectors, see
appendix B. (With more detectors, one has to take into account correlations between detectors
and the mathematics is harder, but here is the main idea.)

1See ref. [22] for an introduction to EOB.
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1.1.4 Recent observations of GWs

Advanced LIGO is composed by two detectors located in Hanford, Washington and in Livingston
Parish, Louisiana (USA) [25] and they made the first detection of a GW on 14 September
2015. This GW is called GW150914 (for Gravitational Wave 2015-09-14) [3], it has a SNR of
at least 23.6 and was caused by the merge of a binary black hole with m1 = 35.6+4.7

−3.1 M� and
m2 = 30.6+3.0

−4.4 M� at a luminosity distance dL = 440+150
−170 Mpc [3]. Since this first detection,

more than fifty other detections have been made [3, 4] in three different runs of the detec-
tors. From the second run, the European detector Virgo, located in Santo Stefano a Macerata
(near Pisa) is also operating [26]. A fourth detector, KAGRA, located in the Gifu Prefecture
(Japan) has joined the other detectors from the end of the third run (data not yet publicly
available) [27]. A timeline of the past and planned runs is shown in fig. 3.7. Detection of the
first, second and first half of the third run are publicly available in the Gravitational Wave Tran-
sient Catalogs (GWTC) 1 and 2 [3,4]. The detected masses of these events are plotted on fig. 1.10.

Some detections are particularly interesting, such as GW170817 (as we discussed in the
Introduction) that was caused by the merge of a binary neutron star with m1 = 1.46+0.12

−0.10 M�
and m2 = 1.27± 0.09 M� at 40+7

−15 Mpc [3]. This GW had an electromagnetic counterpart, GRB
170817A and together they allowed a measurement of the Hubble constant H0 [5].

Event GW190521 was sourced by the merge of a binary black hole of massesm1 = 95.3+28.7
−18.9 M�

and m2 = 69.0+22.7
−23.1 M� at dL = 3.92+2.19

−1.95 Gpc. Its heavier BH has a mass that was unexpected
from populations models (see section 1.6). A few hypotheses have been put forward to explain
this large mass (we discuss some of them in subsection 3.3.1).

Conversely, event GW190814 was caused by the merge of a black hole of mass m1 =
23.2+1.1

−1.0 M� with an not identified object of mass m2 = 2.59+0.08
−0.09 M� at dL = 0.24+0.04

−0.05 Gpc,
that is either the heaviest detected neutron star or the lightest detected black hole [4].

The events GW200105_162426 and GW200115_042309 (numbers after the underscore
represent the second of the detection of the coalescence in format hh:mm:ss UTC) were sourced
by a black hole that merged with a neutron star. For GW200105_162426: m1 = 8.9+1.2

−1.5 M�,
m2 = 1.9+0.3

−0.2 M� and dL = 280 ± 110 Mpc, while for GW200115_042309: m1 = 5.7+1.8
−2.1 M�,

m2 = 1.5+0.7
−0.3 M� and dL = 300+150

−100 Mpc [30]. (These two events are not part of GWTC-2,
because they were detected during run O3b of LIGO/Virgo: its detections are yet published step
by step and are not all publicly available.)

1.2 Basics of cosmology

And our galaxy is only one of millions of billions
In this amazing and expanding universe

Monty Python
(“Galaxy song”, Monty Python’s The Meaning of Life, 1983)

In this section we recall some basics notions of cosmology. We mostly use refs [31,32] in which
one can find much more topics about cosmology. Ref. [21] has an entire chapter (chap. 17) about
basics of FRW cosmology2 with a nice bibliography.

Since the late 1920s, we know that the Universe is in expansion: the large majority of galaxies
around us are redshifted3 and the further the galaxy, the redshifter it is, meaning that the further

2In the present document we call it FLRW cosmology, see note 4 below.
3The few blueshifted galaxies (e.g. Andromeda that has a “negative redshift”: z = −0.001 [33]) are part of our
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the galaxy the larger its speed with respect to us. It is the Hubble–Lemaître law (Georges
Lemaître, 1927 & Edwin Hubble, 1929), that one can write as:

v ∝ D ⇔ v = H0 D, (1.66)

where H0 is called the Hubble constant. But what is exactly the distance D?

1.2.1 The FLRW metric

If we average over large scales, and as far as we can see, the Universe is (at first order) isotropic
in space, i.e. the number of galaxies in a solid angle does not depend of the direction we are
looking, and statistically homogeneous in space. By using these two symmetries of space, we can
easily see that the overall metric of the Universe does not depend on the spatial position x. It is
then possible to describe the Universe as a time-ordered sequence of three-dimensional spatial
slices, (Σt)t∈R, each slice being isotropic and homogeneous in space, with a (spatial) line element(
d`2
)
t = a2(t)γijdxidxj . A four-dimensional spacetime line element can then be written as:

ds2 = c2dt2 − a2(t)γijdxidxj , (1.67)

where a(t) is the scale factor that describes the evolution of the Universe. The spatial metric γij
depends on the overall geometry. In the following, we use units with c = 1.

Since each 3D space hypersurface slice is isotropic and homogeneous, the curvature has to
be constant on each of them. Hence only three overall geometry are allowed: zero curvature
(Euclidean flat space E3), constant negative curvature (hyperbolic space H3) and constant positive
curvature (spherical space S3). In these geometries, the space line elements, d`2 = γijdxidxj , in
polar coordinates are (see e.g. ref. [32] for a demonstration):

d`2 = dr2

1− kr2 + r2(dθ2 + sin2 θ dφ2), where k =


−1 for H3;

0 for E3;
+1 for S3.

(1.68)

Inserting eq. (1.68) into eq. (1.67) gives the line element of the Friedmann–Lemaître–Robertson–
Walker (FLRW) metric4:

ds2 = dt2 − a2(t)
[

dr2

1− kr2 + r2dΩ2
]
, (1.69)

where we wrote dΩ2 = dθ2 + sin2 θ dφ2.

No one knows the overall geometry of the Universe, but it is, at least locally, extremely flat.
In the following we will then use a flat FLRW metric (k = 0), thus:

gµν(t) =


−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

 . (1.70)

closest neighbours for which the gravitational attraction is important: in addition of the Hubble flow, each galaxy
has a peculiar velocity, see below.

4Very often, this metric is just called “FRW” (see e.g. ref. [21]) or even “RW” (see e.g. ref. [32]).
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In the previous equations, t is called the cosmic time and r is the comoving coordinate. The
physical coordinate rphys (on which depends the physical results) is given by:

rphys(t) = a(t)r, (1.71)

and it is possible to derive it with respect to the cosmic time t to obtain the physical velocity:

vphys(t) = drphys
dt (t) = r

da
dt (t) + a(t)dr

dt (1.72)

≡ Hrphys + vpec, (1.73)

where we define the peculiar velocity vpec = a(t)ṙ, and the Hubble flow Hrphys, with the Hubble
parameter :

H(t) = ȧ

a
(t), (1.74)

the dots indicating a derivative with respect to the cosmic time t. When one takes t = t0 (i.e.
today), the Hubble parameter becomes the (misnamed) Hubble constant H0. It has units of
inverse time (since the scale factor is dimensionless) and is generally given in the form:

H0 = h0 · 100 km s−1 Mpc−1, (1.75)

where h0 is close to 0.7. (The unit can seem strange, but it allows to interpret the value of H0 as a
velocity of expansion (in km s−1) at a certain distance (in Mpc).) There is yet a tension between
different kinds of measurements of the Hubble constant. It is possible to measure it from the late
Universe by using type Ia supernovae, in which case we findHSNe

0 = 73.24±1.74 km s−1 Mpc−1 [21].
It is also possible to measure H0 from early Universe, using the Cosmic Microwave Background,
for example with data of the Planck satellite (and Baryon Acoustic Oscillations, BAO) to find
HPlanck

0 = 66.93± 0.62 km s−1 Mpc−1 [21]. These two measurements are incompatible at the
level of ≈ 3.4 standard deviations. This incompatibility is called the Hubble tension.

Let us come back to eqs (1.71) – (1.73). The peculiar velocity of an object is the velocity
that an observer who follows the Hubble flow would measure: indeed if an object is at rest on a
FLRW space, then its comoving coordinate is constant and vpec = 0, i.e. an observer who is also
at rest in space would only measure the Hubble flow that the object follows. This is why some
galaxies are blueshifted instead of redshifted: the Hubble flow gives to all galaxies a positive (i.e.
they move away from us) physical velocity in a radial direction (this is the Hubble–Lemaître
law), but furthermore, each galaxy has a peculiar velocity, that can have any orientation. For
some galaxies, if rphys is small enough, vpec can be large enough and in the good direction to
bring together two galaxies, i.e. one galaxy is blueshifted when observed from the other one. Let
us see now how the redshift is defined.

First, we introduce the conformal time η given by:

dη = dt
a(t) . (1.76)

We suppose that a wave signal with a conformal period ∆η is emitted at the conformal time
η1 and received at the conformal time η0 = η1 + d (where d is the conformal distance between
the source and the observer, if c = 1). When one measures the period one uses the cosmic time t.
So, we have:

(∆t)detector = a(η1)∆η and (∆t)source = a(η0)∆η, (1.77)
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hence,

λsource
λdetector

≡ (∆t)source
(∆t)detector

= a(η0)
a(η1) . (1.78)

In analogy with the Doppler effect, it is usual to define the redshift z as the rate of the shift
of wavelength of a photon emitted at the cosmic time t1 and detected at the time t0, by its
wavelength at the emission:

z ≡ λ(t0)− λ(t1)
λ(t1) , (1.79)

or equivalently:

1 + z = a(t0)
a(t1) = 1

a(t1) , (1.80)

where the second equality comes from the normalisation a(t0) ≡ 1. This definition of redshift
only takes into account the Hubble flow and not the peculiar velocity vpec. Since a(t1) is always
larger or equal than 1, a negative redshift (a blueshift) would be impossible to measure (the
Universe is expanding). But as we said in note 3 page 16, some galaxies (e.g. Andromeda) have
a blueshift. So the measured shift of wavelength is the addition of the cosmological redshift (eq.
(1.80)) and of a real Doppler effect, due to the peculiar velocity of the object with respect to the
observer. For a cosmological source, rphys is large enough so that vpec can be neglected (see eq.
(1.73)).

For nearby source (i.e. t1 6� t0), we can expand a(t1) as a Taylor series around t0:

a(t1) = a(t0) [1 + (t1 − t0)H0 + · · · ] , (1.81)

with H0 = (ȧ/a)(t0). We can then write the redshift at first order as (using again a Taylor
series):

z = H0(t0 − t1) + · · · , (1.82)

since c = 1, we have (t0 − t1) = dphys, the physical distance between the source and the observer.
The latter equation is then equivalent to the Hubble–Lemaître law, eq. (1.66). The definition of
the distance is difficult in a expanding Universe with a finite speed of light: between the emission
and the reception of a light signal, the source has moved following the Hubble flow. The easiest
way to define a distance is to use the comoving coordinates of the line element (eq. (1.69)), and
one gets the comoving distance:

dcom(z) =
∫ t0

t1

dt
a(t) =

∫ z

0

dz̃
H(z̃) . (1.83)

In a non Euclidean space (k 6= 0), one can also define the metric distance. But in a flat space,
both metric and comoving distances are equal. This distance is not observable.

Another definition of the distance is given by the luminosity distance. In a flat non expanding
space, the measured flux F at a distance D of a light source with luminosity L is given by:

F = L

4πD2 , (1.84)

(the flux is isotropically distributed on the sphere of radius D). In an expanding space, the
distance between the source and the observer at time t0 when the signal is detected is the
comoving distance (non measurable). Because of the expansion of the Universe, the energy of
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Figure 1.5: Cosmological distances in a flat FLRW Universe, with only matter content (dotted
lines) and with 70% dark energy (solid lines), see subsect. 1.2.2. We see that for z � 1, the three
distances are the same. This figure is fig. 1.6 of Baumann, ref. [32].

the photons is divided by a factor (1 + z), and their rate of arrival is also divided by the same
factor. Thus,

F = L

4π d2
L

= L

4π d2
com(1 + z)2 , (1.85)

and then: dL = dcom(1 + z) = (1 + z)
∫ z

0 H(z̃)−1 dz̃. These two definitions of the distance in
cosmology are the two we use in this master’s project. Another often used distance is the angular
diameter distance: dA = dcom/(1 + z). These three distances are plotted as functions of the
redshift in fig. 1.5. One can see that at small redshift these definitions are equivalent.

We see that with an easy metric of a time function, a(t), one can describe at first order the
Universe as we observe it. General Relativity hence allows us to study its dynamics.

1.2.2 Dynamics of the Universe

Il Pendolo mi stava dicendo che, tutto muovendo, il globo, il sistema solare, le
nebulose, i buchi neri e i figli tutti della grande emanazione cosmica, [...].

Umberto Eco
(Il Pendolo di Foucault, I, 1, 1988)

Here again, we have a metric (the FLRW metric gµν , eq. (1.70)) and General Relativity connects
the geometry of the spacetime to its energy content. The Einstein’s equations with a cosmological
constant Λ are:

Gµν = 8πGTµν − Λgµν , (1.86)
let us first compute the Einstein tensor G, then we will study the energy content of the Universe.

For the flat FLRW metric, in Cartesian coordinates, the non-vanishing Christoffel symbols
are (the Latin indices indicate the spatial coordinates x, y, z):
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Γ 0
ij = a2Hδij , Γ i0j = Hδij , (1.87)

the Ricci tensor is given by:

R00 = −3(Ḣ +H2), R0i = 0, Rij = a2(Ḣ + 3H2)δij , (1.88)

the Ricci scalar is then:

R = 6(Ḣ + 2H2), (1.89)

and the Einstein tensor Gµν is given by:

G0
0 = −3H2, G0

i = 0, Gij = −(2Ḣ + 3H2)δij . (1.90)

For the energy content of the Universe, at first order, because of homogeneity and isotropy,
we can write the stress-energy tensor as the one of a perfect fluid:5

Tµν = (ρ+ p) uµuν + p δµν , (1.91)

where ρ is the energy density, p the pressure and uµ is the four-velocity (with respect to the
observer: uµ ≡ dxµ/dτ). In the rest frame of the fluid (hence as seen by a comoving observer),
uµ = (1, 0, 0, 0), thus uν = (−1, 0, 0, 0) and then:

Tµν (t) =


−ρ(t) 0 0 0

0 p(t) 0 0
0 0 p(t) 0
0 0 0 p(t)

 . (1.92)

This stress-energy tensor allows us to write the Friedmann equations, using the Einstein’s
field equations with a cosmological constant, and the Einstein tensor of the flat FLRW metric
(k = 0), eq. (1.90). The scalar component (0, 0) gives:

H2(t) = 8πG
3 ρ(t) + Λ

3 , (1.93)

while the vector components (0, i) and (i, 0) are the trivial 0 = 0 and the 3-tensor components
(i, j) give:

2Ḣ(t) + 3H(t)2 = −8πG p(t) + Λ. (1.94)

The Friedmann equations are then just the Einstein’s equations for a FLRW metric and they
describe the evolution of the Universe through the scale factor a and its derivative ȧ, ρ and p
the energy density and pressure and Λ, the cosmological constant. From now on, we rescale
ρ 7→ ρ+ Λ/(8πG) and p 7→ p− Λ/(8πG) in order to take the cosmological constant into account
as an energy component of the Universe.

In General Relativity, the Bianchi identity ∇µGµν = 0 imposes the energy-momentum
conservation ∇µTµν = 0 (it is the equivalent in a Minkowski space of both the continuity
equation and the Euler equation). Using

∇µT ρν = ∂µT
ρ
ν + Γ ρµσ T

σ
ν − Γ σµν T ρσ (1.95)

5As usual, it is possible to prove it by varrying the Einstein–Hilbert action of the FLRW metric, with respect
to the FLRW metric.
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on the stress-energy tensor eq. (1.92) with the FLRW Christoffel symbols eq. (1.87), we get four
equations. The equation with ν = 0 describes the evolution of energy:

0 = ∂µT
ρ
0 + Γ ρµσ T

σ
0 − Γ σµ0 T

ρ
σ (1.96)

= ρ̇+ 3H(ρ+ p). (1.97)

Equation (1.97) is the continuity equation.6 Let us see now what are the components of the
Universe. To do so, let us remind the equation of state (EoS) of a perfect fluid:

p(t) = w(t)ρ(t), (1.98)

where in general w(t) is a function of time. We can solve the continuity equation, eq. (1.97) to
write ρ as a function of the scale factor a:

ρ(t) ∝ a−3(1+w(t)). (1.99)

The ΛCDM model

In the ΛCDM model (for the cosmological constant Λ and “Cold Dark Matter”) we suppose that
a flat Universe is only composed of matter, radiation and with a cosmological constant Λ. With
more than one component, ρ and p of the continuity equation (eq. (1.97)) are now the total
density and total pressure:

ρtot(t) =
∑
i

ρi(t) (1.100)

ptot(t) =
∑
i

wi(t)ρi(t). (1.101)

• Matter is composed of all the forms of energy for which the pressure is much smaller than
the density: |P | � ρ. In the Universe, there are two types of matter: Cold Dark Matter
and “Standard model non-relativistic matter” (that is generally called baryonic matter,
even it there are also leptons in it). Setting w = 0 in the continuity equation (eq. (1.97)),
we get:

ρm ∝ a−3, (1.102)

hence the matter is just diluted in the expansion of the volume V of the Universe: V ∝ a3;

• Radiation is composed of the elements for which w = 1/3, it is the case for relativistic
particles, as photons, neutrinos and maybe gravitons. Setting w = 1/3 in the continuity
equation (eq. (1.97)), we get:

ρr ∝ a−4, (1.103)

hence the radiation is diluted by the expansion of the Universe, but its energy is also
redshited: E ∝ a−1;

• Cosmological constant: the expansion of the Universe is now in acceleration, i.e.: ä > 0.
We can rewrite the Friedmann equation (1.94), as:

ä

a
= −4πG

3 (ρ+ 3p) = −4πG
3 p (1 + 3w) , (1.104)

6For ν = i, the energy-momentum conservation gives ∂ip = 0, which is satisfied.
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to ensure ä > 0 we then need a negative pressure component with w < −1/3. Such a
component is called dark energy. The cosmological constant Λ is a possible explanation of
dark energy. It has w = −1, and we get:

ρΛ ∝ a0 = const. (1.105)

It means that the cosmological constant density has to be created when the Universe
expands.

It is possible to write the Friedmann equation (eq. (1.93)) as the evolution of the Hubble
parameter H with respect to the scale factor a. For that, let us define the critical density today
(an index ‘0’ means ‘today’):

ρcrit,0 ≡
3H2

0
8πG (1.106)

= 1.9× 10−29 h2
0 g cm−3 (1.107)

= 2.8× 1011 h2
0 M� Mpc−3 (1.108)

= 1.1× 10−5 h2
0 protons cm−3, (1.109)

where we took the numerical values in ref. [32] and where h0 ≈ 0.7. The critical density is used
to define dimensionless density parameters of the components of the Universe (today):

Ωi,0 = ρi,0
ρcrit,0

, for i = m, r, Λ, (1.110)

and then, we get:

H(a) = H0
(
Ωr,0 a

−4 +Ωm,0 a
−3 +ΩΛ,0

)1/2
. (1.111)

The wCDM model

The wCDM model is a phenomenological model close to the ΛCDM model: it is composed of
Cold Dark Matter, radiation and dark energy. But now the dark energy component and its
equation of state wDE are unknown. However, wCDM assumes that wDE is constant in time.
Hence, we have:

pDE(t) = wDE pDE(t), with wDE < −1/3, (1.112)

(and in fact wDE is observationally constrained to be very close to −1: wDE(t0) = −1.00+0.04
−0.05 [21]).

We then have (see eq. (1.99)):

ρDE(t) ∝ a−3(1+wDE), (1.113)

and thus:

H(a) = H0
(
Ωr,0 a

−4 +Ωm,0 a
−3 +ΩDE,0 a

−3(1+wDE)
)1/2

, (1.114)

where we defined ΩDE,0 = ρDE,0/ρcrit,0, as in eq. (1.110).
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Dynamical Dark Energy

The ΛCDM model supposes a constant dark matter EoS: wDE(t) = −1. Small variations to this
value are possible for the present value of wDE (as supposed by the wCDM model), but its value
can also change with time. In this case, it is usual to expand wDE(a) as a Taylor series:

wDE(a) = w0 + wa(a− 1) (1.115)

⇔ wDE(z) = w0 + wa
z

1 + z
, (1.116)

and the current observational limits are |w0 + 1| ∼ 0.2 and |wa| ∼ 1 [21]. A dark energy with
w(z) < −1 is called a phantom dark energy:7 it is a DE whose density increases with the
expansion of the Universe, and then predicts a “Big Rip”.

1.3 Propagation of gravitational waves in a FLRW Universe
Since the Universe is in expansion, the propagation of GWs is modified with respect to the
propagation on a flat Minkowski spacetime: indeed the frequencies are redshited by the expansion
of the Universe. In this section, we expose how GWs generated by binary systems propagate in a
FLRW Universe, with their main properties. For more information, see ref. [8], subsection 4.1.4
and ref. [21], sect. 19.5.

First we define the local wave zone: the observer is far enough from the source so that the
gravitational field has a 1/r behaviour, but close enough so that the expansion of the Universe
between the emission and the reception time is negligible. In the local wave zone, the two
polarisations of a GW are given by:

h+(ts) = hc(trets )1 + cos2 ι

2 cos
[
2π
∫ tret

s

ts
f

(s)
GW(t′s) dt′s

]
, (1.117)

h×(ts) = hc(trets ) cos ι sin
[
2π
∫ tret

s

ts
f

(s)
GW(t′s) dt′s

]
, (1.118)

where

hc(trets ) = 4
a(temis)r

(
GMc
c2

)5/3
(
πf

(s)
GW(trets )
c

)2/3

, (1.119)

with ts the time measured in the source-frame, trets the corresponding retarded time (still measured
in the source-frame), and ι the inclination angle between the line of sight and the normal to the
orbital plane of the source. The scale factor a(temis) is the one of the time of emission, but since
we are in a local wave zone, the scale factor is supposed constant, r is the comoving distance be-
tween the source and the observer, so that a(temis)r = rphys is the physical distance between them.

If now the wave propagates on a cosmological distance, the factor hc given by eq. (1.119)
must be changed. At first order, by supposing 2πfGW � t−1

0 , where t0 is the present age of the
Universe, it gives (see ref. [8], subsection 4.1.4):

hc(trets ) = 4
a(t0)r

(
GMc
c2

)5/3
(
πf

(s)
GW(trets )
c

)2/3

. (1.120)

7It is interesting to note that allowing wDE to be below −1 gives a larger value for H0 than in the case of the
ΛCDM model, thus the Hubble tension is less important (see ref. [21], chap. 19).
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We can rewrite eq. (1.120) in terms of quantities that are measurable by the observer. First
the frequency of the wave is redshifted:

f
(s)
GW = (1 + z) f (obs)GW , (1.121)

and since the measure dt also changes with the redshift, we get:∫ tret
s

ts
f

(s)
GW(t′s) dt′s =

∫ tret
obs

tobs
f
(obs)
GW (t′obs) dt′obs. (1.122)

Equation (1.120) then becomes:

hc(tretobs) = 4
a(t0)r (1 + z)2/3

(
GMc
c2

)5/3
(
πf

(obs)
GW (tretobs)

c

)2/3

(1.123)

= 4
dL(z)(1 + z)5/3

(
GMc
c2

)5/3
(
πf

(obs)
GW (tretobs)

c

)2/3

, (1.124)

where we used the luminosity distance (see eq. (1.85)). If we furthermore introduce the redshifted
chirp mass:

Mc = (1 + z)Mc = (1 + z)µ3/5m2/5, (1.125)

we can rewrite eq. (1.124) as

hc(tretobs) = 4
dL

(
GMc
c2

)5/3
(
πf

(obs)
GW (tretobs)

c

)2/3

. (1.126)

The frequency of the GW, eq. (1.49), in the observer frame can be rewritten (see ref. [8]):

f
(obs)
GW (tretobs) = 1

π

( 5
256

1
τobs

)3/8 (GMc
c3

)−5/8
, (1.127)

where τobs is the time to coalescence (= t− tcoal) measured in the detector frame. This result
can also be understood by noticing that GMc/c

3 is the time-scale of the frequency of GWs. In
an expanding FLRW Universe, the time scale is redshifted: GMc/c

3 7→ (1+z)GMc/c
3 = GMc/c

3.

Hence we see that a GW amplitude is inversely proportional to the luminosity distance
and proportional to (a power 5/3 of) the redshifted mass. And if an observer measures hc and
f
(obs)
GW , he has access to the values of dL and Mc together : there is a degeneracy between these
parameters. The redshifted chirp mass is also measurable from the time derivative of the observed
frequency of the GW (eq. (1.127)):

ḟ
(obs)
GW = 96

5 π
8/3
(
GMc(z)

c3

)5/3 [
f
(obs)
GW

]11/3
, (1.128)

and from the measurements of hc, f (obs)GW and ḟ (obs)GW , the observer knows the value of the chirp
massMc and the value of the luminosity distance dL. We will use that property to obtain our
results (see section 1.4 and chapter 2).

However, it is not hc that is detected, but a linear combination of the two polarisations:

F+h+ + F×h× (1.129)

where F+,× are the pattern functions of the interferometer and where:
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h+(tobs) = hc(tobs)
1 + cos2 ι

2 cos [Φ(τobs)] , (1.130)

h×(tobs) = hc(tobs) cos ι sin [Φ(τobs)] , (1.131)

with

Φ(τobs) = −2
(5GMc(z)

c3

)−5/8
τ

5/8
obs + Φ0, (1.132)

and with hc(tobs) given in eq. (1.126). Thus, the amplitude of h+ is hc
(
1 + cos2 ι

)
/2 and the

amplitude of h× is hc cos ι. The inclination angle ι between the line of sight and the normal to
the orbital plane of the source is unknown. If the two polarisations and the chirp mass are known
separately, the value of cos ι is simply given from the ratio h+/h×, then the luminosity distance
dL is measured. However since the detection is a linear combination of the two polarisations,
these parameters are estimated simultaneously, this is why the errors on the measurements of
distances with GWs are large.

Another useful result about the propagation of GWs in a FLRW Universe is derived in chapter
19 of ref. [21]. Let us quickly summarise it here. A GW can be seen as a tensor perturbation
over the FLRW Universe. We can perturbe the Einstein’s equations for a FLRW metric (or
equivalently perturbe the Friedmann equations), we get:

δGµν = 8πG
c4 δTµν = 0 (in vacuum), (1.133)

and the perturbed FLRW metric (eq. (1.69)) is given in conformal time η by (taking c = 1
again):

ds2 = a2
[
−dη2 +

(
δij + hTTij

)
dxidxj

]
, (1.134)

one can then compute the Christoffel symbols Γ σµν (see e.g. eqs (18.99)–(18.104) of ref. [21]),
and one gets:

δG0
0 = 0 = δGi0, δGi0 = 1

2a2

[(
hTTij

)′′
+ 2H

(
hTTij

)′
−∇2hTTij

]
, (1.135)

where H = a′/a, with the prime denoting a derivative with respect to the conformal time η
(instead of the cosmic time t for the “normal” Hubble parameter H, eq. (1.74)). In vacuum, we
then get:

(
hTTij

)′′
+ 2H

(
hTTij

)′
−∇2hTTij = 0, (1.136)

or equivalently by going into the momentum (Fourier) space:

h̃′′A + 2Hh̃′A + k2h̃A = 0, (1.137)

for A = +,×. Equation (1.137) governs the free propagation of tensor perturbations in a FLRW
Universe.
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1.4 Standard sirens and tests of cosmology

On the upper surface of each circle is a Siren, who goes round with them, hymning a
single tone or note.

Plato
(“Myth of Er”, The Republic, Book X, trad. Benjamin Jowett)

In cosmological observations, one needs measurements of distance and of redshift to be able
to measure parameters of cosmological models. In “classical” cosmology (i.e. cosmology with
electromagnetic waves) distances can be measured from type Ia supernovae (SNe) (together with
an intermediate “distance ladder” to calibrate the SN, generally Cepheids variables). Type Ia
SNe always8 explode at the same (known) mass, producing the same (known) absolute magnitude
and the further the SN, the larger its apparent magnitude.9 Since we use their light, type Ia SNe
are called standard candles. Other techniques exist, e.g. using the CMB or BAO. However, GWs
give another way to measure cosmological distances. Let us see in this section how, and how it
can be used to test cosmological models.

As any spherical wave, a GW amplitude varies as the inverse of the distance (this is normal:
the energy E goes as the amplitude a squared, and the energy is isotropically distributed on a
sphere centered on the source: E ∝ d−2 ⇒ a ∝ d−1). This behaviour in the case of the GW can
be seen in the wave general equation far away from the source (eq. (1.33)):

hTTij ∝
1
r
. (1.138)

As we saw in section 1.3, in the case of GWs produced by a binary system at a cosmological
distance, we have (see eqs (1.130) and (1.131)):

h+ = hc
1 + cos2 ι

2 (1.139)

h× = hc cos ι (1.140)

where (see eq. (1.126)):

hc ∝
M5/3

c (f (obs)GW )2/3

dL
. (1.141)

The redshifted chirp massMc(z) is measurable from the evolution of the observed frequency
of the wave (see eq. (1.128)), hence, independent measurements of both GW polarisations’
amplitudes and measurements of the frequency of the GW and of its time derivative give a direct
measurement of the luminosity distance dL(z) between the source and the observer. By analogy
between GWs and sound wave (both types of waves’ detectors have almost a 4π sr sensitivity),
coalescing binaries at cosmological distances are called standard sirens.

Given a choice of cosmological model, the luminosity distance is expressed as a function of
the redshift (we see it by inserting eq. (1.111) or eq. (1.114) into eq. (1.83)):

dL(z) = 1 + z

H0

∫ z

0

dz̃√
Ωr,0(1 + z̃)4 +Ωm,0(1 + z̃)3 + ρDE(z̃)/ρcrit,0

, (1.142)

8Of course, this is an approximation and corrections are always needed.
9Remember that the larger the magnitude, the less the object is visible.
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where the density of dark energy (DE) at a redshift z is given in all generality (i.e. the EoS of
DE may be not constant in time) by:

ρDE(z) = ρDE(0) exp
{

3
∫ z

0

1 + wDE(z̃)
1 + z̃

dz̃
}
, (1.143)

where we supposed that DE does not exchange energy with radiation and matter (the equation
of continuity (1.97) normally holds for the total energy density and total pressure).

Equation (1.142) allows us to test a cosmological model given the distance dL and the redshift
z of an object. A standard siren alone does not give any indication on the redshift of the
source. But a few techniques can be used to skirt this problem. First possibility, proposed in
ref. [34] (Bernard F. Schutz, 1986): mergers of neutrons stars can produce a gamma-ray burst,
that is an electromagnetic counterpart of the gravitational wave. The electromagnetic wave is
redshifted and this redshift can be measured from known spectral lines. This ideal scenario
already happened on 17 August 2017: the γ-ray burst GRB 170817A is the electromagnetic
counterpart of GW170817 (the probability that these two events are independent, given the
temporal and spatial observations, was estimated to 5.0×10−8 at the detection time [6]), allowing
(after correction of the peculiar velocity of the host galaxy) a measurement of the Hubble constant:

H0 = 70.0+12.0
−8.0 km s−1 Mpc−1 [5], (1.144)

this value is yet not accurate enough to solve the Hubble tension,10 but the error bars decrease
by a factor ∼ 1/

√
Nobs, where Nobs is the number of observed GWs with an EM counterpart.

Hence, with O(102) GWs observations with electromagnetic counterpart, we should be able to
distinguish between the different values of H0 (see note 10).

When we do not have any EM counterpart to the GW (and that is the case for the large
majority of the events), the standard siren is called a dark siren. In the case of dark sirens,
statistical methods can be used to estimate the redshift of the source. This statistical approach
was also proposed by Schutz in ref. [34]. Ref. [35] reviews the statistical formalisms. In particular,
it is explained in refs [13, 36] and similar techniques have been used to constrain the value of H0,
on mock data (representing five years of observation by advLIGO at design sensitivity) [11]; for
GW170717 (without using its EM counterpart) [37]; for GW170814 [38] and for GW190815 [39].
Statistical methods have also been used to constrain modified GW propagation, in ref. [12] on
the parametrisation cM, see section 1.5, and in ref. [10], whose authors have constrain the same
parameters as those that we are interested in: {H0, Ξ0, · · · }, see section 1.5.

A first possibility consists in using a galaxy catalog that gives the position and the redshift
of galaxies, then to statistically estimate the probability that the source is in a given galaxy of
the catalog. That is what was done in ref. [10] in order to constrain modified GW propagation
with the same parametrisation as us.

Another possibility consists in using the fact that the detector-frame mass is the source-frame
mass times the redshift (plus one): mz = (1 + z)m0 (see eq. (1.125)). Thus if one knows the
source-frame mass of the source and the associated detector-frame mass, one has a measurement
of the redshift of the source. Of course there is no way to know exactly the source-frame mass
of a single cosmological source. But black holes and neutron stars follow a mass population
distribution. For (stellar origin) black holes, we discuss some models of mass population in sect.
1.6, while for neutrons stars it is even simpler: they have a known mass distribution, peaked near
1.35 M�. This “redshifted masses” technique is the technique we use for this master’s project.

10Let us recall that measurements of the Hubble constant using type Ia SNe and using the Cosmic Microwave
Background of the Planck satellite (and BAO) are incompatible at the level of ≈ 3.4 standard deviations:
HP lanck

0 = 66.93 ± 0.62 km s−1 Mpc−1 and HSNe
0 = 73.24 ± 1.74 km s−1 Mpc−1 [21]. This incompatibility is

called the “Hubble tension”.
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It was also used in refs [11,40] (on simulated observations without modified GW propagation)
and in ref. [12], on the LIGO and Virgo observations (refs [3, 4]) with modified gravity, but with
a different parametrisation and without testing on mock data the efficiency of the method to
constrain modified gravity.

The statistical method we use is described in details in chapter 2.

What cosmological parameters can be measured from standard sirens? By expanding eq.
(1.142) around z = 0, we get:

dL(z) = z

H0
+O(z2), (1.145)

which is the Hubble–Lemaître law, eq. (1.82). We then see that for small redshifts only H0 has
a large enough effect on measurements. We then need events at a large redshift (so that the z2

corrections in eq. (1.145) are not negligible) to constrain the values of other parameters of a
cosmological model, such as wDE(t0). However, impacts of a modified GW propagation (see next
section) would be easier to test at large redshift [9].11

1.5 An introduction to modified gravity

The interest in modifications of gravity at cosmological scales is important since the end of the
1990s, after the discovery of the accelerated expansion of the Universe (in the sense that the
rate of expansion is increasing: ä > 0). Indeed the Friedmann equations without cosmological
constant (Λ = 0 in eq. (1.94)), implies a decreasing rate of expansion (ä < 0). This is known as
the dark energy problem. By introducing a scalar field Λ with a positive value, one can explain
the acceleration of the expansion. This is the ΛCDM model (also called the standard model of
cosmology), see subsection 1.2.2. However another way to explain the accelerated expansion
it to suppose that the Einstein’s equations are not the true equations to describe gravity at a
cosmological scale: they must be modified.

A few different ways of modifying the GR equations are possible. A lot of modified gravity
theories start from a generalisation of the GR action:

SGR = 1
16πG

∫ √
−g R [gµν ] d4x+ Sm [gµν , · · · ] (1.146)

= SEH [gµν ] + Sm [gµν , · · · ] , (1.147)

where SEH [gµν ] is the Einstein–Hilbert action and Sm [gµν , · · · ] is the action of the matter,
universally and minimally coupled to the metric gµν . It can be shown, in particular using
Weinberg’s theorems (General Relativity (with a cosmological constant) is the unique local and
Lorentz invariant theory describing an interacting single massless spin two particle that couples
to matter) that the Einstein–Hilbert action (see eq. (1.147)) is unique in 4D.

To write this section, we used refs [10,42–48], in which many more information about modified
gravity can be found.

11Since the waveform also depends on the number π (through the frequency, eq. (1.127)), it is even possible to
measure it from GWs! And it was done in ref. [41]: π = 3.115+0.048

−0.088. OK, it is not very accurate, but still!
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1.5.1 Some models of modified gravity

To modify the GR action, eq. (1.147), various possibilities exist [42, 43]: adding new scalar,
vector or tensor fields, see § Additional fields, page 29; introducing a massive graviton (giving
a massive gravity theory), see § Massive gravity, page 31, breaking a fundamental assumption
of GR, see § Breaking fundamental assumptions, page 32 or taking into account quantum
corrections to the Einstein–Hilbert action, eq. (1.147), see § Quantum corrections to the
Einstein–Hilbert action, page 32. The RR and RT models are theories of that latter type. We
will introduce them in subsection 1.5.4. Some modified gravity theories lie in different categories,
as bigravity that has a tensor field and is a massive gravity, but this categorisation is nice for a
first look on modified gravity theories.

A sketch of the main modified gravity theories is given in fig. 1.6, but the theories that are
called “non-local” in this figure break the locality principle, while the theories we call “nonlocal”
in this document (the RR and RT models) do not break the locality of GR. We do not discuss
here the modified gravity theories that break locality.

In the following we only consider the theories for which the velocity of GWs is c (the velocity
of light): GW170817 along with its EM counterpart gave a bound to the velocity of GWs:
|cGW − c|/c < O(10−15) [6], then we can say with high precision that cGW = c (as GR predicts).

Additional fields

A first way to change the gravity equations consists in introducing fields that interact with
the metric. These fields can be scalar, vector or tensor fields. As usual, scalar fields being the
easiest case, let us start by them. Many scalar modified gravity theories are part of the class
of Horndeski theories of gravity that have 2nd order derivatives in the action and 2nd order
derivatives in the equations of movement (EoM). The general form of a Horndeski theory follows
from the Horndeski action:

SH =
∫ √
−g

[
1

8πG

5∑
i=2
Li [gµν , φ] + Lm [gµν , ψm]

]
d4x, (1.148)

where G is the Newton’s constant, Lm is the Lagrangian density of the matter and we introduce
the Lagrangian densities [45,46]:

L2 = G2(φ,X) (1.149)
L3 = G3(φ,X) �φ (1.150)

L4 = G4(φ,X)R− 2G4,X(φ,X)
[
(�φ)2 − φ;µνφ

;µν
]

(1.151)

L5 = G5(φ,X)Gµνφ;µν + 1
3G5,X(φ,X)

[
(�φ)3 − 3φ;µνφ

;µν�φ+ 2φ ;ν
;µ φ ;α

;ν φ ;µ
;α

]
, (1.152)

R and Gµν being the Ricci scalar and Einstein tensor of the Jordan frame12 metric gµν and where
as usual, comma indicate a partial derivative ∂ and semicolons indicate a covariant derivative ∇.
We furthermore introduce:

X = gµνφ;µφ;ν and �φ = gµνφ;µν . (1.153)
12In the Jordan frame, matter fields follow the geodesics obtained from the modified gravity equations while in

the Einstein frame, the geodesics come from the Einstein’s equations, but the matter fields do not follow these
geodesics [49].
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Figure 1.6: A sketch of the main modified gravity theories. We introduce additional fields
modified gravity theories in § Additional fields; massive gravity in § Massive gravity and
breaking fundamental assumptions theories in § Breaking fundamental assumptions, but
the non-local theories presented here do not correspond to the nonlocal theories we will discuss in
§ Quantum corrections to the Einstein–Hilbert action. All the theories in a light color
(not only light green) are constrained by the GW speed: |cGW − 1| < O(10−15). This figure is
fig. 3 of Ezquiaga & Zumalacárregui, 2018, ref. [42].

The functions Gi (i = 2, · · · , 5) are generic functions of X. Different Horndeski theories use
different choices of functions Gi and of field φ. In a general Horndeski theory, tensor fluctuations
(as the GWs) propagate at a velocity v 6= c. To guarantee v = c, we have to constrain:

G4,X ≈ 0 and G5 ≈ const. (1.154)

As example of Horndeski theories, if only G2 is non zero, we obtain a k-essence theory. On
the other hand, the Galileon theories are based on the fact that for the Minkowski space, the
only dynamical field is the scalar field. Furthermore they suppose that φ has the symmetry:

φµ 7−→ φµ + cµ, with cµ = const., (1.155)

and the Lagrangian densities LGal
i are given by [46]:
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LGal
2 = −1

2 (∂φ)2 (1.156)

LGal
3 = −1

2 (∂φ)2�φ (1.157)

LGal
4 = −1

2 (∂φ)2
[
(�φ)2 − (∂µ∂νφ)2

]
(1.158)

LGal
5 = −1

4 (∂φ)2
[
(�φ)3 − 3 �φ (∂µ∂νφ)2 + 2 (∂µ∂νφ)3

]
, (1.159)

since a flat Minkowski metric is used, the covariant derivative ∇ is the standard partial derivative
∂, in particular: �φ = ηµν∂µ∂νφ. These Lagrangian densities give a second order derivatives EoM.

Other scalar fields theories have 2nd order derivatives in the action and higher orders
derivatives in the EoM. These theories are called beyond Horndeski theories and an example of
such theories is given by the Gleyzes–Langlois–Piazza–Vernizzi (GLPV) action [42]:

SBH = SH +
∫ √
−g (B4 + B5) d4x, (1.160)

where SH is the Horndeski action, eq. (1.148), and where

B4 = F4(φ,X)εµνρσεµ
′ν′ρ′σφ;µφ;µ′φ;νν′φ;ρρ′ (1.161)

B5 = F5(φ,X)εµνρσεµ′ν′ρ′σ′φ;µφ;µ′φ;νν′φ;ρρ′φ;σσ′ (1.162)

with ε the Levi-Civita symbol, and with F4 and F5 two additional functions of φ and of X. In
this latter action, the EoM contain 3rd order derivatives.

The added field can also be a vector field. In that case, one should be careful at the
conservation of the isotropy of space. It is possible to conserve isotropy by using only vectors
that point in the time direction (and that only depend of time):

Aµ = (A0(t), 0, 0, 0) , (1.163)
or by considering that isotropy is only true in average: the background is isotropic in average,
but tensor perturbations (as GWs) can have a remnant anisotropy. A Proca theory is obtained
by adding a m2A2

µ term to the Lagrangian (they need a massive tensor field with mass m).
Another theory with vector field is the Tensor-Vector-Scalar (TeVeS) theory (a theory able to
describe a Modified Newtonian Dynamics – MOND – and thus also an alternative to dark matter).

Massive gravity

Adding a mass to the graviton could explain the accelerated expansion of the Universe: the
force mediated by a massive graviton has a finite range (as any force mediated by a massive
boson): V ∼ (1/r) exp (−r/λg), where λg is the Compton wavelength of the graviton. Hence
for distances larger than λg = ~/

(
mgc

2), the gravitational force is weaker. For mg ∼ H0, then
massive gravity causes acceleration of the expansion of the Universe at late time.

The Ghost Free Massive Gravity (also called de Rham–Gabadadze–Tolley, dRGT) model or
bigravity models introduce a massive graviton. Bigravity models use a tensor additional field,
they are then also often categorised as being tensor additional fields theories. See references of
ref. [42] for more information.
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However, from different experiments, the graviton’s mass is constrained to:

mg . 10−30 eV [48]. (1.164)

Breaking fundamental assumptions

It is also possible to reject part of the fundamental assumptions of GR: for example breaking the
Lorentz invariance or introducing extra dimensions.

By introducing extra dimensions, one can include new operators constructed from the met-
ric. Examples of these operators are given by the Lovelock invariants (see e.g. [14] for more
information on the Lovelock’s theorem in higher dimensions), such as the Gauss–Bonnet term,
that do not contribute to the EoM. Of course higher dimensions never were observed yet, hence
such modified gravity theories must include some mechanism to hide the higher dimensions to
an observer. The higher dimensions can be compactified and then small enough to being not
accessible to experimental tests. Another possibility is a Braneworld construction: our 3 + 1
dimensions are embedded in a higher dimensional space. The Dvali–Gabadadze–Porrati (DGP)
model is such a theory: it assumes a 4 + 1 Minkowski space in which the 3 + 1 Minkowski space
is embedded. The 4D term in the action dominates at small scale, while the 5D term dominates
at large scale. This model can give a self-accelerating term, thus explaining the accelerated
expansion of the Universe.

Another assumption that can be broken is the Lorentz invariance (i.e. invariance under a
Lorentz transformation). In these theories, the invariance is generally broken by the emergence
of a preferred time direction. For example in the Hořava(–Lifshitz) gravity, the spacetime is
foliated and space is separated from time at high energy, but the Lorentz symmetry holds for
low energies.

Quantum corrections to the Einstein–Hilbert action

It is also possible to assume that the Einstein–Hilbert action of GR is the true classical action
of gravity and to compute its quantum corrections in infrared (IR). If we want to compute a
quantum gravity theory, the action we are interested in is the quantum effective action (i.e. the
action whose variation determines the equations of motion of the vacuum expectations values of
the quantum fields): for a scalar field ϕ(x) in flat space with an action S[ϕ], we can define the
quantum effective (QE) action through a path integral formalism, by introducing the source J(x)
and the Green’s function G[J ] [47] (in natural units with c = ~ = 1):

eiG[J ] =
∫

eiS[ϕ]+i
∫
J(x)ϕ(x) dDx Dϕ(x), (1.165)

and the quantum effective action Γ is a functional of the expectation value of the field:
δG[J ]/δJ(x) = 〈0|ϕ(x)|0〉J ≡ φ[J ] given in the functional form by:

eiΓ [φ] =
∫

eiS[ϕ+φ]−i
∫

(δΓ [φ]/δφ)ϕ(x) dDx Dϕ(x). (1.166)

A property of such actions is that if the fundamental theory has massless particles, then the
quantum effective action must have nonlocal terms. Gravity has a massless graviton, then it
should also have nonlocal terms in its QE action. Typically, these models have nonlocal general
functions: Rf

(
�−1R

)
, and in particular linear terms: R

(
m2/�2)R. These nonlocal terms could

in principle affect the infrared (IR) behaviour of the theory (i.e. the effects at low energy). A
phenomenological approach can be used to understand these IR effects. One of the main effect of
nonlocal terms is that they can describe a dynamical mass generation from quantum fluctuations
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(by quantum loops of massless particles): it is the m factor in the linear term R
(
m2/�2)R. We

will see in more details two models of nonlocal modified gravity in subsection 1.5.4.

1.5.2 Propagation of GWs in modified gravities

We saw that the GWs free propagation is given in GR by equation (1.137):

h̃′′A + 2Hh̃′A + c2k2h̃A = 0. (1.167)

Some theories of modified gravity predict variations from this propagation equation. There
exists two ways to modify eq. (1.167): by changing the coefficient of the h̃A term or by changing
the “friction term” (proportional to h̃′A):

h̃′′A + 2H [1− δ(η)] h̃′A +
[
c2
GWk

2 + a2m2
g

]
h̃A = 0, (1.168)

where δ(η) (also sometimes denoted by 2δ(η) = −ν(η)) is a function of the friction that depends
on the modified gravity model, cGW is the velocity of GWs and mg is the mass of the graviton.
As already said, we are considering here only modified gravity theories with cGW = c. We also
consider massless graviton theories (mg = 0). Hence, we have the modified GWs propagation
given in natural units (c = 1) by:

h̃′′A + 2H [1− δ(η)] h̃′A + k2h̃A = 0. (1.169)

By introducing χ̃A(η,k) as (see e.g. ref. [21]):

χ̃A(η,k) = ã(η) h̃A(η,k), (1.170)

where

ã′

ã
= H [1− δ(η)] ≡ H̃, (1.171)

we can rewrite the free propagation of GWs as:

χ̃′′A +
(
k2 − ã′′

ã

)
χ̃A = 0. (1.172)

Inside the cosmological horizon, the term ã′′/ã is very small, hence we neglect it and thus
GWs travel at the speed of light. But h̃A now decreases as 1/ã instead of 1/a. In GR, the
polarisation modes follow (see eqs (1.130) and (1.131)):

hA(t, z) = 1
dL(z) gA(t, z), (1.173)

and in such modified gravity theories, we rather have:

hA(t, z) = ã(z)
ã(0)

a(0)
a(z)

1
dL(z) gA(t, z), (1.174)

where as in eq. (1.80) we can normalise ã(0) = 1 = a(0):

hA(t, z) = ã(z)
a(z)

1
dL(z) gA(t, z), (1.175)

(we see that if ã = a, then we recover the GR formula). Gravitational waves in modified gravity
theories hence measure a gravitational wave luminosity distance, defined by:
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dGW
L (z) ≡ a(z)

ã(z) d
EM
L (z) (1.176)

= 1
(1 + z)ã(z) d

EM
L (z), (1.177)

where dEML (z) is the “standard” luminosity distance, defined in eq. (1.85). We can rewrite eq.
(1.171) as:

d
dη log

(
a

ã

)
= δ(η)H(η), (1.178)

and then, by integrating over dz (see e.g. ref. [21], subsection 19.6.4):

dGW
L (z) = dEML (z) exp

{
−
∫ z

0

δ(z′)
1 + z′

dz′
}
. (1.179)

Modified gravity theories give us another function that is testable with standard sirens:
δ(z). So, in addition to the Hubble parameter H0 and to the DE EoS wDE(t), an important
function can be constrained by standard sirens: δ(z), the two first describing the evolution of the
background and the latter describing the evolution of GWs on the background. Various modified
gravity models predict that |δ(z)| ∼ |w(z) + 1| [21], but the effects of δ(z) can give a dominant
contribution with respect to wDE(t) [9]. This deviation δ(z) between GR and modified gravity
cannot be measured from “electromagnetic” cosmology, since it only affects gravity and not light.

The gravitational luminosity distance does not correspond to the distance between the source
and the observer: it is still given by the EM luminosity distance dEML (or by the EM angular
diameter distance, according to the definition of distance we are interested in).

1.5.3 The (Ξ0, n) parametrisation

The function δ(z) can be hard to measure. It is easier to approximate it by a parametrisation,
and to measure the values of its parameters.

Two main parametrisations are used. For the first one (ref. [12] uses the same kind of method-
ology as us (see chapter 2) applied to this parametrisation), the function δ(z) is parametrised by
a single parameter, cM and is supposed to be a friction term with dark energy:

[−2δ(z)]param(cM) ≡ [ν(z)]param(cM) = cM
ΩDE(z)
ΩDE(0) , (1.180)

where ΩDE(z) = ρDE(z)/ρcrit,0 (as in the eq. (1.114) following the definition given by eq. (1.110)).
This one parameter parametrisation supposes that the δ(z) function is a constant friction with
the dark energy. We do not use this parametrisation in this work.

Another parametrisation, introduced in ref. [9], is interested in parametrising the ratio
dGW
L /dEML (that is observable with standard sirens) instead of directly parametrise δ(z). It is a

two parameters parametrisation:[
dGW
L
dEML

]
param(Ξ0,n)

≡ Ξ0 + 1−Ξ0
(1 + z)n = Ξ(z;Ξ0, n). (1.181)

Since eq. (1.179) can be inverted as:
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Figure 1.7: Plot of the ratio dGW
L /dEM

L as a function of the redshift z for different values of Ξ0
(with n = 2).

δ(z) = −(1 + z) d
dz log

(
dGW
L
dEML

)
, (1.182)

we get:

[δ(z)]param(Ξ0,n) = n(1−Ξ0)
1−Ξ0 +Ξ0(1 + z)n . (1.183)

The GR prediction is a special case of this (Ξ0, n) parametrisation: indeed taking Ξ0 = 1
(and n finite), one gets dGW

L /dEML = 1 and δ(z) = 0. This parametrisation reproduces the fact
that when z is small, the ratio dGW

L /dEML goes to 1, since modified gravity propagation does
not act enough to be measurable. On the other hand, when z becomes infinite, the luminosity
distances ratio goes to the constant Ξ0, and that is consistent with most modified gravity
scenarios (they generally predict that deviations from GR only appears in a recent cosmological
epoch, see discussion of ref. [10]). The parameter Ξ0 is then the most important parameter of this
parametrisation, it gives the magnitude of the effects of modified gravity, while the parameter
n gives the power-law shape between the two extremes: dGW

L /dEML = 1 and dGW
L /dEML = Ξ0.

The parameter n is generally ∼ 2 [10, 45]. The ratio dGW
L /dEML as a function of the redshift z

is plotted in fig. 1.7 for different values of Ξ0 (taking n = 2). The limit behaviours z → 0 and
z →∞ of the ratio Ξ(z) are clearly visible on fig. 1.7.

This two parameters parametrisation works very well for most modified gravity models (as
shown in ref. [45]), and particularly for the RR and RT models (for which this parametrisation
was introduced in ref. [9]), see subsection 1.5.4.

In ref. [45], one can find a few examples of modified gravity models with their respective
analytical expressions for Ξ0 and for n.

1.5.4 The RR & RT nonlocal models

In this subsection, we present two nonlocal modified gravity models that have been proposed
and studied in the past years by the Michele Maggiore’s group at the University of Geneva. The
review ref. [43] presents many more details about these models, their implications and their tests.
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These two models come from the same idea: we start from linearized GR with introduction
of nonlocal mass terms. In this case, the quadratic quantum effective action has the form [43]:

Γ (2) = 1
64πG

∫ [
hµνEµν,ρσhρσ −

2
3m

2 (Pµνhµν)2
]

d4x, (1.184)

where Eµν,ρσ is the Lichnerowicz operator and where we introduce the projector Pµν = ηµν −
(∂µ∂ν�). The Einstein’s equations take the form:

Eµν,ρσhρσ −
2
3m

2PµνP ρσhρσ = −16πGTµν . (1.185)

To obtain a nonlocal gravity model, one then needs to covariantize either eq. (1.184) or eq.
(1.185) in order to obtain a covariant theory of gravity.

The RR model

The RR model (also called Maggiore–Mancarella model), proposed in refs [50,51] starts from the
covariantization of the quantum effective action (1.184).

To covariantize eq. (1.184), we match:

1
4hµνE

µν,ρσhρσ d4x←→
√
−gR d4x (1.186)

while (Pµνhµν)2 =
(
�−1
η R(1)

)2
←→

(
�−1R

)2 (with R(1) being the Ricci scalar at linear level)
and we obtain:

ΓRR = m2
Pl

2

∫ √
−g

[
R− m2

6
(
�−1R

)2
]

d4x (1.187)

= m2
Pl

2

∫ √
−g

[
R− m2

6 R
1
�2R

]
d4x, (1.188)

wheremPl is the reduced Planck mass (= (~c/8πG)1/2 ≈ 2.4×1018 GeV/c2 ≈ 4.3 µg) andm is the
mass parameter created by the quantum fluctuations. This mass parameter replaces the cosmolog-
ical constant Λ of the ΛCDM model. This model is not really a “modified gravity” theory because
it does not change the Einstein–Hilbert action as being the fundamental theory of gravity, but just
takes into account its leading quantum effects in the IR domain. The “RR” of the name comes
from the fact that the Ricci scalar is present twice in the quantum correction of the classical action.

To check the predictions of this QE action, it is useful to introduce two auxiliary fields:

U = −�−1R and S = −�−1U, (1.189)
so that

ΓRR = m2
Pl

2

∫ √
−g

[
R− m2

6 RS

]
d4x. (1.190)

The EoM can then be numerically integrated and one finds that the Friedmann equation
takes the form:

H(a) = H0
[
Ωr,0a

−4 +Ωm,0a
−3 +ΩDE,0

]1/2
, (1.191)

with ΩDE,0 being governed by the cosmological evolutions of the auxiliary fields U and S. The
nonlocal term gives a dynamical DE, which generates an accelerated expansion of the Universe
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Figure 1.8: Plot of the ratio dGW
L /dEM

L (solid line) and of its (Ξ0, n) parametrisation (dotted line)
for the RR (Maggiore–Mancarella) model. This figure is fig. 3 of Belgacem et al., 2018, ref. [9].

in the recent cosmological epoch. Its EoS gives w(z) < −1 (this is a phantom dark energy). In
§ Tests of the RR & RT models, we will see how the RR model’s predictions fit cosmological
data.

Another interesting aspect of the RR model is that it gives a non-trivial propagation equation
for GWs. Indeed for the function δ(η) (see eq. (1.169)), the RR model gives:

δ(η) =
3γ
[
dV̄ / d(log a)

]
2
(
1− 3γV̄

) , (1.192)

where V̄ is the background evolution of the auxiliary dimensionless field V = H2
0S and where

γ = m2/
(
9H2

0
)
.

When applying a (Ξ0, n) parametrisation (see eq. (1.181)), one finds that the parametrisation
is very good (this parametrisation was indeed introduced to fit the RR model), with n ≈ 5/2 and
Ξ0 ≈ 0.970 [9], see fig. 1.8 (in that case, since Ξ0 < 1, the GW luminosity distance is smaller
than the EM luminosity distance (the “classic” one)).

The RT model

Unlike the RR model, the RT model starts from the covariantization of the Einstein’s equation
eq. (1.185). In order to do so, we use again the match (Pµνhµν)2 =

(
�−1
η R(1)

)2
←→

(
�−1R

)2
and also the linear order of the Einstein tensor: G(1)

µν = − (1/2) Eµν,ρσhρσ. Therefore, eq. (1.185)
is equivalent to:

− 2G(1)
µν + 2

3m
2Pµν�

−1
η R(1) = −16πGTµν . (1.193)

At linear order over the flat Minkowski space, Pµν�−1
η R(1) is the same as the transverse part

of the tensor
(
ηµν�−1

η R(1)
)
, thus, eq. (1.193) can be written as:
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G(1)
µν −

1
3m

2
(
ηµν�

−1
η R(1)

)T
= 8πGTµν , (1.194)

and that is easily covariantized as:

Gµν −
m2

3
(
gµν�

−1R
)T

= 8πGTµν , (1.195)

where again, m is a mass term created by quantum perturbations. This model is the “RT model”
(the ‘R’ signifying “one Ricci scalar”, the ‘T’ because it takes the transverse part of

(
gµν�−1R

)
).

The RT model was also proposed from ref. [51] and is very well discussed in ref. [43].

Like the RR model, RT shows a viable cosmological evolution. In a FLRW metric, eq. (1.70),
the Friedmann equations become [43]:

H2 − m2

9
(
U − Ṡ0

)
= 8πG

3 ρ (1.196)

Ü + 3HU̇ = 6Ḣ + 12H2 (1.197)
S̈0 + 3HṠ0 − 3H2S0 = U̇ , (1.198)

where the auxiliary fields S and U are defined as for the RR model (see eq. (1.189)) and we get:

H(x) = H0
[
Ωr,0 e−4x +Ωm,0 e−3x + γY (x)

]1/2
, (1.199)

where we wrote x = ln a(t), γ = m2/(9H2
0 ) and Y = U − Ṡ0. Like the RR model, the RT model

has a dynamical phantom dark energy: wDE(t) < −1.

The RT nonlocal model also predicts a non-trivial propagation of GWs, with:

δ(η) = m2S̄0(η)
6H(η) , (1.200)

where S̄0 is the background cosmological solution for the field S0. Equation (1.200) depends on
the number ∆N of e-folds before the end of the inflation, and for a large number of e-folds, Ξ0
saturates to Ξ0 ≈ 1.8. (In that case, since Ξ0 > 1, the GW luminosity distance is larger than
the EM luminosity distance.)

Tests of the RR & RT models

We saw in the previous paragraphs that the RR and RT nonlocal models predict an accelerating
expansion of the Universe along with a non trivial GWs propagation (δ(η) 6= 0). These models
have been compared with data in a few articles, in particular ref. [52], that we quickly summarise
here. For more information see directly ref. [52].

To test the values of parameters in a theory given some data, one needs to perform Bayesian
inferences (see chapter 2), generally together with a Markov chain Monte Carlo technique
(MCMC) to compute the values (see appendix A for an introduction to MCMC). This is exactly
what was done in ref. [52] to test the RR and RT models, using different datasets:

• CMB: the Planck satellite measured the Cosmic Microwave Background with high precision
[53]. From the angular power spectrum of the CMB one can infer the values of cosmological
parameters. In ref. [52], the authors use the 2015 values of Planck (see ref. [53]);
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• Type Ia SNae: type Ia supernovae are used as standard candles. In ref. [52], the authors
use the SDSS-II/SNLS3 Joint Light-curve Analysis (JLA);

• BAO: the Baryon Acoustic Oscillations from different datasets are used in ref. [52] (see
references [91-93] of ref. [52]);

• H0 prior: two different prior ranges for H0 (see chapter 2) are used in ref. [52]: H0 =
70.6± 3.3 km s−1 Mpc−1 and H0 = 73.8± 2.4 km s−1 Mpc−1.

Bayesian inference is done over the six independent parameters of the flat ΛCDM model:

θ = {H0, ωb, ωc, As, ns, τre} , (1.201)

where H0 = 100h0 km s−1 Mpc−1 is the Hubble constant, ωb = h2
0Ωb and ωc = h2

0Ωc being the
physical baryon (b) and cold dark matter (c) density fractions today, As the amplitude of the
primordial scalar perturbation, ns the spectral tilt and τre the reionization optical depth.

By choosing a flat prior on each parameter (except for τre that is bounded from below at the
value of 0.01), ref. [52] obtains the values presented in fig. 1.9.

In fig. 1.9, in addition to the six independent parameters of the flat ΛCDM model, eq. (1.201),
are also indicated σ8, the present root-mean-square matter fluctuation averaged over a sphere of
radius 8 h−1

0 Mpc and zre, the redshift of reionization, and more important, the results of a χ2

test. This test allows comparisons between two modelsMi andMj for their respective goodness
to fit data. To do this, one defines |∆χ2

ij | = |χ2
min,i − χ2

min,j |, and the larger the value of |∆χ2
ij |,

the higher the evidence for the model (Mi orMj) with the smallest goodness-to-fit χ2
min. In

ref. [52], the following thresholds are quoted: |∆χ2
ij | ≤ 2 implies a statistical equivalence between

the modelsMi andMj , while 2 . |∆χ2
ij | . 6 is a “weak” evidence and |∆χ2

ij | & 6 is a “strong”
evidence for one model over the other.

When RR and RT models are compared with ΛCDM, one finds that each model fit data of
the cosmic microwave background (CMB), baryon acoustic oscillations (BAO) and type Ia SNe
at the same accuracy (within the statistical interval) for the same number of parameters. It is
also interesting to note that the RR and RT nonlocal models give a higher value for H0 than
ΛCDM, this reducing the Hubble tension between local measurements (with type Ia SNe) and
global measurements (with CMB and BAO) (see note 10 page 27).

However, another test must be taken into account against the RR model: the Lunar Laser
Ranging (LLR). For sub-horizon modes, the RR model implies a time variation of the Newton’s
constant (see ref. [43]):

Geff(t)
G

=
[
1− 1

3m
2S̄(t)

]−1 [
1 +O

( 1
k̂2

)]
, (1.202)

where S̄(t) is the background cosmological solution for the auxiliary field S, see eq. (1.189). By
setting the value of S̄(t) that corresponds to a FLRW background, one finds that Geff(t)/G ∼ H0.
But the LLR (the measurement of the Earth–Moon distance using lasers and the retroreflectors
installed on the Moon by Apollo 11, 14 and 15 and by Lunokhod 1 and 2) is so precise that even
at the Earth–Moon scale over five decades, it gives a bound on the evolution of the Newton’s
constant [43]:

Ġ

G
= (0.99± 1.06)× 10−3

(0.7
h0

)
H0. (1.203)
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Figure 1.9: Parameter tables for ΛCDM and for the RR and RT non-local models. This figure is
table 1 of Dirian et al., 2016, ref. [52].
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The RR model does not have any screening mechanism that could explain that the time
variation of the Newton’s constant cannot appear at a small scale. Then it does not pass this
test. On the other hand, the RT model does not give a time dependence to Geff, hence it trivially
satisfies the LLR limit. In more recent works, e.g. ref. [10], only the RT model is considered.

1.6 Binary Black Holes populations

In this last section of the chapter, we quickly introduce some Binary Black Holes (BBHs) popula-
tions. As we saw in sections 1.3 and 1.4, one can use the cosmological redshift of the masses
along with the standard siren property of the GW to constrain cosmological parameters (it is
then a dark siren). However, in order to be able to measure the redshift from the detected mass,
one has to know the corresponding source-frame mass. Of course it is not possible event by event,
but if one has enough events, the detected mass population can be compared with the modeled
mass population in source-frame. Let us see some mass population models (see e.g. ref. [54] that
gives a little review and ref. [55] that is a recent proposed model).

Gravitational waves have already give us many new information about population of black
holes. The main result is that stellar-mass black holes are in average heavier that we previously
thought, with an average mass of O(40) M� (instead of O(10) M� as previously believed; see fig.
1.10, where the violet dots show the previously known BHs and the blue dots the new discovered
BHs). We now have enough samples to sketch the BBHs mass population (see e.g. ref. [54]).

There are three main types of BHs: astrophysical (formed by the collapse of a star), primordial
(formed by a density fluctuation during the radiation domination area of the Universe) and
intermediate-mass/supermassive. Only the first two types of black holes’ coalescences are accessi-
ble to ground-based GW detectors: the frequencies of the gravitational waves that supermassive
BHs emit when they merge are from far not high enough to be detected with current detectors,
but will be detectable with LISA (see fig. 1.4). Like the LIGO/Virgo collaborations (LVC) (see
e.g. ref. [54]), we only consider astrophysical black holes (i.e. we assume that all the GWs that
are yet detected come either from a Neutron star–Neutron star (NS–NS) merger, or from a
Neutron star–astrophysical BH (NS–BH) merger, or from an astrophysical BH–astrophysical BH
(BH–BH) merger. We only consider the latter case).

This choice can be justified: astrophysical BHs are pretty common and lies in the good range
of masses. Furthermore the theoretical understanding of the astrophysical Schwarzschild BHs is
really strong so that we are certain that BHs can be formed from a collapsed dying star. For
primordial black holes (PBHs), it is harder: some PBHs could have the good mass to be detected
by the LVC surveys (some detected GWs are indeed consistent with a PBHs origin, see ref. [57])
but this hypothesis is not needed to explain the detections. Furthermore the mass populations
are adjustable enough to take into account a few PBHs in the detections. In a first work we can
then simply neglect the PBHs scenario.

In the following, we use the convention where m1 is the mass of the heavier black hole and
m2 the mass of the lighter black hole of the binary.

There are two behaviours for extremes masses BHs. The easiest is the low-mass limit. When
a low-mass star collapses, it can form a white dwarf (that is what will happen to our Sun) or a
neutron star. The Tolman–Oppenheimer–Volkoff limit says that only remnant stars with a mass
higher than ∼ 3 M� will form a black hole. The second behaviour is for the large-mass limit.
Very massive stars (with initial mass Mi ∼ 130− 250 M�) ends their star life by a pair-instability
supernova (PISN): some γ-rays produced in the star core have enough energy (> 1.022 MeV)
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Figure 1.10: “Masses in the Stellar Graveyard” ( i.e. we indeed assume that these BHs are from
stellar origin). The blue dots show the BHs discovered by GWs: two BHs merge into a third BH,
this process is shown by the gray arrows. Violet dots indicate the BHs that are known from EM
waves (generally BHs in a binary system with a star, thus emitting X-rays). As for the BHs, the
neutron stars are known from GWs: they merge into another body (orange dots), and from EM
observations (yellow dots). Figure of LIGO-Virgo, Northwestern, Frank Elavsky, Aaron Geller
(Originally designed and developed by Frank Elavsky at Northwestern IT Data collection by
Frank Elavsky, Aaron Geller and CIERA Layout and maintenance by Aaron Geller) [56].

to produce an electron-positron pair. Hence the radiation energy decreases, the core collapses,
the temperature increases, more γ-rays have enough energy to produce electron-positron pair,
etc. This process is unstable and ends by a thermonuclear-type explosion of the star, that
leaves no black hole. The PISN predicts that astrophysical black holes with a mass higher than
mmax ∼ 50− 150 M� cannot exist. For even larger masses, non astrophysical BHs are expected
to be found. It is this gap between mass of stellar BHs and intermediate mass BHs that is called
the black hole mass gap. However some BHs have already been found in the gap (in particular
GW190521 that we will discuss in more details in subsection 3.3.1). A few hypotheses exist
to explain these BHs: it could be second generation BHs (i.e. a black hole that is formed by
the previous merge of two stellar BHs) or a primordial BH (as suggested for GW190521 in ref. [57]).

Let us see now some examples of mass population functions for astrophysical BBHs that are
used (taken from refs [11, 54]), theses functions for m1 are plotted in fig. 1.11. There also exists
spin population functions, but as we said in the subsection 1.1.2, the spin only affects the 2PN
expansion of the amplitude, so we neglect them in the present work.
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Figure 1.11: Sketches of some BBH mass populations for the heavier mass m1 of the binary. We
do not discuss the “multi peak mass model” here, for more information see [54]. This figure is fig.
1 of Abbott et al. (LVC), 2021, ref. [54].

• Truncated mass model [54] has four independent parameters and:

ppop(m1|α,mmin,mmax) ∝ m−α1 Θ(mmax −m1) Θ(m1 −mmin), (1.204)

while the mass-ratio q ≡ m2/m1 follows

ppop(q|βq,mmin,m1) ∝ qβq Θ(m2 −mmin) Θ(m1 −m2). (1.205)

• “Smoothed truncated mass model” (proposed in ref. [11], similar to the “Broken
Power Law mass model” [54], see below) has six independent parameters (it is the truncated
mass model but with a smoothing on the mass gaps):

ppop(m1,m2|α, β,ml,mh, σl, σh) ∝ m−α1 mβ
2 Θ(m1 −m2)

× fsmooth(m1|ml, σl,mh, σh) fsmooth(m2|ml, σl,mh, σh),
(1.206)

with

fsmooth(mi|ml, σl,mh, σh) = Φ

( ln(m/ml)
σl

)[
1− Φ

( ln(m/mh)
σh

)]
, (1.207)

where Φ(x) is the standard normal cumulative distribution function (see subsection 2.4.1);

• Power Law + Peak mass model [54] (also discussed in ref. [55]) has eight independent
parameters. It is a power law model (as the last two) but it also has a Gaussian peak. The
model is given by

ppop(m1|λpeak, α,mmin, δm,mmax, µm, σm) = [(1− λpeak)P(m1|(−α),mmax)
+λpeakG(m1|µm, σm)]× S(m1|mmin, δm),

(1.208)

where P(m1|(−α),mmax) is a normalised power-law distribution with exponent −α and
maximum mass mmax, G(m1|µm, σm) is the probability distribution function of a Gaussian
with mean µm and width σm and S(m1|mmin, δm) is a function to smooth the turn-on at
law masses (to have its exact expression, see subsection 3.2.2, eqs (3.10) and (3.11)). This
model is then an easy power law model with a Gaussian peak in it. This peak has mean
µm and standard deviation σm and a proportion λpeak of the population is part of the
Gaussian. (We see that if we take λpeak = 0, we recover a power law model);
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• Broken Power Law mass model [54] (used e.g. in refs [10,12]) is an extension of the
truncated model and has seven independent parameters:

ppop(m1|α1, α2,mmin, δm,mmax, b) ∝


m−α1

1 S(m1|mmin, δm) if mmin < m1 < mbreak;
m−α2

1 S(m1|mmin, δm) if mbreak < m1 < mmax;
0 otherwise,

(1.209)
where

mbreak = mmin + b(mmax −mmin). (1.210)

ppop(q|βq,mmin,m1) is the same as in the truncated mass model (eq. (1.205)) and
S(m1|mmin, δm) as in the power law + peak mass model. The broken power law mass
model is explained in more details in subsection 3.2.2.

These mass population functions are independent of the redshift: indeed they are the
probability distributions of the intrinsic parameters θ (here θ = {m1,m2}) of the BBHs population,
p(θ|λBBH). But with GWs, also an extrinsic function is measured: the overall merger rate density
R. In general R depends on the redshift z. The evolving merger rate density R(z) can be
parametrised as (see ref. [58]):

R(z|γ,R0) = R0 (1 + z)γ , (1.211)

where γ (also often called λ or κ) describes the shape of the evolving merger rate density as a
function of the redshift, see e.g. refs [10–12,54], while R0 = R(0) ensures normalisation. Another
parametrisation we use is (see ref. [12]):

R(z|αz, βz, zp, R0) = R0C0
(1 + z)αz

1 +
(

1+z
1+zp

)αz+βz
, (1.212)

where C0(zp, αz, βz) = 1+(1+zp)−αz−βz sets R(0) = R0 and where the parameter zp corresponds
to the redshift of the peak of star formation.

The general equation that gives the total number N of GW events that occur within the
horizon of detection (i.e. the redshift for which the SNR of an event with given parameters θ is
ρthr, see subsection 1.1.3.) over an observation time Tobs, is given by (see ref. [58]):

d2N
dθdz (Λ) = R(z|γ)

[dVc
dz (z)

]
Tobs
1 + z

p(θ|λBBH), (1.213)

where (dVc/dz) is the differential comoving volume (see chapter 2, eq. (2.64)); and where Λ is
the vector containing all the hyperparameters λBBH and γ (see chapter 2).
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1.7 Summary
In the following section we summarise the notions we introduced in this first chapter.

• By linearizing the Einstein’s field equations, i.e. writing

Gµν = κTµν , (1.214)

with a metric g given by a perturbation h on a Minkowski background η:

gµν = ηµν + hµν , with hµν = hνµ and |hµν | � 1, (1.215)

we get in vacuum (Tµν = 0) a wave equation:

�h̄ = −16πGTµν = 0, (1.216)

where h̄ is defined in eq. (1.8) and where the d’Alembertian is � = ∂µ∂
µ. This wave is the

gravitational wave. In the good gauges, it has two polarisations: h+ and h×.

• The Universe is described at first order by a flat FLRW metric (see eq. (1.70)). And the
Einstein’s equations applied to this metric become the Friedmann equation:

H2(t) = 8πG
3 ρ(t) + Λ

3 , (1.217)

with ρ(t) = T00 the total density of energy in the Universe. This energy content of the
Universe can be modeled in various cosmological models, especially ΛCDM model (the
Universe has matter, radiation and a cosmological constant Λ, each one having a different
equation of state p(t) = w(t)ρ(t), for p(t) = Tii the pressure. For example Λ has w = −1)
and the wCDM model (matter and radiation as in the ΛCDM model, but with dark energy
being described by an EoS with w 6= 1).

• A GW that is produced by a binary system of chirp massMc (= (m1m2)3/5 · (m1+m2)−1/5

with m1 ≥ m2 the masses of the heavier and the lighter bodies of the binary) in circular
orbit, that propagates into a FLRW Universe, has polarisations h+ and h× that follow at
first order:

h+(t) = hc
1 + cos2 ι

2 cosΦ(t) (1.218)

h×(t) = hc cos ι sinΦ(t), (1.219)

with

hc ∝
[(1 + z)Mc]5/3 f2/3

GW
dL

, (1.220)

where dL is the luminosity distance, defined by eq. (1.85), while (1 + z)Mc is measurable
from the time derivative of the observed frequency of the GW, ḟGW (see eq. (1.128)). A
linear combination of h+ and h× is detected, if furthermore fGW and ḟGW are observed,
then the luminosity distance is measurable.
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• A binary black hole (or neutron star) that merge gives us a direct measurement of the
luminosity distance between the source and the observer. They are called standard sirens.
Furthermore the measured chirp mass is (1 + z)Mc instead of Mc, so if one knows the
value of Mc, then one knows the redshift z of the source. If a standard siren is used alone
(without EM counterpart), it is called a dark siren.

• The evolution of a GW amplitude h in a FLRW Universe follows the free propagation
equation for tensors modes:

h̃′′A + 2H [1− δ(η)] h̃′A + c2k2h̃A = 0, (1.221)

where H is defined in sect. 1.3. In GR, δ(η) = 0 but in modified gravity models, we can
have δ(η) 6= 0. In such cases, GWs do not give a direct measurement of the luminosity
distance dL but rather of the GW luminosity distance, dGW

L , defined by:

dGW
L (z) = dL(z) exp

{
−
∫ z

0

δ(z′)
1 + z′

dz′
}
, (1.222)

and we can parametrise the ratio dGW
L /dL by:

[
dGW
L
dL

]
param(Ξ0,n)

≡ Ξ0 + 1−Ξ0
(1 + z)n . (1.223)

We discuss some examples of modified gravity models in section 1.5. In particular, the RT
nonlocal model passes all the cosmological tests at the same accuracy at ΛCDM. However,
the RT nonlocal model predicts δ(η) 6= 0 (contrary to ΛCDM). Our goal is to use dark
sirens to constrain the values of the parameters (Ξ0, n).

• To use dark sirens with the mass redshift, we need to have enough detections of GWs
to statistically compare them with astrophysical models of sources population. Some
models of mass population of binary black holes are given in sect. 1.6. They all have in
common a mass gap (i.e. a maximum mass of stellar-mass BHs in source-frame, before the
intermediate mass BHs). For example, the simplest mass population model is given by:

ppop(m1,m2|α, β,mmax,mmin) ∝ m−α1 mβ
2 Θ(m1 −m2)Θ(mmax −m1)Θ(m2 −mmin).

(1.224)

Our statistical approach is explained in details in chapter 2.
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In this chapter we first present a small review of Bayesian inference and of hierarchical Bayesian
inference. As an illustration, we apply a Bayesian inference on Gaussian samples. We then
present the hierarchical Bayesian inference we use for this master’s project to constrain the values
of cosmological parameters by using the mass gap of the black hole population (see chapter 1).

2.1 Generalities about Bayesian inference

Bayesian inference is a technique based on the Bayesian interpretation of probability. It allows
the computation of the probability of a theory (or the probability that a parameter takes a
particular value) given data on the predictions of the theory. Introductions to this method are
given in refs [8, 13,35,59].

This method can be used in a large range of topics, when one has to find the value of a
parameter given observed data, from characterisation of an exoplanet’s radius and mass, to the

47
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efficiency of a vaccine.

In the case of gravitational-wave astronomy, Bayesian inference is used to determine the
masses, spins, distance, etc. of the black holes (or neutrons stars) that produced a detected GW
(see e.g. ref. [54]).

2.1.1 Bayes’ formula and Bayesian interpretation of probability

Let us first formally define probability (see e.g. [60]). Let S be a set with subsets Si (i = 1, 2, · · · ,
n), and A be a σ-algebra on S (i.e. it is a collection of the subsets Si’s of S and that includes ∅
and S itself). Let Aj be an element of the σ-algebra A.

An abstract definition of a probability is given by the function P satisfying:

P : A −→ [0, 1]
Aj 7−→ P(Aj),

(2.1)

with P(Aj) being the probability of the event ‘Aj ’ and satisfying the Kolmogorov axioms
(Andrei Kolmogorov, 1933):

1. ∀Aj ∈ A,P(Aj) ≥ 0;

2. P(S) = 1 (this is the unitarity of the probability);

3. For any countable sequence of disjoint subsets of A, A1, A2, · · · , Am (i.e. mutually
exclusive subsets: Ai ∩ Aj = δijAi), we have: P(⋃mi=1Ai) = ∑m

i=1 P(Ai). (This is called
the “σ-additivity”.)

(S,A,P) is a probability space, where the set S is the sample space, the σ-algebra A is the
event space and P is the probability function.

It also necessary to define the conditional probability: let A and B be two events (i.e. two
elements of the event space A). If P(A) 6= 0, then the conditional probability of the event B given
the event A (denoted: P(B|A)), is:

P(B|A) = P(A ∩B)
P(A) . (2.2)

This equation means that after a first try, the event A comes. Then for a second try, the sam-
ple space is now A instead of S. (By putting A = S in eq. (2.2), we trivially find P(B|S) = P(B).)
And eq. (2.2) is the probability that the second try gives B. So, in general, P (B|A) 6= P (A|B)
and unitarity now holds on the new sample space A: P(A|A) = 1.

Equation (2.2) is symmetric under the transformation A↔ B (assuming P(B) 6= 0), hence
we get:

P(A|B) = P(B ∩A)
P(B) , (2.3)

and since B ∩A = A ∩B, we can link both conditional probabilities in:

P(A|B) = P(B|A) P(A)
P(B) . (2.4)

Equation (2.4) is the well-known Bayes’ formula (or theorem) (Thomas Bayes, 1763).
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For Ai (i = 1, · · · ,m), disjoint subsets such that ⋃mi=1Ai = S, we can write:

P(B) =
m∑
i=1

P(B|Ai)P(Ai). (2.5)

(The probability of B is the sum of the probabilities of B given Ai weighted by the probability of
Ai, for each non-overlapping subset Ai of S.) We can then write the Bayes’ formula (eq. (2.4))
as:

P(A|B) = P(B|A) P(A)∑m
i=1 P(B|Ai)P(Ai)

. (2.6)

It is possible to give different interpretations to the concept of probability (a discussion on
that aspect can be found in ref. [8], sect. 7.4). Two main approaches exist. First, the frequentist
view (the “classical” view) of probability, a probability corresponds to the limit of the ratio of
the number of successes by the number of tries, when the number of tries goes to infinity:

P(“success”) = lim
# of tries→∞

# of successes
# of tries , (2.7)

of course this equation only holds for countable events.1 The basic example is a cubic non-biased
dice: the probability to obtain 5, is P(5) = 1/6: indeed within a large set of rolls, we can expect
that one sixth of the rolls would give a 5. It is the law of large numbers that allows us to interpret
probability in such a way.

In this frequentist interpretation of probability, one can speak about the probability that data
appears given a theory (or hypothesis)2 or given a parameter in a theory. But it is meaningless
to speak e.g. about the probability that I will obtain a good grade for the present thesis: this
cannot be the outcome of a repeatable experiment. More generally one cannot speak about the
probability that a parameter takes a given value, nor about the probability that a theory is true.

To allow us to consider such kind of probability, we must use the Bayesian interpretation of
probability.

In this interpretation, we start from the Bayes’ formula (eq. (2.4)) to write:

P(hypothesis | data) = P(data | hypothesis) · P(hypothesis)
P(data) , (2.8)

or even:

P(parameter = x | data) = P(data | parameter = x) · P(parameter = x)
P(data) . (2.9)

The latter equation can be interpreted by saying that each physical parameter has a certain
probability to take a value, given the data we have, instead of having one defined value without
changing it with the data we have. Philosophically, it is still a question to understand if Bayesian
interpretation of probability is really fundamental (see e.g. [61]). But in the present work, we use
Bayesian interpretation because it works, not necessarily because its philosophical interpretation
is better than the frequentist’s.

1For example if one picks an instant in a period [0, t], the probability to obtain precisely t0 is zero for all
t0 ∈ [0, t]: hence, we can say that events with zero probability happen every day.

2Here and in this chapter, we use theory and hypothesis as synonyms.
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2.1.2 Bayesian inference

To perform Bayesian inference in order to obtain the value of a parameter in a theory, given
some data we start from eq. (2.9).

If we are interested in the value of some parameter θ (or in the values of a vector of parameters
~θ) from the data D we have, the Bayes’ formula gives:

P(θ|D) = P(D|θ) P(θ)
P(D) . (2.10)

To be fully rigorous, the parameter θ lies in the framework of a theory T , then eq. (2.10)
should be written as

P(θ|D, T ) = P(D|θ, T ) P(θ|T )
P(D|T ) . (2.11)

In the latter equations, we introduced the shorthand notation P(A,B) for P(A ∪B) and we will
often use it in the following. From now on, we will not specify in the equations the theory ‘T ’ in
which we work, but one has to remember that the parameters always take place in the framework
of a given theory.

In our case, we use four different notations for the probability functions, to distinguish
between the different kinds of probabilities:

p(θ|D) = L(D|θ) π(θ)
Z(D) . (2.12)

Z(D) is called the evidence and is defined as the integral of the numerator of the r.h.s. of eq.
(2.12) over θ (then it does not depend on the parameter θ):

Z(D) =
∫
L(D|θ) π(θ) dθ. (2.13)

(It is the continuous case of the discrete eq. (2.5).)

In eq. (2.12) we use different notations for the different probability distribution functions:

• p(θ|D) is called the posterior probability distribution function (pdf) of the parameter θ
given the data D. This pdf is the result we are interested in by performing Bayesian
inference, it gives the probability that a certain parameter takes a certain value in the
framework of a theory;3

• L(D|θ) is called the likelihood probability distribution function of the data D given the
parameter θ. It gives the probability of having the data D given the theory T with the
parameter θ. A classical physical theory (T ) generally predicts one single output (D) for
one input (θ), however the measurement of D is never perfect, it always has systematical
uncertainty. This uncertainty must be taken into account into the likelihood;

• π(θ) is called the prior probability distribution function for the parameter θ. This pdf is
chosen in agreement with the prior knowledge we have on the value of the parameter θ.
For example if an approximate value of the parameter is already known from a previous
inference, one can choose to take the posterior of the previous inference as prior for the

3If we suppose that the parameter has one unique “true” value, its posterior must be given by a Dirac delta on
this value. Practically, we have uncertainties. With enough data, the central limit theorem ensures us to obtain a
Gaussian distribution, and the more data, the smaller the standard deviation, hence with an infinite number of
measurements we obtain the Dirac distribution on the “true” value.
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next inference. When one does not know the value of the parameter θ (except its order
of magnitude) a common choice is a flat prior. When even the order of magnitude of θ is
unknown (or supposed to be) another common choice is a logarithmic prior. As we can see
from the Bayes’ formula, eq. (2.4), the choice of prior is important: if the prior gives a zero
probability to a particular value of θ, then this value will always have a zero probability in
the posterior, even if it is the “true” value of the parameter (in other words, if the prior is
wrong, the inference cannot work);

• Z(D) is the evidence and it corresponds to “the probability of having data D”. This
interpretation holds only if we consider the probability of having D given the theory T (and
the systematical uncertainty). In an easier way of seeing it, Z(D) can just be seen as a
normalisation factor depending on the data D, in order that the posterior follows unitarity
(Kolmogorov’s 2nd axiom):

∫
p(θ|D) dθ = 1.

Bayesian inference is a technique that highly depends on the data: adding new data to the
inference can change the shape of the posterior pdf. However, Bayesian inference does not give
one value for the parameter but a pdf: it gives credible intervals around the maximum posterior
value. We can then write expressions such: θ = x

+∆(+)x

−∆(−)x
. In the ideal case of all observations

having the same precision, the credible intervals, ∆(±)x, evolve as 1/
√
Nobs, where Nobs is the

number of observations.

In the context of GW astronomy, the theory T is composed of GR + ΛCDM, or modified
gravity, plus a model of the detector. The surveys (e.g. advLIGO [25], advVirgo [26] or KA-
GRA [27]) detect the data D and one is interested in the values of the parameters ~θ of the GW
source. ~θ is a 15 dimensional vector containing all the parameters of gravitational waves’ sources
(intrinsic parameters: masses of the merging objects, their spins, etc. and extrinsic parameters:
their (GW) luminosity distance, their position in the sky, etc.). By performing Bayesian inference
(see eq. (2.12)), one is able to estimate the values of these parameters with uncertainties. It is
then important to note that the uncertainties on the values of the parameters in GW astronomy
are not only systematical uncertainty (i.e. uncertainty on the measurement of D), but also
statistical uncertainty due to Bayesian inference.

There are several different ways to quote a value and its associated uncertainty: maximum,
median or mean value of the posterior, for the central value, and quantiles, symmetric intervals
around the maximum, etc. of the posterior, for the uncertainty. In this work, we use the median
of the posterior for the central value and other quantiles of the posterior for the uncertainty (for
example the 16th and 84th percentiles for a credible level of 68%).

2.2 Hierarchical Bayesian inference
The probability of having the parameter θ can be given itself by a parent-distribution. This
distribution might be conditioned on a hyperparameter Λ (or on a vector of hyperparameters ~Λ),
i.e. θ follows a distribution ppop(θ|Λ). Our goal is to perform an inference on the value of the
hyperparameter Λ.

Example 2.1: The mass m of an astrophysical black hole follows the mass population of
black holes. At a first approximation the mass population is (for m < mgap ∼ 50− 150 M�) [54]:

ppop(m|α) ∝ m−α, (2.14)

m corresponds to the parameter θ while α corresponds to the hyperparameter Λ.
An example of ppop(m|α) (for α = 0.75) is shown in fig. 2.1. ♦
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Figure 2.1: Example of mass population of black holes ppop(m|α) (see example 1), where we take
α = 0.75.

To perform an inference on the hyperparameter Λ, when the data give direct information on
θ, we use hierarchical Bayesian inference. To distinguish between hierarchical Bayesian inference
and Bayesian inference, it is customary to talk about hyper-posterior, hyper-likelihood, etc. for
the posterior, likelihood, etc. of the hierarchical inference [35,59]. We follow this convention in
the following.

2.2.1 Hierarchy

Since we are interested in the hyper-posterior of Λ given D, we need to introduce the hyper-
likelihood (D given Λ). The key is to marginalise over the whole θ space, with θ ∼ ppop(θ|Λ).4
We thus get the marginalised hyper-likelihood:

L(D|Λ) =
∫
L(D|θ) ppop(θ|Λ) dθ. (2.15)

The hyper-posterior then follows directly from the Bayes’ formula (eq. (2.4)):

p(Λ|D) = L(D|Λ) π(Λ)
Z(D) , (2.16)

where, as usual, the hyper-evidence Z(D) is given by the integral of the numerator of the r.h.s.
of eq. (2.16) over the hyperparameter Λ:

Z(D) =
∫ {∫

L(D|θ) ppop(θ|Λ) dθ
}
π(Λ) dΛ. (2.17)

If we have Nobs independent measurements, we can write the total hyper-likelihood as the
product of each independent hyper-likelihood (they are independent probabilities):

4Here notation “∼” is used in its probabilistic meaning: θ ∼ ppop(θ|Λ) signifies that the distribution of the
random variable θ is the pdf ppop(θ|Λ).
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Ltot(D|Λ) =
Nobs∏
i=1

∫
L(Di|θi) ppop(θi|Λ) dθi, (2.18)

In the latter equation, θi is the parameter (or the ensemble of all parameters) of the i-th measure-
ment, while Di is the data of the i-th measurement (i ∈ J1, NobsK), thus D = {D1,D2, · · · ,DNobs}.
To obtain eq. (2.18), we furthermore supposed that all the observations were coming from the
same population function ppop(θ|Λ).

To compute the hyper-likelihood, eq. (2.18), it is useful to rewrite the likelihood L(Di|θi) as
(by the Bayes’ theorem (eq. (2.12)):

L(Di|θi) = Z(Di)
p(θi|Di)
π(θi)

. (2.19)

Therefore, plugging eq. (2.19) into eq. (2.18), gives:

Ltot(D|Λ) =
Nobs∏
i=1

∫
Z(Di) p(θi|Di)

ppop(θi|Λ)
π(θi)

dθi. (2.20)

It is now straightforward to compute the hyper-posterior probability distribution function for
Λ (using again Bayes’ theorem):

p(Λ|D) = Ltot(D|Λ) π(Λ)
Ztot(D) , (2.21)

and it gives:

p(Λ|D) = π(Λ)
Ztot(D)

Nobs∏
i=1

∫
Z(Di) p(θi|Di)

ppop(θi|Λ)
π(θi)

dθi. (2.22)

Example 2.2: In ref. [10], the authors use eq. (2.18) to obtain the likelihood of the
gravitational-wave data given the Hubble constant. In order to obtain this equation, they start
by writing the parameter ~θ as the vector (dL, Ω̂,θ′), with the luminosity distance dL and the
direction Ω̂ of the source in the sky and the other parameters θ′. By marginalising over these
different parameters, they get:

L(D|H0) =
∫
L(D|dL, Ω̂,θ′) ppop(dL, Ω̂,θ′|H0) ddL dΩ̂ dθ′, (2.23)

which is equivalent to their eq. (3.15). One can rewrite ppop(dL, Ω̂,θ′|H0), by noticing that dL is
given by a redshift z and a choice of cosmology H0 and that one can measure the (gravitational)
luminosity distance with the GW signal (h ∝ 1/dGW

L ). One can then marginalise over z to get:

ppop(dL, Ω̂,θ′|H0) =
∫
δ
(
d measured
L − dL(H0, z)

)
p0(z, Ω̂,θ′) dz, (2.24)

where δ(x) is the Dirac delta distribution, p0(z, Ω̂,θ′) is the probability to have a galaxy (which
can host the GW source) at the given parameters (z, Ω̂,θ′). In ref. [10], the authors use a galaxy
catalog to compute this distribution p0. The integration over the delta distribution then gives:

L(D|H0) =
∫
L
(
D
∣∣∣∣ dL(z,H0), Ω̂,θ′

)
p0(z, Ω̂,θ′) dz dΩ̂ dθ′, (2.25)

which is equation (3.17) of ref. [10] (up to some notation differences and to a normalisation factor,
see below, subsection 2.2.2). ♦
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2.2.2 Selection bias

Until now, we implicitly considered that our observations D were a representative sample of the
likelihood L(D|Λ). This is not always the case because of an observation bias: only one part of
the population can be detected, hence the data D is a sample of this part only and not of the
entire population.

In observational astronomy such a selection bias is known as the “Malmquist bias” (Gunnar
Malmquist, 1922) (see ref. [62]): surveys are limited, and stars (or now galaxies) with an apparent
magnitude above5 the detectability threshold of the survey cannot be detected. Then, only
objects with a maximum apparent magnitude can appear in catalogs. The catalogs only present
partial data. The incompleteness is dependent of the distance, since the apparent magnitude is
given by:

m = −2.5 log10

(
L

4πd2

)
+ constant, (2.26)

let us say that to be detectable, an object has to have an apparent magnitude below a threshold
m?, we see from the latter equation that the further the object (d), the higher its luminosity (L)
has to be in order to be detectable (the effect is even quadratic in the distance). So clearly, the
further the distance, the less accurate the catalog. In appendix A of ref. [10], the authors discuss
the completeness of a galaxy catalog. (They also discuss about other bias, such as non-isotropy
of the incompleteness because of the Milky Way, etc.)

In the case of gravitational-wave astronomy, the problem is almost the same. Instead of
a maximum apparent magnitude, the gravitational wave signals have to be above a certain
signal-to-noise ratio:6 some signals are too tiny to be detected (this is the effect of the intrinsic
parameters of the source) while others can even be in a detector’s blind spot (this is the effect of
the extrinsic parameters of the source), etc.

But if we know the detector, and the shape of the overall population of sources, we can
estimate in a very accurate way the probability of detection of a signal. Then we can take into
account the selection bias into Bayesian inference.

In this section, we explicitly take the example of the gravitational wave selection bias, follow-
ing the notation and the derivation of ref. [13]. N is the total number of GW events in the Universe.

Bottom-up derivation

Here we present the so-called “bottom-up” derivation of the selection bias. We use ref. [13], in
which one can also find another derivation, that is equivalent.

First of all, we need to integrate only on the events that are detectable by our surveys. To do
so, we must normalise the total hyper-likelihood, eq. (2.18), in order to ensure unitarity of the
hyper-posterior p(Λ|D) over all observable events. We then introduce the normalisation factor
α(Λ), such that:

Ltot(D|Λ) =
Nobs∏
i=1

1
α(Λ)

∫
L(Di|θi) ppop(θi|Λ) dθi, (2.27)

5Remember that because of the minus sign in eq. (2.26), the larger the magnitude, the less one sees the object...
(see also note 9 page 26).

6Or equivalently: below a certain false-alarm rate (FAR).



2.2. HIERARCHICAL BAYESIAN INFERENCE 55

where α(Λ) is the integral of the total hyper-likelihood over the observable events:

α(Λ) =
∫
D > threshold

[∫
L(D|θ) ppop(θ|Λ) dθ

]
dD

=
∫
ppop(θ|Λ)

[∫
D > threshold

L(D|θ) dD
]

dθ

=
∫
pdet(θ) ppop(θ|Λ) dθ. (2.28)

In eq. (2.28), we introduce the probability of detection of a gravitational wave whose source
has parameters θ. This is mathematically:

pdet(θ) =
∫
D > threshold

L(D|θ) dD. (2.29)

A typical criterion of detection in GW astronomy is given by a certain false-alarm-rate,
FAR (for example below 2.0 yr−1 for GWTC-1 [4]) that can be empirically converted into a
signal-to-noise ratio (SNR), see subsection 1.1.3. We generally say that a GW event is detected
by a two detectors surveys when its SNR is larger than 8 (in both detectors). Then pdet(θ) is
given by:

pdet(θ) ≡ pexpdet (θ) = Θ (SNR(θ)− 8) , (2.30)

where

∀x ∈ R, Θ(x) =

0 if x < 0;
1 if x ≥ 0,

(2.31)

is the Heaviside step function.

We can check that for a hyperparameter Λ that allows all events to be detected, α(Λ) = 1,
and the total hyper-likelihood with a selection bias, eq. (2.27), becomes the total hyper-likelihood
without selection bias, eq. (2.18).

Another effect to take into account is that if we expect to observe Nexp events (for example,
Nexp can be computed from the population of events’ sources – for GWs, now, stellar-mass black
holes and neutrons stars – and using a model of detection), the probability to observe Nobs events
follows a Poisson distribution:

P(Nobs|Nexp) = e−Nexp(Nexp)Nobs , (2.32)

where we did not write the normalisation factor 1/Nobs! because the events are distinguishable.
For a precise derivation, see e.g. ref. [13]: we assumed a constant source rate and no background.
If N is the total number of GW events, then it is connected to Nexp by: Nα(Λ) = Nexp. Indeed,
α(Λ) is the proportion of events that is detectable given the hyperparameters Λ, so α(Λ) times
the total number of events N , gives the number of events one expects to detect: Nexp.

It is then possible to write the hyper-posterior of Λ and N given D:

p(Λ,N |D) ∝ π(Λ)π(N)
Nobs∏
i=1

[∫
p(θi|Di)
α(Λ)

ppop(θi|Λ)
π(θi)

dθi
]

·e−Nexp(Nexp)Nobs , (2.33)

that we can (numerically) marginalise over N to obtain the hyper-prior of Λ given data D:
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p(Λ|D) ∝
∫
π(N)π(Λ)

Nobs∏
i=1

[∫
p(θi|Di)
α(Λ)

ppop(θi|Λ)
π(θi)

dθi
]

·e−Nα(Λ)(Nα(Λ))Nobs dN. (2.34)

The proportionalities in eqs (2.33) and (2.34) come from the fact that we did not write the
hyper-evidence factors Z(Di) in the denominators, since they act just as a global normalisation
factor that does not depend on the hyperparameter Λ nor on N .

Example 2.3: As in ref. [13] we can use a Jeffreys prior for a Poisson distribution,7
π(N) ∝ 1/N , and since dN = dNexp/α(Λ), we obtain:

∫ e−Nα(Λ)

N
(Nα(Λ))Nobs dN =

∫
e−Nexp (Nexp)Nobs−1 dNexp = Γ (Nobs) = (Nobs − 1)! (2.35)

thus

p(Λ|D) ∝ π(Λ)
Nobs∏
i=1

∫
p(θi|Di)
α(Λ)

ppop(θi|Λ)
π(θi)

dθi. (2.36)

♦

The function of the bias effect α(Λ) is sometimes called β(Λ), e.g. in refs [10, 63] (often
because α has another significance in these papers) but in the present document we use the
standard notation “α”.

2.2.3 Discretisation of the integrals

La découverte des logarithmes [...] en réduisant à quelques jours le travail de plusieurs
mois, double, si l’on peut dire, la vie des astronomes [...].

Pierre-Simon de Laplace
(Exposition du système du monde, Livre V, chapitre IV, 1796)

Equation (2.33) has a number of integrals which is linear on the number of measurements: in
the GW case, there are 15Nobs integrals (θ ∈ D ⊂ R15). (In our work we will use only a few
parameters (see section 2.4).) It is then useful to discretise the factor between the square brackets
of eq. (2.33), using a Monte Carlo integration (cf. eq. (22) of ref. [35] and appendix A, eq.
(A.9)):

〈f(x)〉p(x) =
∫
R
p(x)f(x) dx ≈ 1

ns

ns∑
k=1

f(xk) | xk ∼ p(x), (2.37)

where we simply divide R in ns bins with a repartition following p(x), we evaluate f on every
bin and we average. This integration come from the strong law of large numbers (see appendix
A, page 91 for a demonstration of eq. (2.37) and for a short introduction to Monte Carlo methods).

In the case of the square brackets of eq. (2.33), we can match:
7The Jeffreys prior is given by the square root of the determinant of the Fisher information matrix.
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p(x)←→ p(θi|Di); (2.38)

f(x)←→ ppop(θi|Λ)
π(θi)

= f̃(θi); (2.39)

dx←→ dθi; (2.40)
R←→ D ⊂ Rd; (2.41)

(where d is the number of parameters we are considering). We obtain (also assuming that ns is
very large so that the approximation becomes an equality):

Ltot(D|Λ) =
Nobs∏
i=1

[
1
ns

ns∑
k=1

ppop(θki |Λ)
π(θki )

|θk
i ∼ p(θi|Di)

]
. (2.42)

and this is eq. (32) of ref. [35].

Inserting eq. (2.42) into eq. (2.33), we get:

p(Λ,N |D) ∝ π(Λ)π(N)
Nobs∏
i=1

[
1
ns

ns∑
k=1

ppop(θki |Λ)
π(θki )

|θk
i ∼ p(θi|Di)

]
e−Nα(Λ)NNobs . (2.43)

This equation can be itself very long to estimate: with current (2021) 2nd generation GW
detectors (such that advLIGO, advVirgo or KAGRA), we have O(50) detections. But with 3rd
generation GW detectors (such as the Einstein Telescope (ET), in the mid-2030s), we will have
O(105 − 106) detections per year [7], so the product of likelihoods (numbers between 0 and 1)
will quickly become a very small number. It is then easier to work with the logarithms:8

log{p(Λ,N |D)} = log{π(Λ)}+ log{π(N)}+
Nobs∑
i=1

log
{

1
ns

ns∑
k=1

ppop(θki |Λ)
π(θki )

|θk
i ∼ p(θi|Di)

}
−N α(Λ) + const. (2.44)

Equivalently we can insert eq. (2.42) into eq. (2.36) (so using the Jeffrey prior for a Poisson
distribution to marginalise on N), we finally obtain eq. (14) of ref. [13]:

p(Λ|D) = π(Λ)
Nobs∏
i=1

[
1
ns

ns∑
k=1

ppop(θki |Λ)
π(θki )

|θk
i ∼ p(θi|Di)

]
α−Nobs(Λ). (2.45)

and by taking the logarithm:

log{p(Λ|D)} = log{π(Λ)}+
Nobs∑
i=1

log
{

1
ns

ns∑
k=1

ppop(θki |Λ)
π(θki )

|θk
i ∼ p(θi|Di)

}
−Nobs log(α(Λ)). (2.46)

In the present work, we use the natural logarithm (but the logarithm’s basis does not change
the results) and we use the Python package emcee [64] to compute the integrals with a Markov
chain Monte Carlo algorithm (see appendix A.5, page 96 for the explanation of the algorithm).

8That is exactly the reason why the logarithms were invented!
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2.3 An easy example of Bayesian inference: the Gaussian

We saw that Bayesian inference directly follows from the Bayes’ formula, eq. (2.4). But how do
we use this technique in a real situation?

In this section, we illustrate Bayesian inference with an easy example: we have samples from
a Gaussian (normal) distribution function with unknown mean µ̂ and standard deviation σ̂. In
other words we have numbers that are (representative) samples of a distribution N (µ̂, σ̂2) and
our goal is to find the values of µ̂ and of σ̂ from the samples.

Here there is, we think, a first subtlety to understand. µ̂ and σ̂ are the true values of the
parameters “mean” and “standard deviation” (i.e. the samples come from a distribution with
these values for the parameters). During the inference, we work with the variables µ and σ.
The goal of the inference is to constrain each variable to an interval: µ = Iµ and σ = Iσ, such
that: µ̂ ∈ Iµ and σ̂ ∈ Iσ with a given probability (generally 68% or 95%). In the literature, the
parameters, their true value and the corresponding variables often have the same name. In this
section however, we take care to always make the distinction between the parameter, its true
value and its variable. But in the other sections of the present document, we use the usual notation.

This Gaussian example is easy for at least three reasons:

• we suppose that we already have a representative sampling of the Gaussian pdf: we do not
have any selection bias to take into account and we do not have to estimate the values of
the samples by a first inference;

• we already know the shape of the source population: it is a normal distribution;

• a Gaussian is characterised by only two parameters.

This Bayesian inference follows from eq. (2.12):

p(θ|D) = L(D|θ) π(θ)
Z(D) , (2.47)

with θ = {µ, σ} the vector containing the variables of the parameters that we want to constrain,
and where D is the vector containing our Nsamples of the unknown Gaussian probability distribu-
tion function: D = {D1, · · · ,DNsamples}.

First, let us suppose that we do not have any indication on the true value of the parameter
θ̂ = {µ̂, σ̂}, then we can take a constant prior: π(θ) = const. By writing this equality, we say
that we do not know the value of θ̂ and that we suppose that any value of a certain range has
the same chance to be the true one. This “agnostic” point-of-view has the advantage to allow
any value of θ to be the true one, whatever we can think before the inference. If the true value θ̂
has a zero prior, then the inference will never give the true result. The choice of prior is then
important, and except mathematical (e.g. we do not want a negative value for the mass nor for
a distance) or physical good reason (e.g. an extreme value for a parameter could be inconsistent
with observation), we must avoid any zero probability for a prior.

Since Z(D) can be viewed as a simple overall normalisation factor, we can write a propor-
tionality instead of an equality, and eq. (2.47) becomes:

p(θ|D) ∝
Nsamples∏
i=1

L(Di|θ). (2.48)
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The r.h.s. is the likelihood function: it gives the probability to have the sample Di from a
Gaussian with parameters θ = {µ, σ}. This is exactly the meaning of the probability distribution
function, thus:

L
(
Di|θ = (µ, σ)

)
= 1
σ
√

2π
exp

{
−1

2

(Di − µ
σ

)2
}
. (2.49)

Equation (2.48) then says that the probability that the true value of the parameter (θ̂) is θ
is just the product (or equivalently the sum of the logarithms) of the probability to obtain the
sample Di with a Gaussian pdf characterised by a mean and a standard deviation with the value
θ. Now the goal is to test many different values for θ and to compute each time the probability
of having the sample Di for a Gaussian with this value of θ.

This collection of probabilities for many values of θ samples the posterior p(θ|D). And we can
say that the true parameter, θ̂, lies in between the 16th and the 84th percentiles of the posterior
p(θ|D) with a 68% credible interval (or in between the 2nd and the 98th percentiles with a 96%
credible interval).

What the inference is doing is in fact easy to understand: it tests a lot of distributions (i.e. a
lot of different values for the parameters of the distribution) and the tested distribution which
maximises the probability to obtain data D is probably (close to) the true distribution. Of course,
the more data D, the more accurate the inference (the credible intervals go as 1/

√
Nobs where

Nobs is the number of observations).

For example, we created a vector D of 100 samples (our “observations”) coming from a
Gaussian with µ̂ = 5 and with σ̂ = 1 (the so-called fiducial values). We want to find the value
of these (supposed unknown) parameters. Let us first suppose that we know σ̂ = 1, and that
we want to constrain the value of µ̂. To do this, we evaluate the value of the product of the
likelihoods (2.49) in 100 different choices of µ, between µ = 3 and µ = 7. Figure 2.2 shows the
plot of (the non normalised) p(µ|D, σ̂) as a function of µ,9 along with the true value µ̂ = 5 of the
parameter.

We can see that the posterior distribution function p(µ|D, σ̂) (fig. 2.2) looks very much like a
Gaussian with a maximum at approximately M ≈ 4.9 and with a standard deviation Σ ≈ 0.15.
This then means that the true parameter µ̂ is in the interval [4.75, 5.05] with 68% of probability.
We generally write: µ = 4.9± 0.15 at 68% C.L. (credible level), or alternatively µ = 4.9± 0.3 at
95% C.L., etc. In this example, the true value is indeed in the 68% credible interval, but this is
not necessarily the case.

Note that the Gaussianity of the posterior distribution is not connected to the Gaussian
source of our samples: with enough samples, the posterior of a Bayesian inference is always a
Gaussian, by the central limit theorem (see e.g. [65]).

Now if both values of µ̂ and of σ̂ are unknown, we must test many combinations of values
for θ = (µ, σ). To do this, we can use a Markov chain Monte Carlo (MCMC) algorithm (see
appendix A, page 91). For this example (as for the other times we perform a MCMC in the
present work), we use the Python package emcee [64, 66]. The result is shown in fig. 2.3, for
which we use the Python software corner [67].

9In the general case, to follow the Bayes’ formula, we must multiply the likelihood by the prior π(µ) and divide
the total by the evidence Z(D). But here, the prior is flat and we could numerically normalise the pdf to unity at
the end.
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Figure 2.2: (Non normalised) posterior distribution function of p(µ|D, σ̂) as a function of µ. The
black dashed line corresponds to the fiducial value µ̂ of the parameter.

 = 4.92+0.11
0.11

4.6 4.8 5.0 5.2
0.9

0

1.0
5

1.2
0

1.3
5

0.9
0

1.0
5

1.2
0

1.3
5

 = 1.07+0.08
0.07

Figure 2.3: Corner plots of p(µ, σ|D) as a function of µ and of σ. The blue lines correspond to
the fiducial values µ̂ and σ̂ of the parameters, and the black dotted lines correspond to the 16th,
50th and 84th percentiles of the posteriors.

Figure 2.3 is called a corner plot and is the usual way to represent such posterior pdf’s: when
we have p parameters to constrain, the posterior is a p-dimensional function. In a corner plot, on
the diagonal, we plot the histograms (or sometimes the smoothed pdf’s) of a variable (i.e. the
posterior marginalised over the other variables). Hence there are p histograms of one variable to
plot a function of p variables.
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Here, on the top of each histogram, the 68% credible interval is written. (This interval is also
shown on the histograms by the black dashed lines.) Here, we can conclude that µ̂ ∈ [4.81, 5.03]
with 68% C.L. and σ̂ ∈ [1.00, 1.15] with 68% C.L.

Under the diagonal are shown the contour plots of two different variables. The con-
tours highlight different credible levels. For example on fig. 2.3, the four levels show the
{38%, 68%, 87%, 95%} C.L. (= erf(x/

√
2), for x ∈ {0.5, 1.0, 1.5, 2.0}.) All the 2-by-2 combina-

tions of variables are plotted. We then have (p− 1)p/2 contour plots of two variables to plot a
function of p variables.

2.4 Hierarchical analysis of GWs from BBHs with a mass gap
This section presents the main theoretical result of this master’s thesis.

Our goal is to constrain cosmological parameters, astrophysical parameters about the binary black
holes population and, maybe the more interesting part, modified gravity parameters, see chapter 1.

Similar technique have been mentioned to be useful to constrain cosmological parameters
in refs [35, 40] and have been performed to constrain the value of the Hubble constant, on
mock data (representing five years of observation with the detector advLIGO at design sen-
sitivity) in ref. [11] (see section 1.4 for more references). It has been also used to constrain
modified GW propagation, e.g. in ref. [10], whose authors have constrain the same parameters
as those that we are interested in: {H0, Ξ0, · · · }, see section 1.5, by using dark sirens and a
galaxy catalog, and in ref. [12] that used a similar technique on a different parametrisation of
modified GW propagation (cM, see section 1.5) by using the mass redshift, but without mock test.

To constrain these parameters, we use eq. (2.33) of hierarchical Bayesian inference with a
selection effect:

p(Λ,N |D) ∝ π(Λ)π(N)
Nobs∏
i=1

[∫
p(θi|Di)
α(Λ)

ppop(θi|Λ)
π(θi)

dθi
]

·e−Nexp(Nexp)Nobs , (2.50)

or in fact the logarithm of the descretisation of this equation (eq. (2.44)):

log{p(Λ,N |D)} = log{π(Λ)}+ log{π(N)}+
Nobs∑
i=1

log
{

1
ns

ns∑
k=1

ppop(θki |Λ)
π(θki )

|θk
i ∼ p(θi|Di)

}
−Nα(Λ) + const. (2.51)

More precisely, in the present case, the variables of eq. (2.51) are:

• D the GW data, which corresponds to the detections of gravitational waves (now by the
LIGO and Virgo collaborations (LVC) but soon with other detectors, such as KAGRA): it
is the collection of the detected GWs;

• θ the source parameters: a 15-dimensional vector of extrinsic and intrinsic parameters. In
the following we neglect the effects of some parameters (see chapter 1 and below);

• Λ the hyperparameters we are interested in: cosmological, astrophysical and modified
gravity parameters (see below);

• Nobs the number of used events (= dimD);
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• ns the number of samples of the posterior p(θi|Di).

The selection bias function α(Λ) is computed in details in appendix B, page 97. Here we will
assume that it is known.

Import note: the aim of this section is to use the mass gap in the population of astrophysical
black holes to operate an inference. It is then important to use only the detections of gravitational
waves whose source is a (astrophysical) BBH.

As in the articles [10,11], we are only interested in the parameters:

θ = {mz
1,m

z
2, Θ, d

GW
L }, (2.52)

where mz
1 and mz

2 are respectively the mass of the heavier black hole and the mass of the lighter
one in the detector frame (mz

i = m0
i (1 + z));10 Θ is the angle of the source’s orbital plane with

respect to our direction of sight, and dGW
L is the gravitational wave luminosity distance (see

subsection 1.5.2).

The values of p(θi|Di) (or more precisely directly the samples θki ∼ p(θi|Di)) are publicly
given by LVC (see e.g. [68]) and they are obtained from a first Bayesian inference.

We are looking for the hyperparameters (as in [10]):

Λ = {~λcosmo, ~λBBH, R0, γ}, (2.53)

where ~λcosmo (also written without the arrow) is the vector of the parameters of our cosmological
model (for example, in ΛCDM, H0, Ωm,0, etc.) and the parameters of the parametrisation of the
modified gravitational waves propagation that we want to constrain (Ξ0 and n).11

~λBBH is the vector of the parameters of the binary astrophysical black holes population.
According to the model of population, we can have ~λBBH = {α, β,ml,mh, · · · } (see section 1.6).
R0 is the rate of BBHs mergers at redshift z = 0 and γ describes the evolution of the rate of
mergers as a function of the redshift z: R(z) = R0 (1 + z)γ .

We generally take the prior π(Λ) flat on a large range of values, this allowing any value
of the range to be the true value of the parameter. Sometimes however, we also use a
Gaussian prior on H0 and on Ωm,0 around the values found by the satellite Planck in 2018
(H0 = 67.66± 0.42 [km s−1Mpc−1]12 and Ωm,0 = 0.3111± 0.0056) [69].

In eq. (2.51), the only result we do not know is the fraction:

P(θ|Λ) ≡ ppop(θ|Λ)
π(θ) , (2.54)

let us evaluate it.

2.4.1 The function P(θ|Λ)
In this subsection, we want to evaluate the function P(θ|Λ), as given by eq. (2.54).

At the denominator, we have the prior function on the parameter θ. Since θ = {mz
1,m

z
2, Θ, d

GW
L },

we have:
10mz

i is often written mdet
i (because it is the detected mass), but ‘det’ can have many meanings so we prefer mz

i .
11We recall that in this parametrisation, one gets: dGW

L = {Ξ0 + (1−Ξ0)/(1 + z)n} dEM
L , see subsection 1.5.3.

12We will not always write the units of H0. When it is not precised, then the unit is always km s−1Mpc−1.
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π(θ) = π(mz
1,m

z
2, Θ, d

GW
L ) (2.55)

= π(mz
1,m

z
2) π(Θ) π(dGW

L ), (2.56)

where eq. (2.56) follows from the fact that the two masses of the black holes are correlated, but
the masses, the distance and the orientation angle are taken to be independent (this is true
at a first approximation, but at higher approximation the masses could be correlated with the
distance, e.g. through the metallicity). This prior is given within the GW results publications,
e.g. ref. [68] (it is the same prior as used by LVC to obtain the function p(θ|D)).

The numerator of P, ppop(θ|Λ), is immediately obtained from the differential rate of formation
of BBHs, dN/dθ, that is normalised such that:

dN (Λ,N)
dθ = N ppop(θ|Λ). (2.57)

However, in general, the differential rate of formation of BBHs is given as a function of other
parameters than the one we use. We then need to use some Jacobian determinants to transform
the parameters into other parameters.

We also need a rate which depends on the redshift (we will see why in subsection 2.4.2). Any
credible model of population does.

We will write explicitly a function P(θ|Λ) depending on a simple formation rate in the
§ A simple model for the BBH formation rate, page 64, but first we need to recall a few
cosmological notations.

Cosmological notations

Here we recall some notations (for more information, see section 1.2). The comoving distance is
defined as:

dcom(z) =
∫ z

0

c dz′
H(z′) , (2.58)

where c is the speed of light and H(z) is the Hubble parameter that we can normalise as:
H(z) = H(z = 0) E(z) ≡ H0 E(z), hence writing

u(z) =
∫ z

0

dz′
E(z′) , (2.59)

one gets:

dcom(z) = c

H0
u(z). (2.60)

The electromagnetic luminosity distance is linked to the comoving distance by:

dEML = (1 + z) dcom(z), (2.61)

thus the gravitational luminosity distance dGW
L = Ξ(z) dEML can be rewritten as:

dGW
L = (1 + z) Ξ(z) c

H0
u(z) ≡ s(z) c

H0
u(z). (2.62)

The comoving volume Vcom is defined through its derivative:
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d2Vcom
dz dΩ = c

d2
com(z)
H(z) =

(
c

H0

)3 u2(z)
E(z) ≡

(
c

H0

)3
j(z); (2.63)

thus,

dVcom
dz =

∫ d2Vcom
dz dΩ dΩ = 4π

(
c

H0

)3
j(z). (2.64)

A simple model for the BBH formation rate

In chapter 3, we will test a few different models of BBH mass population. We will always give
the specific function P, but let us first show how to obtain it from a simple model.

We consider the following BBHs formation model proposed in [11] (see their eq. (A1)) and
already explained in section 1.6:

d4N
dm1 dm2 dVcom dτ = R30

(30 M�)2
(

m1
30 M�

)−α ( m2
30 M�

)β
(1 + z)γ Θ(m1 −m2)

× fsmooth(m1|ml, σl,mh, σh) fsmooth(m2|ml, σl,mh, σh) (2.65)

≡ ppop(m1,m2|~λBBH) · R30
(30 M�)2 (1 + z)γ Θ(m1 −m2) (2.66)

where Θ(x) is the Heaviside step-function, τ is the time in the source frame, where ~λBBH =
{α, β,ml, σh,mh, σh}, R30 being the overall mass rate density, normalised for BHs of 30 M�, and
where one defines the function (for i = 1, 2):

fsmooth(mi|ml, σl,mh, σh) = Φ

( ln(m/ml)
σl

)[
1− Φ

( ln(m/mh)
σh

)]
, (2.67)

with Φ(x) the standard normal cumulative distribution function:

Φ(x) = 1√
2π

∫ x

−∞
e−t2/2 dt. (2.68)

The BHs mass gap of astrophysical BHs (before the intermediate mass BHs) can be seen
from ppop(m1,m2|~λBBH). This function for m2 = 5 M� is plotted on fig. 2.4.

Equation (2.65) is given as a function of the source frame masses m1, m2, comoving volume
Vcom and source frame time τ . But the parameters θ in eq. (2.57) are the detector frame masses
mz

1, mz
2 and GW luminosity distance dGW

L . Hence we need to include the appropriate Jacobian
determinants, that contain the cosmological model we test (e.g. H0, Ξ0, n, Ωm,0, · · · ). In our
case:

N ppop(θ|Λ) = d4N
dmz

1 dmz
2 dΘ ddL

, (2.69)

we ignore the Θ dependence since
∫

dΘ = 1, and we can rewrite:

dmi = dmi

dmz
i

dmz
i , for i = 1, 2 (2.70)

= 1
(1 + z) dmz

i , (2.71)
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Figure 2.4: Plot of ppop(m1 | ~λBBH,m2 = 5 M�) as a function of m1 (see eq. (2.66)).

and

dVcom = dVcom
dz

dz
ddL

ddL (2.72)

so,

N ppop(θ|Λ) = d3N
dm1 dm2 dVcom

1
(1 + z∗)2

dVcom
dz

dz
ddL
|z=z∗ (2.73)

= d4N
dm1 dm2 dVcom dτ

1
(1 + z∗)2

dVcom
dz

dz
ddL
|z=z∗ · dτ

dt dt (2.74)

where t is the time in the detector frame and where z∗ is the solution of: dGW
L (z∗, H0, Ξ0, · · · ) =

dmeasured
L (it is the redshift that corresponds to the measured distance, given the cosmological

model). Integrating over t, we get:

N ppop(θ|Λ) = d4N
dm1 dm2 dVcom dτ

1
(1 + z∗)2

dVcom
dz

dz
ddL
|z=z∗ · Tobs

(1 + z∗) . (2.75)

The Jacobian ∂z/∂dL can be expressed as:

Jz = ∂dGW
L
∂z

= d
dz
(
Ξ(z) dEML (z)

)
(2.76)

= d
dz [s(z) dcom(z)] (2.77)

=
(
s′(z) dcom(z) + s(z) d′com(z)

)
(2.78)

= c

H0

(
s′(z) u(z) + s(z)

E(z)

)
(2.79)

where the prime denotes a derivative with respect to z: f ′ ≡ ∂zf .



66 2. METHODOLOGY

And we finally get:

P(θ|Λ) ∝
(
c

H0

)2 4π Tobs ppop(m1,m2|~λBBH) u2(z∗)
π(m1,m2) π(dL) π(Θ) [E(z∗) s′(z∗) u(z∗) + s(z∗)] · R30

(30 M�)2 (1 + z)γ−3,

(2.80)
where s′(z∗) = ∂zs(z)|z=z∗ .

P(θ|Λ) as given by the latter equation is the expression we will use in our codes to infer the
hyperparameters Λ = {~λBBH, H0, Ξ0, · · · }.

2.4.2 How the hierarchical inference works

One can understand the basic working of this hierarchical Bayesian inference by noticing
that we have a relation between the (gravitational) luminosity distance and the redshift that
depends on the cosmological model (with the parametrisation of the modified gravitational waves
propagation):

dGW
L (z∗, H0, Ωm,0, wDE, Ξ0, n, · · · ) = dmeasured

L . (2.81)

The measured distance dmeasured
L is a given data from the observations. But the redshift which

corresponds to this distance is unknown (without any EM counterpart). Luckily, masses of the
sources are redshifted such that:

mz = m0(1 + z), (2.82)

so by knowing the source-frame mass of the BBHs and its detector-frame mass one knows the
redshift.

In this work we use the shape of the astrophysical BBHs population function, and more
particularly its maximum mass cutoff, to evaluate statistically the value of the source masses of
the BBHs. We then need a large number of observations of GW coming from BBHs.

The BBHs population function itself depends on the parameters ~λBBH. According to the
considered model, one can have at least four parameters in ~λBBH (see section 1.6).

So, this inference has to constrain the value of the redshift corresponding to an observation,
hence the values of {~λBBH, ~λcosmo, R0, γ, · · · } = Λ which best fit the observations.

2.4.3 Effects of the selection bias

Let us first remember that:

α(Λ) =
∫
pdet(θ) ppop(θ|Λ) dθ. (2.83)

We explain how to compute it in appendix B.

We can qualitatively predict the effects of the selection bias. This bias reflects the fact that
that the further the source, the heavier it has to be, to be detectable. So in a catalog of detected
GWs, the further the sources, the heavier their average mass.

But in parallel, the further the source, the more redshifted it is. So even if all sources were
detectable, the average detected mass must increase with the distance (see eq. (2.82)). So the
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selection bias accentuates the normal increase of mass with redshift (thus with distance).

Our Bayesian hierarchical inference uses the detected mass (that increases with distance)
to estimate the redshift. Since the detected masses are also increased by the selection bias,
the redshift corresponding to a certain distance would be overestimated: H0 is also overestimated.

On the other hand, if the redshift z is overestimated, then the (observed) gravitational
luminosity distance has to be smaller than the EM luminosity distance (given by H0) which fits
the estimated redshift. To allow this behaviour, Ξ0 has to be underestimated.

2.5 Summary
Let us summarise the main points of this chapter.

• In order to constrain the values of the parameters we are interested in, we use Bayesian
hierarchical inference. This technique is based on the Bayes’ theorem:

P(A|B) = P(B|A) P(A)
P(B) . (2.84)

• We want to compute the probability that a parameter Λ takes a particular value, given the
observed data D. We then re-write the Bayes’ formula as:

p(Λ|D) = π(Λ)
Ztot(D)

N∏
i=1

∫
Z(Di) p(θi|Di)

ppop(θi|Λ)
π(θi)

dθi. (2.85)

• To take into account the fact that all events are not detectable, we have to normalise the
latter equation by a factor α(Λ), given by:

α(Λ) =
∫
pdet(θ) ppop(θ|Λ) dθ, (2.86)

and to include a Poisson probability distribution function, to finally get:

p(Λ,N |D) ∝ π(Λ)π(N)
Nobs∏
i=1

[∫
p(θi|Di)
α(Λ)

ppop(θi|Λ)
π(θi)

dθi
]

·e−Nexp(Nexp)Nobs . (2.87)

• In order to evaluate such integrals, we use a Monte Carlo integration and we take the
logarithms. Equation (2.87) can then be written as:

log{p(Λ,N |D)} = log{π(Λ)}+ log{π(N)}+
Nobs∑
i=1

log
{

1
ns

ns∑
k=1

ppop(θi|Λ)
π(θi)

|θk
i ∼ p(θi|Di)

}
−Nα(Λ) + const. (2.88)
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• Figure 2.3 shows the kind of results we are expecting as a result of a Bayesian inference.
In section 2.3, we briefly discussed how to read and interpret this kind of plots.

• We note: P(θki |Λ) = ppop(θi|Λ)/π(θi), and we express ppop as a function of the differential
formation rate:

dN
dθ = N ppop(θ|Λ). (2.89)

π(Λ) is generally taken flat; π(θ) and θk ∼ p(θ|D) are given in the LVC results publications
(e.g. [54]) and α(Λ) is computed explicitly in appendix B.

• In the simple BBHs formation model given by eq. (2.65), we get:

P(θ|Λ) ∝
(
c

H0

)2 4π Tobs ppop(m1,m2|~λBBH) u2(z∗)
π(m1,m2) π(dL) π(Θ) [E(z∗) s′(z∗) u(z∗) + s(z∗)]

× R30
(30 M�)2 (1 + z)γ−3, (2.90)

and we evaluate eq. (2.88) together with eq. (2.90) with a Markov chain Monte Carlo
technique (see appendix A) to constrain the value of the hyperparameter
Λ = {H0, Ξ0, n,Ωm,0, ~λBBH, · · · }.

The results we obtain by applying this method on mock data and on real data of GWTC-1
and GWTC-2 [3, 4] are presented in chapter 3.
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This chapter presents and discuss the cosmological and astrophysical results we obtained by
applying hierarchical Bayesian inference on GWs emitted by BBHs with a mass gap, as explained
in section 2.4.

First we recall some values (obtained by other techniques) for the parameters we are interested
in. In a second section we test our Bayesian method (see section 2.4) on mock data. In a third
section, we analyse the LIGO–Virgo Collaborations (LVC) Gravitational Wave Transient Catalogs:
GWTC-1 (LVC runs O1 and O2, ref. [3]) and GWTC-2 (LVC run O3a, ref. [4]).

3.1 Review of known limits on cosmological parameters
In table 3.1 we review some values for the cosmological parameters, obtained by different
techniques.

69



70 3. RESULTS

Parameter Value Unit Ref. Technique

H0

67.66± 0.42 km s−1 Mpc−1 [69] Planck 2018 best fit for ΛCDM

68.86+0.69
−0.7 km s−1 Mpc−1 [52] Planck 2015 best fit for RT model

70.8± 2.1 km s−1 Mpc−1 [70]
Standard candles (new result
uncertainty in the supernova

distance ladder)
73.24± 1.74 km s−1 Mpc−1 [21] Standard candles (“classical” result)

70+12.0
−8.0 km s−1 Mpc−1 [5] Standard siren with EM counterpart

(GW170817 and GRB 170817A)
67.3+27.6

−17.9 km s−1 Mpc−1 [10] Dark sirens alone with galaxy catalog

72.2+13.9
−7.5 km s−1 Mpc−1 [10] Dark sirens with galaxy catalog

+ Standard siren GW170817

74+13
−7 km s−1 Mpc−1 [63] Standard sirens with EM counterpart

(GW170817 and GW190521) for ΛCDM

wDE
−1 − − ΛCDM

−1.00+0.04
−0.05 − [21] CMB best fit for wCDM

Ωm,0

0.3111± 0.0056 − [69] Planck 2018 best fit for ΛCDM

0.58± 0.25 − [63] Standard sirens with EM counterpart
(GW170817 and GW190521) for ΛCDM

0.6± 0.4 − [63]
Standard sirens with EM counterpart

(GW170817 and GW190521) for
modified gravity (wide priors)

Ξ0

2.1+3.2
−1.2 − [10] Dark sirens with galaxy catalog

1.8+0.9
−0.6 − [10]

Dark sirens with galaxy catalog
+ using flare ZTF19abanrhr as EM

counterpart of GW190521

< 10 − [63]
Standard sirens with EM counterpart

(GW170817 and GW190521)
(wide prior)

< 4.4 − [63]
Standard sirens with EM counterpart

(GW170817 and GW190521)
(Planck prior)

n

1.91 − [10] Best fit for the RT model

6+4
−5 − [63]

Standard sirens with EM counterpart
(GW170817 and GW190521)

(wide prior)

4+5
−4 − [63]

Standard sirens with EM counterpart
(GW170817 and GW190521)

(Planck prior)

cM

−3.2+3.4
−2.0 − [12] Dark sirens with a BH mass gap

< 13.4 − [63]
Standard sirens with EM counterpart

(GW170817 and GW190521)
(wide prior)

< 7.5 − [63]
Standard sirens with EM counterpart

(GW170817 and GW190521)
(Planck prior)

Table 3.1: Review of values for the cosmological parameters we are interested in.
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3.2 Mock data
The first step is to test on mock data if our inference works and how much it is efficient. These com-
putations were done on laptops and on the unige Department of Theoretical Physics’ workstation.

3.2.1 Publicly available simulated data

To first test hierarchical Bayesian inference, we start from publicly available simulated observations
of GWs detections. Ref. [11] simulated five years of observations for advanced LIGO at design
sensitivity. The mock samples θki ∼ p(θi|Di) (for k = 4 000) are available on the GitHub [71].
This data was simulated using the simple model for the BBH formation rate we already discussed
in subsection 2.4.1. As a reminder, it is (see eqs (2.65) to (2.68)):

d4N
dm1 dm2 dVcom dτ = R30

(30 M�)2
(

m1
30 M�

)−α ( m2
30 M�

)β
(1 + z)λ Θ(m1 −m2)

× fsmooth(m1|ml, σl,mh, σh) fsmooth(m2|ml, σl,mh, σh) (3.1)

≡ ppop(m1,m2|~λBBH) · R30
(30 M�)2 (1 + z)λ Θ(m1 −m2). (3.2)

(Where we write λ instead of γ for the redshift power-law.) Θ(x) is the Heaviside step-function,
τ is the time in the source frame, ~λBBH = {α, β,ml, σl,mh, σh}, R30 is the overall mass rate
density, normalised for BBHs of 30 M�, and we define the function (for i = 1, 2):

fsmooth(mi|ml, σl,mh, σh) = Φ

( ln(m/ml)
σl

)[
1− Φ

( ln(m/mh)
σh

)]
, (3.3)

with Φ(x) the standard normal cumulative distribution function:

Φ(x) = 1√
2π

∫ x

−∞
e−t2/2 dt. (3.4)

To generate this mock data, the values of table 3.2 were used.

Parameter R30 α β λ ml σl mh σh

Value 64.4 [Gpc−3 yr−1] 0.75 0.00 3.0 5 [M�] 0.1 45 [M�] 0.1

Table 3.2: Table of the used values for the parameters used in ref. [11] to generate mock data.

Since mock data comes from a BBHs population following eq. (3.1), we expect our Bayesian
inference to find the values of table 3.2.

For the cosmological background, this data was simulated using ΛCDM, with the Planck 2015
median values (ref. [53]). As usual, we call these parameters λcosmo. For five years of observations
with advanced LIGO, it gives 5 267 events [71].

We use this mock data to test if our Bayesian hierarchical inference is able to constrain the
(known) values of {λBBH, R30, λ, λcosmo}. We note that these data assume GR GWs propagation,
thus Ξ0 = 1, while n can have any (finite) value.

As already discussed in section 2.4, we must evaluate the posterior:
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Figure 3.1: Result of Bayesian inference on mock data for H0 alone. The solid gray line indicates
the fiducial value.

log{p(Λ,N)} = log{π(N)}+log{π(Λ)}+
Nobs∑
i=1

log
{

1
ns

ns∑
k=1

P(θki |Λ)|θk
i ∼p(θi|Di)

}
−Nα(Λ), (3.5)

with:

P(θ|Λ) ∝ 4π Tobs ppop(m1,m2|~λBBH) u2(z∗|λcosmo)
π(m1,m2) π(dL) π(Θ) [E(z∗|λcosmo) s′(z∗|λcosmo) u(z∗|λcosmo) + s(z∗|λcosmo)]

×
(
c

H0

)2 R30
(30 M�)2 (1 + z)λ−3. (3.6)

Results with only one free parameter

Since we know the values of all the parameters, a first test consists in setting all the parameters
to their fiducial value (i.e. the simulation of data was done by using these values), except one,
and to evaluate the posterior for this single free parameter.

The first parameter on which we want to test the inference is the Hubble constant, H0. Fig.
3.1 is the plot of the posterior p (H0 | D, λBBH, R30, γ, λcosmo\{H0}). (In the following we do not
write explicitly that the other parameters are given, e.g. here: p(H0|D).) A flat prior on the
interval (20, 140) is used. Both the posterior that takes into account selection effects and the
posterior that does not take into account selection effects are plotted.

We can see that hierarchical inference is efficient in order to constrain the value of H0. The
bias effect has a huge impact on the posterior, and, as discussed in subsection 2.4.3, its impact is
explicable: the heavier binaries are more likely detected and the further the source the heavier
the average detected mass. In parallel the inference uses the redshift of the detected mass, so the
bias effect accentuates the increase of the mass of the source with the distance. This corresponds
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Figure 3.2: Result of Bayesian inference on mock data for Ξ0 alone. The posterior that takes
into account the bias effects is shown alone on fig. 3.3. The solid gray line indicates the fiducial
value (this mock data assumes GR).

to a higher value of H0.

Another parameter on which we can test the inference is Ξ0 that characterises modified
gravitational waves propagation. Fig. 3.2 shows the posterior p(Ξ0|D) with and without taking
into account selection effects and fig. 3.3 shows the posterior that takes into account selection
effects alone. A flat-in-log prior on (0, 10) is used.

Here too, we can notice that the inference works well for constraining Ξ0, even if Ξ0 = 1:
this inference could decide between GR + ΛCDM or modified gravity. Again, the impact of
the selection bias was already explained in subsection 2.4.3: the bias selection accentuates the
increase of the detected mass with the distance. This corresponds to an EM luminosity distance
larger than the (detected) GW luminosity distance, thus to a Ξ0 smaller than 1.

The Hubble constant and Ξ0 are part of λcosmo. Bayesian hierarchical inference also works
on λBBH, for example, fig. 3.4 shows the posterior with the selection bias for α, the coefficient of
the power-law of the mass of the heavier BH. We used a flat prior on (0, 10).

A last result we check is the evolution of the credible intervals. They should go as 1/
√
Nobs,

where Nobs is the number of observations. By performing Bayesian inference on partial mock
data, we indeed find this evolution.
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Figure 3.3: Result of Bayesian inference on mock data for Ξ0 alone, taking into account the
selection effects (it is a zoom on fig. 3.2). The solid gray line indicates the fiducial value (this
mock data assumes GR).
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Figure 3.4: Result of Bayesian inference on mock data for α alone (the power of the first mass).
The solid gray line indicates the fiducial value.
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Results for several parameters

In order to test several parameters, we perform a MCMC (see appendix A) to get the results
partially shown in fig. 3.5. We use the priors and the fixed values of table 3.3.

Inferred parameter H0 Ξ0 λ α ml mh

Type of prior flat flat flat flat flat flat
Range (20, 140) (0.1, 10) (−15, 10) (0, 10) (2, 20) (20, 200)

True value 67.74 1.0 3.0 0.75 5.0 45.0

Fixed parameter n β σl σh

Value 1.91 0 0.1 0.1

Table 3.3: Table of priors and fixed values of parameters used on mock data.

We can see in fig. 3.5 that our Bayesian inference works very well on mock data to recover
the fiducial values of simulated data. This mock test shows us that:

• Bayesian hierarchical inference using the black hole mass gap is a technique that works to
find the values of hyperparameters of GWs, particularly cosmological parameters;

• With O(5000) GW events (corresponding to O(5 yrs) of detections with advLIGO/advVirgo
detectors at largest sensitivity), dark sirens alone can constrain the value of the Hubble
constant at ∼ 20%. In ref. [11], the authors quote a value of the error of 2.9% for the
Hubble parameter, but this value is obtained for H(z = 0.8) by minimising the relative
error on H(z) with respect to z.

• We observe some degeneracies between parameters, for example between H0 and Ξ0, indeed
they are proportional:

H0 = z

dEML
= zΞ(z)

dGW
L

. (3.7)

Another degeneracy is given by Ξ0 and λ (or H0 and λ, but H0 and Ξ0 are themselves
proportional): a larger λ implies a larger value for the merger rate R(z) at any given
redshift. So if λ is overestimated, then the total number of events N is overestimated, thus
to explain the number of GWs detections, a smaller horizon of detection in the z-space
is needed. From eq. (3.7) we see that a smaller redshift horizon, corresponds to a higher
Ξ0. A smaller redshift at fixed distance should also correspond to a smaller H0 that we
do not observe. Maybe there is another effect we did not think about and that explains
the increase of H0 with the increase of λ or maybe the degeneracy between H0 and Ξ0 is
dominant.
A third degeneracy is given by H0 and mh that are inversely proportional: the inference
uses the increase of mass with redshift to determine the redshift of the source. If the
source-masses are heavier, then the detected mass are less redshifted at a given distance,
thus H0 is smaller (and vice versa).

• Since we are interested in constraining cosmological parameters, we must perform infer-
ences on all parameters, both cosmological and astrophysical parameters, because of the
degeneracies between them.
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Figure 3.5: Corner plot of the partial results of Bayesian inference on the mock data of ref. [11]
(5 years of observation with advLIGO at design sensitivity). Results are given at 68% C.L. Blue
lines indicate the fiducial values.
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3.2.2 Simulated data with modified GWs propagation

Until now, we used mock data for which modified propagation of GWs is not taken into account.
Even if we know that our inference works well to find the values of parameters in cosmology, it is
useful to test if the modified propagation of GWs (more especially the parametrisation (Ξ0, n))
can be measured from GWs detections by using the black hole mass gap. Furthermore, if it can
be measured, we need to check if the measurement is possible with current detectors.

In order to obtain such mock data, we sample the mass and redshift populations. For the
masses, we use the broken power-law mass population function (see section 1.6), that is given for
the first mass by:

ppop(m1|α1, α2,mmin, δm,mmax, b) ∝


m−α1

1 S(m1|mmin, δm) if mmin < m1 < mbreak;
m−α2

1 S(m1|mmin, δm) if mbreak < m1 < mmax;
0 otherwise,

(3.8)
where

mbreak = mmin + b(mmax −mmin). (3.9)

and

S(m|mmin, δm) =


0 if m < mmin;
[f(m−mmin, δm) + 1]−1 if mmin ≤ m < mmin + δm;
1 if m ≥ mmin + δm,

(3.10)

for the function:

f(m′, δm) = exp
(
δm
m′

+ δm
m′ − δm

)
. (3.11)

While for the mass ratio q ≡ m2/m1, we get:

ppop(q|β,mmin,m1) =

 qβ if mmin < m2 < m1;
0 otherwise.

(3.12)

For the redshift population, we use the simple power-law:

p(z|R0, λz) ≡ R(z) = R0(1 + z)λz . (3.13)

We use the values given in table 3.4. The used value of Ξ0 is chosen in order to have modified
GWs propagation and n is chosen at a typical value (see table 3.1).

From a sampled triplet {m1,m2, z} we compute the detected SNR in a given detector, that
is associated with a source of a BBH with masses m1 and m2 at a redshift z (see appendix B). If
the SNR is larger than 8, then the sample {m1,m2, z} is taken as a detection. The SNR depends
on the luminosity distance, the cosmology intervenes when we convert the redshift into the
luminosity distance: dL = dL(z,H0, Ξ0, n,Ωm,0, wDE). We use detected simulations for five years
of a detector of advanced LIGO at design sensitivity. To do this, we start from the normalised
differential rate of formation of BBHs dN (N,Λ)/dθ = Nppop(θ|Λ). In this normalisation, the
bias function α(Λ) is given by (see ref. [62] for a demonstration):
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Parameter R0 λz α1 α2 β δm mmin mmax b

Value 25 [Gpc−3 yr−1] 2 1.6 5.6 1.4 4.8 4.0 [M�] 90 [M�] 0.40

Parameter H0 Ωm,0 wDE Ξ0 n

Value 67.74 [km s−1 Mpc−1] 0.3075 −1 1.20 2

Table 3.4: Table of the used values to simulate mock data with modified gravitational wave
propagation.

α(Λ) =
∫
D>threshold

L(D|θ)ppop(θ|Λ) dθdD, (3.14)

and if we generate Ndraw triplets θj from a distribution pdraw(θj), to obtain Nobs detections, eq.
(3.14) becomes at first approximation (see ref. [62]):

α(Λ) ≈ 1
Ndraw

Nobs∑
j=1

ppop(θj |Λ)
pdraw(θj)

. (3.15)

While to find the number of events N we marginalise the differential formation rate over θ:

N =
∫ dN (N,Λ)

dθ dθ. (3.16)

Since this mock data is simulated from the broken power-law mass distribution eqs (3.8) to
(3.12), and from the simple power-law redshift distribution eq. (3.13), the posterior p(Λ|D) is
given by eq. (3.5) with P(θ|Λ) given by eq. (3.6), where ppop(m1,m2|~λBBH) is given by eqs
(3.8) to (3.12).

Bayesian hierarchical inference is performed on this mock data with the priors and fixed
values shown in table 3.5.

Inferred parameter H0 Ωm,0 Ξ0 R0 λz

Type of prior Gaussian∗ Gaussian∗ flat flat-in-log flat
Range 67.74± 0.6774∗ 0.3075± 0.003075∗ (0.1, 10) (10−1, 103) (−10, 10)

∗ A Gaussian prior on a range X ±∆X means a normal distribution N
(
X,∆X2).

Inferred parameter α1 α2 β δm mmin mmax b

Type of prior flat flat flat flat flat flat flat
Range (−4, 12) (−4, 12) (−4, 12) (0, 10) (2, 10) (30, 100) (0, 1)

Fixed parameter wDE n

Value −1 2

Table 3.5: Table of priors and fixed values of parameters used on mock data, for modified
gravitational waves propagation.

Results of this inference are partially shown in fig. 3.6. We can observe:
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Figure 3.6: Corner plot of the partial results of Bayesian inference on the mock data with
modified gravity (5 years of observation with advLIGO at design sensitivity). Results are given
at 68% C.L. Blue lines indicate the fiducial values.

• Hierarchical inference constrains the value of Ξ0 at ∼ 30% on 5 years of observation by LVC
at design sensitivity: dark sirens alone could be able to distinguish between some modified
gravity theories and GR in 5 years of data;

• There are degeneracies, e.g. for Ξ0 and λz. As mentioned above, cosmological parameters
and astrophysical parameters cannot be constrained separately but must be inferred by
the same inference.

3.3 LVC data
We saw in the previous section that hierarchical Bayesian inference on dark sirens with a mass
gap alone works well to constrain values of cosmological and astrophysical parameters. We are
here interested in analysing actual LVC data. All these computations were done on the unige
clusters Yggdrasil and Baobab [72].

3.3.1 Presentation of the catalogs

The GWs catalogs GWTC-1 [3] and GWTC-2 [4] are composed of the events detected by the
two advLIGO and the advVirgo detectors during the runs O1 (only advanced LIGO; between
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September 2015 and January 2016), O2 (between January and August 2017) and O3a (between
April and September 2019). At the time of the project, the results of run O3b (between November
2019 and March 2020, with KAGRA as a fourth detector) are not publicly available. Fig. 3.7
shows the past and planned near future timeline of the ground-based interferometers.

Figure 3.7: Past and planned future timeline for the ground-based GWs detectors. This timeline
was produced in 2020 and comes from ref. [73].

These catalogs contain events from BBHs mergers, BH–NS mergers and BNSs mergers:
there are 50 events. Masses of the events are shown in fig. 1.10 by blue dots. We ex-
clude 6 events: GW170817, GW190425, GW190426_152155, GW190719_215514, GW190814,
GW190909_114149, because either they involve one or two neutron stars (or maybe a very light
BH) or because the 68% C.I. on their SNR is below 8. Furthermore, one event, GW190521 does
not fit well the population models. Let us see why.

GW190521

The event GW190521 was caused by the merge of a BBH of masses m1 = 95.3+28.7
−18.9 M� and

m2 = 69.0+22.7
−23.1 M� at a (GW) luminosity distance dL = 3.92+2.19

−1.95 Gpc. It formed a 163+39.2
−23.5 M�

BH [4]. The heavier BH of the source is the heavier known “stellar-mass” BH, and in particular it
lies in the black hole mass gap with a large probability. A few hypotheses have been put forward
to explain this O(100) M� BH, and among others:

• ref. [57] suggests that it is a primordial black hole (that are not concerned by the mass
gap);

• it is also possible that this BH is itself a second generation BH, caused by the previous
coalescence of two astrophysical BHs;
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• the interpretation of the detected signal could be wrong: ref. [74] finds by using a different
prior on the masses, that the signal can be explained by the merge of a roughly 170 M�
BH with a 16 M� BH, hence the heavier BH could be a second generation BH and the light
one, an astrophysical BH (it was maybe a trinary BH). Ref. [75] is even more exotic: it
suggests that a 15− 50 M� disc orbiting a 50 M� spinning BH can produce high-amplitude
GWs by the deformation of the disc, and such a system at 100 Mpc would produce a signal
similar to GW190521.

These hypotheses have in common that GW190521 does not hold in the stellar origin BHs
mass population that we use. As we will see in the next subsection, taking into account GW190521
or not, changes the median values and the 68% C.I. of the parameters. It is particularly visible
for Ξ0 whose median is < 1 by taking into account GW190521, and > 1 by neglecting it.

3.3.2 Results for GWTC-1 and GWTC-2

To apply our hierarchical inference on data of GWTC-1 and GWTC-2, we use the mass population
function given by the broken power-law, see eqs (3.8) to (3.12); while for the merger rate, we use
the astrophysical rate:

p(z|R0, αz, βz, zp) ≡ R(z) = R0C0
(1 + z)αz

1 +
(

1+z
1+zp

)αz+βz
, (3.17)

where C0(zp, αz, βz) = 1 + (1 + zp)−αz−βz sets R(0) = R0. The parameter zp corresponds to the
redshift of the peak of star formation.

We use the broken power-law mass population model, as does LVC, because it fits very well
the observed events [58] and because we rely on the mass gap. The astrophysical merger rate is
better than a simple power-law merger rate: it takes into account that the merger rate should go
to 0 when z goes to infinity (first stars formed at redshift z ∼ 6, so no merger of stellar BHs
can be observed for a higher redshift), and the fact that star formation had a peak at redshift
zp ∼ 2.1

The hyperparameters are then:

λcosmo = {H0, Ωm,0, wDE, Ξ0, n} (3.18)
λBBH = {α1, α2, β, δm,mmin,mmax, b} (3.19)
λmerger = {R0, αz, βz, zp}. (3.20)

The hyperposterior p(Λ|D) is then given by eq. (3.5) with:

P(θ|Λ) ∝ 4π Tobs ppop(m1, q|~λBBH) u2(z∗|λcosmo)
π(m1,m2) π(dL) π(Θ) [E(z∗|λcosmo) s′(z∗|λcosmo) u(z∗|λcosmo) + s(z∗|λcosmo)]

×
(
c

H0

)2
R0C0

(1 + z)αz−3

1 +
(

1+z
1+zp

)αz+βz
. (3.21)

We can decide to constrain all parameters at the same time, using a flat (or flat-in-log) prior
for each parameter, but doing so does not give yet good enough results: the credible intervals

1The current detections of GWs have a redshift from far inferior to zp ∼ 2 (for events of GWTC-2, zmax ≈ 1 [4]),
so the simple power-law is not a bad approximation for the moment.
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are large and the MCMC chains are very slow to converge (see appendix A). More data would
be necessary to obtain exploitable results. We leave this aspect for a future work, maybe after
the release of the events of the LIGO/Virgo/KAGRA collaborations, run O3b.

We then choose to apply more narrow priors for the cosmological parameters H0 and Ωm,0:
we use their median Planck 2018 [69] values as priors, see table 3.6. We already explained
that we must vary every parameter in order to obtain exploitable results. However it is pos-
sible to use a tight prior for some parameters, as H0 or Ωm,0 if we assume that this previous
measurement is correct. This is what we do here by using the Planck median values. With
more data, it could be possible to not use the Planck priors. Table 3.6 presents the priors we used.

Inferred parameter H0 Ωm,0 Ξ0 n

Type of prior Gaussian∗ Gaussian∗ flat flat
Range 67.66± 0.42∗ 0.311± 0.056∗ (0.1, 10) (0, 10)

∗ A Gaussian prior on a range X ±∆X means a normal distribution N
(
X,∆X2).

Inferred parameter R0 αz βz zp

Type of prior flat-in-log flat flat flat
Range (10−1, 103) (−15, 15) (0, 15) (0, 4)

Inferred parameter α1 α2 β δm mmin mmax b

Type of prior flat flat flat flat flat flat flat
Range (−4, 12) (−4, 12) (−4, 12) (0, 10) (2, 10) (30, 100) (0, 1)

Fixed parameter wDE

Value −1

Table 3.6: Table of priors and fixed values of parameters used to analyse the GW data of GWTC-1
and GWTC-2.

Figure 3.8 shows some posteriors we obtain using hierarchical Bayesian inference of dark
sirens with the black hole mass gap, with and without taking into account the event GW190521.
The median and 68% C.L. values are given in table 3.7.

We can see in fig. 3.8 that taking into account GW190521 disrupts the results (with respect
to the same inference but without GW190521). Since GW190521 has a very large mass, to fit
the population model, it would need to be highly redshifted. This explains a larger value of H0
and/or a smaller value of Ξ0 (for the same reason as above when we do not take into account
the selection effects). It is then normal to observe a smaller value for Ξ0 in order to explain this
large mass (when we perform the inference also on H0 we observe that H0 becomes larger, but it
is not statistically decisive). Let us consider the case where we neglect GW190521 in fig. 3.9 and
where we include GW190521 in fig. 3.10.
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Figure 3.8: Corner plot of the partial results of Bayesian inference on the GWTC-1 and GWTC-2
catalogs.
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Figure 3.9: Corner plot of the partial results of Bayesian inference on the GWTC-1 and GWTC-2
catalogs without GW190521.
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Figure 3.10: Corner plot of the partial results of Bayesian inference on the GWTC-1 and GWTC-2
catalogs with GW190521.



86 3. RESULTS

The MCMC chains we present in the corner plot fig. 3.8 do not have fully converged according
to the autocorrelation time criteria (see appendix A). However, as discussed in section A.4, the
criteria of convergence by a chain 50 times longer than the autocorrelation time is quite arbitrary:
our chains are approximately 25 times longer than the autocorrelation time (after more than
20 days of computations on the unige clusters Yggdrasil and Baobab). Furthermore the width
of the credible intervals divided by the median value of the parameters do not change anymore
when adding more steps to the chains. For these reasons we can consider that the chains have
reached the value of the parameters at 68% credible level.

However we can also observe than some chains seem to be stuck far from the others, for
example for the parameter αz (both with and without GW190521).

Since the credible intervals are too large, it is not possible to conclude yet about the precise
value of parameters, and in particular it is not possible to distinguish between modified gravities
and GR. Ignoring GW190521, we obtain a value of Ξ0 that is consistent with other works that
use another technique (in particular correlations between GWs sources and galaxies in ref. [10]):

Ξ0 = 1.93+4.44
−1.43 (at 68% C.L. for a flat prior on (0.1, 10)), (3.22)

while taking into account GW190521 gives a different value:

Ξ0 = 0.66+1.20
−0.42 (at 68% C.L. for a flat prior on (0.1, 10)). (3.23)

Results we obtained for the astrophysical, merger rate and cosmological hyperparameters are
summarised in table 3.7.

In ref. [12], a similar inference for the modified GW propagation is performed, with the cM
parametrisation (see subsection 1.5.3), and taking into account the event GW190521. The author
obtains a value cM = −3.2+3.4

−2.0 (see also table 3.1). A negative value of cM corresponds to a value
of Ξ0 < 1. This being consistent with our value (3.23), that takes into account GW190521. But
we find that the value of Ξ0 is highly changed if we neglect the single event GW190521.

3.4 Summary

Bayesian hierarchical inference of dark sirens using the black hole mass gap is powerful to
constrain values of cosmological and astrophysical parameters.

Yet the credible intervals are pretty large with respect to the mean values, however they go as
the inverse of the square root of the number of events. We also show on mock data that 5 years
of observation by advLIGO/advVirgo/KAGRA network at design sensitivity would constrain the
value of Ξ0 at ∼ 30%. It would then be possible to distinguish between GR and some modified
gravity theories within 5 years of observation, just by using GWs.

Table 3.7 summarises the preliminary values we obtain.

To obtain the results of table 3.7, we choose to fix H0 and Ωm,0 to their Planck median
value [69]. However it is of course possible to use flat priors for these two parameters. In this
configuration, the convergence of the MCMC chains is very slow (because the number of GW
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events is small) but bounds can be found on the values of H0 and Ωm,0. We leave it for a future
work.

Parameter Ξ0 n R0 αz βz zp
With

GW190521 0.66+1.20
−0.42 3.94+4.11

−3.06 14.65+14.27
−8.58 1.32+3.97

−2.59 4.88+6.76
−4.04 2.40+1.21

−1.32

Without
GW190521 1.93+4.44

−1.43 4.04+4.27
−3.09 28.86+72.53

−17.79 3.59+7.46
−3.64 6.60+5.67

−5.22 2.26+1.15
−1.39

Parameter α1 α2 β δm mmin mmax b

With
GW190521 1.78+0.58

−0.63 5.79+2.97
−2.98 1.64+1.76

−1.20 4.56+2.86
−2.89 4.10+1.29

−1.31 81.69+13.55
−24.48 0.44+0.18

−0.12

Without
GW190521 1.84+0.64

−0.61 5.34+3.53
−3.61 1.67+1.61

−1.16 4.92+3.05
−3.20 4.10+1.29

−1.29 74.23+15.30
−20.66 0.53+0.23

−0.20

Table 3.7: Summary of the results we obtain for the astrophysical, merger rate and cosmological
parameters. At 68% C.L., for the priors given in table 3.6. R0 has unit of Gpc−3yr−1; mmin and
mmax have unit of M�.





Conclusions

During this project we applied hierarchical Bayesian inference on standard dark sirens together
with assumptions about the shape of the mass population of binary black holes, in order to
constrain the values of parameters, especially modified gravity parameters.

This method works very well, as can be seen by testing it on mock data: the fiducial values
of parameters are recovered at O(10%) with O(1 000) detections. However the method can be
improved without much difficulties: we did not consider spins of the sources, it could be added
in a future work to increase the accuracy. Yet, the number of observations is small O(50) so that
the credible intervals are big enough to hide the effects of the spins on the waveforms. Another
improvement that is possible consists in using dark sirens together with the standard sirens with
electromagnetic counterpart or together with a galaxy catalog. These different methods are
complementary and can be used together to improve the accuracy of the constraints. The results
can also be improved by considering another BBHs mass population that would fit better the
detections: other models are proposed by LVC (see ref. [54]). We can also consider that some
sources are not part of the stellar origin BHs: ref. [57] considers that some detected BHs are of
primordial type.

Because of the small number of detections, it is not possible for the moment to use them to
solve the Hubble tension nor to choose between GR or some modified gravity theory. Since the
credible intervals go approximately as 1/

√
Nobs, it is possible to roughly estimate the number of

detections that is needed to decide between GR or a modified gravity. To do this, let us consider
the 68% credible interval on the value of Ξ0. With O(50) detections, we have ∆Ξ0/Ξ0 ∼ 300%.
With O(5 000) detections (five years of observation for the advanced LIGO, advanced Virgo and
KAGRA network at design sensitivity), the credible errors would be of O(30%). (This value is
indeed consistent with the value we obtained by testing the method on mock data.) To have a
measurement of Ξ0 accurate at 5% we would need O(105) detections, while for an accuracy at
the level of the percent we would need O(106) detections.

With current ground-based interferometers these numbers of detections are enormous. But
next generation of detectors is planned for the mid-2030s. Not exhaustive list of (in development)
third generation detectors includes LISA (that is a space detector), LIGO Voyager, Cosmic
Explorer (CE) and the Einstein telescope (ET) [7]. ET and CE have a similar noise power
spectrum and in particular will have the good resolution to detect mergers of astrophysical BHs
(see fig. 5 of ref. [76]). These detectors will observe together with future detectors of gamma-ray
bursts and will be able to detect O(102) standard sirens with EM counterpart each year [7],
providing a measurement of H0 or of Ξ0 at the percent level. However the BH–BH detection
rate will be of order 105 − 106 per year for ET [7]. This rate corresponds to the number of dark
sirens we need to estimate at 5% or 1% the value of Ξ0 by using the black hole mass gap. Order
of one year of observation with ET will allow us to constrain at the percent level the value of Ξ0
by using only dark sirens.
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Markov chain Monte Carlo methods
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We saw in chapter 2 (page 47) that we have very large integrals (more precisely integrals with a
large dimension d) to evaluate in order to calculate our posterior distributions. It is of course
unthinkable to resolve these equations analytically. We then need to do it numerically.

In this appendix, we introduce the numerical method we use in the present work: Markov
chain Monte Carlo (or “MCMC”). This technique is now a very used numerical method in many
domains of physics (for example to determine the average magnetisation in an Ising model [77])
and of applied mathematics (for example to decipher a substitution cipher by only knowing the
language in which it is written [78]). It was also the technique used in subsection 2.2.3. For a
very complete introduction, see e.g. ref. [79].

A.1 Monte Carlo algorithm
Our goal is to evaluate numerically the integral of a (supposed C∞) function, let us say:

∫ b
a f(x) dx.

We could use a Riemann sum to approximate the integral [77]:

I =
∫ b

a
f(x) dx ≈

(
b− a
N

)N−1∑
j=0

f

(
a+ j(b− a)

N

)
= IN , (A.1)

the approximation is quite good for one dimension: the error goes as the inverse of N

|I − IN | ∼
1
N
, (A.2)

but when the integral has d dimensions, the error goes as:

|I(d) − I(d)
N | ∼

1
N1/d , (A.3)
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thus, to have a 1% error on the value of the integral, one has to use a grid with ∼ 100d points
on it. This grows exponentially and is then totally unuseful when d & 10, regardless of the
computer.

The Monte Carlo methods use chance1 to evaluate in a very accurate way an integral. Let us
see how.

To evaluate the integral of eq. (A.1), we can rewrite I as:

I =
∫ b

a
f(x) dx =

∫ b

a

f(x)
P(x) P(x) dx, (A.4)

with P a (yet undefined) probability distribution function and P(x) 6= 0, ∀x. The goal is now to
generate N samples of the pdf P(x), and to evaluate the function (f/P) on the samples {xi}Ni=1,
then to take the arithmetic mean of the values:

1
N

N∑
i=1

f(xi)
P(xi)

=
(
f

P

)
N
. (A.5)

The strong law of large numbers says that this mean converges (almost surely) to the expected
value µ [60]:

P
{

lim
N→∞

(
f

P

)
N

= µ

}
= 1, (A.6)

with:

µ = E
[
f

P

]
≡
∫ b

a

f(x)
P(x) P(x) dx (A.7)

=
∫ b

a
f(x) dx = I. (A.8)

With the central limit theorem one can show that the standard deviation between the partial
mean (f/P)N and µ goes as 1/

√
N . So as soon as d > 2, the Monte Carlo algorithm is more

accurate than the Riemann sum for the same N .

We write the Monte Carlo integration as:

∫
D
f(x)p(x) dx = 1

N

N∑
i=1

f(xi) | xi ∼ p(x). (A.9)

Example A.1: The famous basic example of Monte Carlo algorithm is a technique to
measure π (≈ 3.14159 · · · ). One draws a circle into a square of known side’s length. The goal is
to use hazard to compute the integral of the disc’s surface in units of the known square surface.
One just have to throw tokens on the drawing with a flat probability. The surface of the disc is
then just the ratio of the number of tokens in the circle by the total number of thrown tokens
(when this number goes to infinity).2,3

1This class of algorithms takes its name from the Monte Carlo Casino (see also Las Vegas and Atlantic City
algorithms: Monte Carlo are always fast and probably correct, Las Vegas are always correct and probably fast,
while Atlantic City are probably correct and probably fast).

2We can see a link with the Buffon’s needle problem.
3It is also interesting to note that this definition of Monte Carlo algorithms lies in a frequentist view of statistics.
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A.2 Markov chains

In order to apply a Monte Carlo method, we then need to generate samples of the probability
distribution function P(x). A well-used technique consists in using a Markov chain [78]. We then
talk about a Markov chain Monte Carlo method. (The definitions come from ref. [80].)

Definition A.1: A process is a variation with time of the state of a certain system. It is
written: (Nt)t∈R+ . ♦

Definition A.2: (Stochastic process) A process whose course depends on chance and for
which probabilities for some courses are given. ♦

Let X0, X1, · · · , Xn be a series of random variables with values in a countable set S. X is a
stochastic process and P its law.

Definition A.3: The process X is a Markov chain if it has the Markov property:

P(Xn = sn | X0 = s0, X1 = s1, · · · , Xn−1 = sn−1) = P(Xn = sn | Xn−1 = sn−1), (A.10)

for every n ≥ 1 and with s0, s1, · · · , sn ∈ S. ♦

Definition 3 means that if the state at the n-th step of a process only depends on the state of
the process at the (n− 1)-th step, then this process is a Markov chain.

In the case of discrete variables, one can represent a Markov chain as a matrix K [78],
with elements Kij ≡ K(x, y) ≥ 0, such that ∑yK(x, y) = 1, ∀x. Each matrix element K(x, y)
represents the probability to go from a state x to a state y:

K(x, y) = P(X1 = y|X0 = x), (A.11)

and if one wants the probability P(X2 = z|X0 = x), one has to sum on the different values of X1,
hence:

P(X2 = z|X0 = x) =
∑
y

K(x, y) K(y, z), (A.12)

and so on. Equation (A.12) is just the matrix product. Then, by writing Kn, the matrix of the
probabilities P(Xn = y|X0 = x), we simply get:

Kn = Kn
1 . (A.13)

In the following, we will consider only symmetric Markov matrices, i.e. K(x, y) = K(y, x),
and thus, the probability to go from state x to state y is the same as the probability to go from
state y to state x. If we also write πn(x) with πn(x) ≥ 0, ∑x πn(x) = 1 the probability to be in
the state Xn = x (so after n steps of the chain), we get:

πn+1(y) =
∑
x

πn(x) K(x, y). (A.14)

Some Markov chains (actually all the Markov chains we are interested in here) have a
stationary distribution, limn→∞ πn(x) = P(x), with P(x) ≥ 0, ∑x P(x) = 1 and for which:∑

x

P(x) K(x, y) = P(y), (A.15)
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(P is a left (row) eigenvector of the matrix K with eigenvalue 1). This means that from any
starting state x, the probability to be at the state y after n steps (for n large enough) is close to
the stationary distribution P(y).

It is easy to go from the discrete variables to the continuous ones by transforming the sums
into integrals and the Markov matrix K into an operator.

A.3 The Metropolis–Hastings algorithm
The Metropolis–Hastings (or often just “Metropolis”) algorithm (Nicholas Metropolis et al.,
1950s, then generalised by Wilfred Hastings, 1970) is one of the most used MCMC method.

Let X be a finite state space and P(x) a probability on X . The goal is to have a sample of
the distribution P. The Metropolis algorithm transforms a Markov matrix J into a new Markov
matrix K with stationary distribution P that we want to sample. The algorithm is given by [78]:

K(x, y) =


J(x, y) if x 6= y,A(x, y) ≥ 1;
J(x, y) A(x, y) if x 6= y,A(x, y) < 1;
J(x, y) +∑

{z|A(x,z)<1} J(x, z)(1−A(x, z)) if x = y.

(A.16)

In eq. (A.16), the A(x, y) is the acceptance ratio, defined by:

A(x, y) = P(y)J(y, x)
P(x)J(x, y) , (A.17)

A is then not a Markov matrix.

The algorithmic interpretation of eqs (A.16) and (A.17) is the following [81]:

1. Start from a random point x ;

2. Propose a candidate point y, coming from a proposal distribution J(x, y) (J is a Markov
matrix) ;

3. Evaluate the posterior at the candidate point y: P(y), and accept y with probability:

α = min
(P(y) J(y, x)
P(x) J(x, y) , 1

)
; (A.18)

4. If the candidate point y is accepted, then we add it to the chain. Otherwise we add x to
the chain ;

5. Go back to 2.

Let us have a few comments. On step 2, for the proposal distribution J, one can use a
Gaussian distribution of mean x and of known standard deviation σ. The distribution can also
be symmetric (i.e. J(x, y) = J(y, x)) in the case of the Metropolis algorithm (the asymmetry
was later introduced by Hastings). Then in point 3, in the case of a “true” Metropolis algorithm
(J being symmetric), eq. (A.18) simplifies to:

α(sym.) = min
(P(y)
P(x) , 1

)
. (A.19)
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To accept the candidate point y with that probability α, one can pick a random number u in
[0, 1) and accept the candidate if u < α, otherwise the candidate is rejected. We can see from
eq. (A.19) that if P(y) ≥ P(x), then α = 1 and thus the candidate is always accepted. But if
P(y) < P(x) (and even if P(y)� P(x)), α is non zero.

This possible acceptance of a point y worst than the previous point x (in the sense that
P(y) < P(x)) can seem counter productive, but its goal is to avoid to the chain to be stuck
in a local maximum xl.m. of the distribution P. Indeed if xl.m. is a local maximum, and if any
candidate point with a posterior probability less than the starting point is accepted, then the
chain is stuck forever in this local maximum (supposing there is no higher (local) maximum
close enough to xl.m. to be raised in one step). By allowing a “worst” point to be chosen, the
chain can move out of a local maximum to reach the global maximum. And when the chain is
at the global maximum, it can leave the maximum for a few steps, but will reach it again with
probability 1 after a few steps (since it is the maximum of P).

We often call points 3 and 4 of the Metropolis–Hastings algorithm the “Metropolis test”.

Another easy way to reduce the “local maximum” risk: we generally run a few Markov chains
in parallel (see section A.5).

A.4 Convergence of the chains

We saw in the previous sections that the MCMC algorithm is an amazing idea to evaluate
integrals. But there is a subtle point: how to know when the Markov chain has converged? As a
reminder, we saw that the distribution P is correctly sampled by the fact that:

lim
n→∞

πn(x) = P(x), (A.20)

so, with an infinite number of steps (hence with an infinite time of computation), the result of
the MCMC is “correct” (with probability 1). But eternity is a long time. The aim of this section
is to define a nconv., such that ∀n ≥ nconv.: “n =∞”.

First thing to know: except in some very easy cases in which P can be known from other
techniques, it is impossible to determine in an accurate way the value of nconv.. However, there
exists many convergence tests to check if the chains already have enough steps to trust the
convergence to be true or not. All these tests are necessary conditions to the convergence but
sadly no test is a sufficient condition [82].4

Here we introduce only the statistical tests of convergence we use (it is the one recommended
in the Python package emcee’s online documentation [64]). The review [82] presents a much
longer list of tests of convergence. This test is a graphical test on the length of the Markov chain.
To measure this length, we introduce the autocorrelation time τf as the parameter that quantises
the difference between the MCMC decrease of the error and the Gaussian decrease of the error:

σ2
Gauss. = 1

N
Varp(x)[f(x)] vs. σ2

MCMC = τf
N

Varp(x)[f(x)]. (A.21)

This parameter τf depends on the function f , it then needs to be estimate through statistical
methods during the MCMC. It can be interpreted as being the number of steps that the chain
needs to “forget” where it started.

4This is why we sometimes read that Monte Carlo algorithms are always fast and probably correct.
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Empirical tests show that a chain with a number of steps larger than 50τf can be trusted
as having converged [64]. Of course this limit is pretty arbitrary. If the number of steps is less
than 50τf , but the results do not change anymore by adding more steps, we can also say that
the chain has converged.

A.5 The software emcee

In this master’s project, we use the Python package emcee [64, 66] to realise our MCMCs. This
software is of course not the only one that implements a MCMC, and a few different algorithms
are used.

emcee does not use a Metropolis–Hastings (MH) algorithm, but rather uses a “stretch move”
ensemble method (it is describes in ref. [66], in which other references for more information can
be found). This algorithm is significantly better than MH (in the sense that is is faster, with a
smaller autocorrelation time).

In the stretch move algorithm, there is an ensemble of W walkers that evolve simultaneously.
And the proposal position (as for step 2 of MH) of the walker w for a time n+ 1 depends on the
positions of the W − 1 other walkers.

Explicitly, if we want to propose a new position for the walker w being at position Xw(n),
we randomly choose another walker j (j 6= w) and the new proposed position is:

Y = Xj + Z [Xw(n)−Xj ] , (A.22)

where Z is a random variable drawn from a distribution g(Z) and where Xj is the position of
the walker j at the moment of the test (since w and j are randomly chosen, they not necessarily
at the same time).

At this step, a test is done (see step 3 of MH). We compute:

q = min
(

1;ZN−1 P(Y )
P (Xk(n))

)
, (A.23)

and we accept the proposed position Y with probability q (see step 4 of MH). Then we do this
algorithm for each walker. And we start again.
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The selection bias function α (sometimes called β) was derived in subsection 2.2.2 using the
so-called “bottom-up derivation”. Another equivalent derivation, called “top-down”, is also given
in ref. [13]. In this appendix, we show how to compute the function α.

The function of the selection bias, α, is given by eq. (2.28):

α(Λ) =
∫
pdet(θ) ppop(θ|Λ) dθ. (B.1)

We have to be careful here: pdet(θ), the probability that a GW produced by a BBH with
parameters θ is detected, is not normalised to unity over θ’s:

∫
pdet(θ) dθ 6= 1. It is easy to

understand if we take the extreme example of a detector that cannot detect any GW, then
pdet(θ) = 0, ∀θ.1

However, ppop(θ|Λ) is a well normalised probability distribution function (on the θ ∈ D):∫
D
ppop(θ|Λ) dθ = 1. (B.2)

B.1 The probability of detection

Let us first see how to compute the probability of detection pdet(θ).

1It is not because Initial LIGO did not detect any GW that pdet(θ) = 0, ∀θ: indeed, it could have detected
GWs coming from events whose frequency of occurrence is less than one per decade. The probability ppop(θ|Λ) is
then also important to predict the number of detections.
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Figure B.1: Plot of the power spectrum densities for the detector LIGO O3 of Hanford, Washington
(H1) and of Livingston Parish, Louisiana (L1), data come from the LVC public document
P2000251-v1 [83].

As we already said in subsection 2.2.2 (eqs. (2.30) and (2.31)), in GW astronomy, a signal-to-
noise ratio (SNR) greater or equal to 8 in the second loudest detector is a good approximation
to the actual pipelines for a detection:

pdet(θ) ≡ pexpdet (θ) = Θ (SNR(θ)− 8) , (B.3)

where Θ(x) is the Heaviside step-function:

∀x ∈ R, Θ(x) =

0 if x < 0;
1 if x ≥ 0.

(B.4)

It is then necessary to compute the signal-to-noise ratio associated to the parameter θ in
order to obtain the probability of detection pdet(θ). As in ref. [59], we call the SNR ρ. It is
related to the inner product of the waveform hθ(f) (see subsection 1.1.3 and e.g. refs [8, 59]):

ρ2 = 〈hθ(f)|hθ(f)〉, (B.5)

where hθ(f) is the Fourier transform of the GW signal, and where the inner product is defined
by:

〈a(f)|b(f)〉 ≡ 2
∫
a(f)b∗(f) + a∗(f)b(f)

Sn(f) df, (B.6)

with Sn(f) the power spectrum density (PSD) of the detector. Figure B.1 shows PSDs for the
LIGO O3 detectors. As one could guess from the latter equation, the more sensitive the detector,
the smaller its PSD. The PSD is the capacity of the detector to detect some frequencies of
GWs. For ground-based detectors (all the detectors we have yet), it is generally limited on the
small frequencies by the seismic wall (∼ 10− 20 Hz) and on the high frequencies by the Nyquist
frequency (which is one half of the sampling frequency of the signal, it is a purely technological
bound) [59].
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Figure B.2: Plot of the horizons of detection for a LIGO O3 detector comparing the post-
Newtonian approximation (eq. (B.7)) to the numerical computation of the waveform (using
ref. [84]). The PSD comes from ref. [83].

The waveform is a complicated function to compute, but at the lowest order of the post-
Newtonian expansion (see subsection 1.1.2 and e.g. refs [8, 10, 59]), we can work with easy
analytical equations. We need to suppose that the GW source is a BBH without any spins and
with almost equal masses (hence, the multipolar emission mode with m = l = 2, the quadrupole,
dominates). This scenario is quite good, especially at low masses (see fig. B.2) for the inspiral
phase (so without taking into account the merge nor the ringdown, see fig. 1.1).

In this approximation and for one single detector, we have:

ρ2 = 5
6

[GMc]5/3 w2(α, δ, ι, ψ)
c3π4/3 d2

L
I7/3(Mtot), (B.7)

with

w2(RA,dec, ι, ψ) = F 2
+(RA,dec, ψ)

(
1 + cos2 ι

2

)
+ F 2

×(RA, dec, ψ) cos2 ι, (B.8)

and

I7/3(Mtot) =
∫ finsp(z)

fmin

f−7/3

Sn(f) df, (B.9)

where finsp is the frequency at the end of the inspiral phase of the BBHs orbits. In the case of a
circular orbit, one has:

finsp(z) ≈ 4.4 kHz M�
Mtot(z)

, (B.10)

withMtot = (1 + z)Mtot = (1 + z)(m1 +m2) being the redshifted total mass (i.e. the measured
total mass in the detector frame) and withMc = (1 + z)Mc = (1 + z)[(m1m2)3/5/M

1/5
tot ] being

the redshifted chirp mass. RA is the right ascension (also denoted α), dec the declination (also
denoted δ), ι the orbital orientation (the angle between the line of sight and the normal to the
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orbital plane of the source) and ψ the polarisation.

In eq. (B.7), we can note that the luminosity distance squared appears at the denominator
of the SNR squared. Therefore ρ ∝ d−1

L (a result that we will need below) and ρ ∝ (Sn(f))−1.
In the case of modified gravity, this distance is the GW luminosity distance: dGW

L , see subsection
1.5.2. In eq. (B.8) we can also note that w takes its values in [0, 1].

At this post-Newtonian approximation, we have a clear distinction in the SNR between the
extrinsic (RA, dec, ι, ψ) and the intrinsic (m1,m2, dL) parameters. We can then rewrite ρ such
that:

ρ = w(RA,dec, ι, ψ) · ρopt(m1,m2, dL), (B.11)

where ρopt means optimally oriented SNR, since it corresponds to the maximal value that ρ
can take (when the source is located just over the detector with its orbit’s plane parallel to the
detector plane [57], then: w = 1). To compute the SNR of a source with m1,m2, dL and with a
given orientation, we just have to use the optimal oriented SNR function ρopt evaluated at the
parameters m1,m2, dL, and then multiply it by the function w of the source orientation with
respect to the detector.

If we suppose that the intrinsic and extrinsic parameters are independent, we re-write α(Λ)
with θ explicit [59]:

α(Λ) =
∫
pdet(RA, dec, ι, ψ,m1,m2, dL) ppop(RA,dec, ι, ψ,m1,m2, dL|Λ)

d(RA,dec, ι, ψ,m1,m2, dL) (B.12)

=
∫
ppop(m1,m2, dL|~λBBH, R0, γ)

×
{∫

ppop(RA,dec, ι, ψ) pdet(RA,dec, ι, ψ,m1,m2, dL) d(RA, dec, ι, ψ)
}

d(m1,m2, dL) ,

(B.13)

where we write d(x, y, z, · · ·) as a short notation for the infinitesimal hypervolume element of the
coordinates x, y, z, · · · . Let us look at the integral between the braces:

∫
ppop(RA,dec, ι, ψ) pdet(RA,dec, ι, ψ,m1,m2, dL) d(RA, dec, ι, ψ) (B.14)

=
∫
ppop(RA,dec, ι, ψ) Θ (ρ(RA,dec, ι, ψ,m1,m2, dL)− ρthr) d(RA,dec, ι, ψ) (B.15)

=
∫
ppop(RA,dec, ι, ψ) Θ (wρopt − ρthr) d(RA,dec, ι, ψ) (B.16)

=
∫
ppop(RA,dec, ι, ψ) Θ

(
w − ρthr

ρopt

)
d(RA,dec, ι, ψ) , (B.17)

where we call ρthr the threshold signal-to-noise ratio. In our case, and for one detector, we take
ρthr = 8.

To evaluate eq. (B.17), we choose the orientation prior to be isotropic: ppop(RA,dec, ι, ψ) =
const., it is then possible to evaluate the integral by taking a sampling of ppop(RA,dec, ι, ψ) and
to evaluate w on each sample. Those points wi represent a pdf: p(w). Equation (B.17) then
becomes:
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Figure B.3: Plot of CCDFw(x) as a function of x as approximated in ref. [85]. We can see that
CCDFw(0.33) ≈ 0.5, hence we need an optimal SNR of ≈ 8/0.33 ≈ 24 to detect half of the
events.

(B.17) =
∫ 1

ρthr/ρopt
p(w) dw = 1− CDFw

(
ρthr
ρopt

)
, (B.18)

with CDFw(x) the cumulative distribution function of w. The function α is then:

α(Λ) =
∫
ppop(m1,m2, dL|Λ)

[
1− CDFw

(
ρthr
ρopt

)]
dm1 dm2 ddL. (B.19)

One minus the cumulative distribution function is also called the complementary cumulative
distribution function, denoted CCDFw(x) (= 1− CDFw(x)).

The sampling wi and then the integral of the pdf p(w) can be done numerically (by doing a
MCMC), but ref. [85] has already evaluated this integral, by considering that RA, cos(dec), cos ι
and ψ are uniformly distributed (the uniform distribution on the cosines of the angles and not on
the angles themselves seems strange (maybe because the observable is cos ι and ι not directly?),
but it does not change a lot the curve). By doing so, they obtain the following parametrisation
of the cumulative distribution function (for one detector) (see eq. (A2) of ref. [85]):

CCDFw(x) = a2[(1− x)2] + a4[(1− x)4] + a8[(1− x)8] + (1− a2 − a4 − a8)[(1− x)10], (B.20)

with a2 = 0.374222, a4 = 2.04216 and a8 = −2.63948, ∀x ∈ [0, 1]. This function is plotted in fig
B.3.

Hence, the only thing we need to compute is the optimally oriented SNR, ρopt(m1,m2, dL).
To do so, we can use the post-Newtonian approximation (eq. (B.7)) or directly a numerical
computation of hθ(f) (in this work we use the numerical computation of ref. [84]). Since ρ varies
as d−1

L , we can evaluate only ρopt on a grid of masses m1 and m2 at a fixed distance, let us say
d∗, and we compute:

ρopt(m1,m2, dL) = ρopt(m1,m2, d
∗) · d∗

dL
. (B.21)
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Figure B.4 shows the detectable fraction of events at a redshift z = 0.1 for the detector
advanced LIGO at designed sensitivity, using the Python package pycbc.psd [86].
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Figure B.4: Plot of detectable events at a redshift z = 0.1 for advanced LIGO, using the
analytical PSD pycbc.psd.analytical.aLIGODesignSensitivityP1200087 [86].

B.2 The function α

In the previous section, we saw the probability of detection of a GW generated by a source with
parameters θ. But for the function α(Λ), we are interested in the detectability of the hyperpa-
rameter Λ. We then have to multiply the probability of detection, pdet(θ) by the probability
that a source with parameters θ exists (and then to integrate over the θ’s). This probability of
population depends on the hyperparameter Λ.

To obtain the probability of population of the extrinsic parameters ppop(m1,m2, dL|Λ), we
recall that in section 2.4.1, we saw how to obtain ppop(mz

1,m
z
2, dL|Λ). We can just use again

Jacobians to transform ppop from a dependence on mz
i to a dependence on mi.

Now it is possible to use a Monte Carlo integration to evaluate α(Λ), and eq. (B.19) becomes:

α(Λ) = 1
ns

ns∑
i=1

CCDFw
(

ρthr
ρopt(mi

1,m
i
2, d

i
L)

)
| mi

1,m
i
2,d

i
L ∼ ppop(m1,m2,dL|Λ). (B.22)

Since the dependence in the parameter Λ is in the population pdf ppop(m1,m2, dL|Λ), it is
necessary to sample this function at each value of Λ that is tested by our Bayesian hierarchical
inference.
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