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Throughout this thesis, we use geometrised units with c = G = 1 and the
Einstein summation convention.
This thesis was written with the help of an artificial intelligence writing assis-
tant, which was used to refine text passages[18].
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6 1 ABSTRACT

1 Abstract

This thesis investigates the impact of environmental effects on Extreme Mass
Ratio Inspirals (EMRIs), which will be observed by the future space-based
gravitational wave observatory Laser Interferometer Space Antenna (LISA).
Focusing on type I planetary(-like) migration in thin gaseous accretion disks
and deviations from General Relativity (GR) allowing for a varying gravita-
tional constant, we introduce an agnostic phenomenological parameterisation
capable of modelling both effects. We extend existing waveforms for pro-
grade, equatorial, and circular orbits by the environmental effect model, to
create "dirty" EMRI. We perform Bayesian parameter estimation on simulated
LISA data and use Monte Carlo Markov Chain (MCMC) integration to es-
timate evidence for Bayesian model selection. Our results demonstrate that
longer observation times prior to merger enhance the detectability of envi-
ronmental effects. The considered effect leaves a stronger imprint at larger
separations, as quantified by the accumulated orbital phase shift. Constraints
on the phenomenological model parameters enable characterisation of the ac-
cretion disk’s physical properties and distinction between accretion disks and
GR deviation. The Bayes factors reveal that stronger effects provide decisive
support for the environmentally perturbed templates when the posterior dis-
tributions of the vacuum templates are viable. We have established dephasing
as a measure of the environmental effect’s strength, linking it to the threshold
at which the effects become decisive in model selection.
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2 Introduction

In 2015, the field of observational astrophysics underwent a paradigm shift
with the first measurement of Gravitational Waves (GWs). These tiny space-
time fluctuations, corresponding to relative length contractions of ≈ 10−21,
were deemed impossible to measure one century earlier, but thanks to the
collaborative efforts of the scientific community, they were detected on 14th
of September 2015[1]. Measuring GW enables us to perceive the universe’s
gravitational radiation, as if a new ’sense’ has been revealed to us. Accurately
measuring, understanding and interpreting GWs is one of the major challenges
in modern physics.

2.1 Gravitational Waves

GR links the curvature of spacetime to mass and energy. In a simplified model,
we can imagine masses curving spacetime in a similar way that bowling balls
curve a bedsheet. For example, when two masses orbit each other, the space-
time geometry is periodically perturbed and GWs are emitted. These waves
carry away orbital energy and angular momentum, causing the orbits to de-
cay and the two masses to inspiral towards each other until they merge. The
coalescence of two compact objects of similar mass is the class of sources that
scientists first detected in 2015 [1], and that we can currently observe using
the ground-based interferometers LIGO, VIRGO and KAGRA. However, this
is just the beginning of GW astronomy. More GW sources are predicted, such
as supernovae, non-axisymmetric rotating (neutron) stars, and stochastic sig-
nals from cosmology, which may originate from inflation or first-order phase
transitions in the early universe, or from cosmic strings. Fig. 1 provides an
overview of the sources of GWs and their frequency ranges, as well as of the
current and future detectors.

By observing and interpreting GWs, we can refine and advance current models
and explore new theories.
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Figure 1: The ranges of GW sources and observatories. The multiple sources
cover a wide frequency range, with different detectors and observatories being
sensitive to different frequency intervals. (Plot created with gwplotter.com
[44])

Theoretical Background Overview

The wave nature of GWs can be derived by a assuming a flat background
metric ηµν = diag(−,+,+,+) with a small metric perturbation hµν, such that
the metric of the spacetime is gµν = ηµν + hµν. Using this metric, we can derive
a wave equation from the linearised Einstein equations

□h̄µν = −16πTµν, (1)

where the operator □ = ∂µ∂µ is the flat space d’Alembert operator and h̄µν is
the trace-reversed metric perturbation [43]

h̄µν = hµν −
1
2

ηµνh (2)

in Lorenz gauge, where h = ηµνhµν. In vacuum far from the source (Tµν = 0),
the transverse-traceless gauge can be chosen (h0µ = 0, hi

i = 0, ∂jhij = 0, with i, j
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being the spatial indices) to find plane wave solutions to □h̄µν = 0 for a wave
propagating along the z-direction at the speed of light, which are

hTT
ij =

h+ h× 0
h× −h+ 0
0 0 0


ij

cos(ω(t − z)) (3)

with the two GW polarization modes h+, h×. GWs are generated by solv-
ing eq. 1 with a non-zero stress-energy tensor via a multipole expansion.
Unlike in electrodynamics, the leading contribution to this expansion is the
quadrupole term, which is represented with the quadrupole tensor Qij. This
encodes the asymmetric, time-dependent mass distribution of the GW source.
The quadrupole formula connects the quadrupole tensor and the trace-reversed
metric perturbation, which is linked to the GW strain,

h̄ij =
2
r

Q̈ij(t − r). (4)

Only anisotropic sources, which have a non-zero and non-varying quadrupole
tensor, can emit GW radiation.

Principle of GW Interferometry

GWs squeeze and stretch spacetime, effectively altering the geodesics of pho-
tons. This alteration can be measured using interferometers. In a Michelson
interferometer, light from a single source is split by a beam splitter and di-
rected into two equal-length arms. The light is then reflected at each end of
the arms and recombined before reaching a detector. In the absence of GWs,
the laser beams remain in phase when they recombine, suppressing the laser
frequency noise common to both arms and cancelling out the phase difference.
In the presence of GW, the armlengths change, and by measuring the interfer-
ence pattern at the recombination, GWs can be detected. This approach has
been refined since the 1970s, is currently employed in ground-based detectors
such as LIGO, VIRGO and KAGRA and enabled the first direct detection of
GWs in 2015 [1]. As shown in Fig. 1, these detectors cover the frequency range
between 10 Hz and 103 Hz.
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2.2 Laser Interferometer Space Antenna

Figure 2: LISA’s sensitivity and different primary source classes. LISA will be
able to measure GW signals between 10−4 Hz and 1 Hz, covering a frequency
band with a variety of sources. These include massive Black Hole (BH) bi-
naries, EMRI, stellar-mass Black Hole (BH), Galactic binaries and verification
binaries.(Reprinted from [16])

In order to observe more sources of GWs, we need to access other frequency
bands with new detectors (see Fig. 1). One such band is that of the future
space-based GW observatory: LISA. Measuring GWs in space enables us to
avoid the limitations of terrestrial noise and significantly increase the inter-
ferometer’s armlength. This will allow measurements at frequencies between
10−4 Hz and 1 Hz, corresponding to new classes of sources such as supermas-
sive black hole coalescences, EMRIs, compact binary stars and cosmological
signals (see Fig. 2). LISA will consist of three spacecraft on heliocentric orbits
trailing Earth by 20 degrees and forming an approximately equilateral triangle
with an armlength of approximately 2.5 million km (see Fig. 3). Laser beams
will link the spacecraft, and each will host two freely falling test masses, one
at each end of the three arms of the constellation.

Such a setup requires high-precision optical and space engineering, but the
LISA Pathfinder mission in 2017 has proven its feasibility[3]. Today, LISA is
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(a) Position of LISA’s orbit

(b) Dynamics of LISA’s orbit

Figure 3: The position and dynamics of LISA’s orbit. Fig. 3(a) shows how
the three spacecraft form an equilateral triangle, with the barycentre following
Earth’s orbit around the Sun. The plane of the triangle "is inclined at 60° with
respect to the Ecliptic"[16]. Fig. 3(b) displays the annual clockwise rotation of
the spacecraft within the constellation’s plane. (Reprinted from [16])

European Space Agency (ESA)’s L3 mission, and was adopted in January 2024,
with an expected launch date of 2035.

One particular challenge for LISA is the immense distances and the fact that
the armlengths are unequal and vary over time (< 12m/s[16]). The distances
of millions of kilometres reduce the light intensity by ≈ 10−9[16] such that
reflected light would be undetectable, making a standard Michelson interfer-
ometer setup infeasible. In LISA there are three spacecraft, six optical benches,
six lasers and six test masses. Each one-way link between spacecraft has its
own light source, optical bench and test mass, and the interference pattern is
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recorded between the outgoing and received light. For such a setup where laser
frequency noise doesn’t cancel due to variation of arm length, laser frequency
noise cancellation needs to be adapted to enable sufficient sensitivity for GW
observation. The algorithm implemented for this purpose in post-processing is
called Time Delay Interferometry (TDI) and has been extensively studied and
probed[56]. It combines knowledge of the two phase measurements at each
end of an arm in the LISA constellation, with precisely synchronised atomic
clocks and time delays due to the light travel time between the spacecraft,
constructing a virtual equal armlength interferometer. Therefore, it requires
accurate estimates of the armlengths (≈ 1m) and can then accommodate the
dynamics and orbital motion of the constellation.

Figure 4: Schematics of TDI relaying. The figure shows the first (left) and
second (right) generation approaches to TDI relaying. As the laser light is too
weak to be reflected directly, it must be detected and actively re-emitted at each
end of an arm. Schemes that incorporate TDI combinations with further relay-
ing (more round-trips) can suppress noise further, with the 2nd generation of
TDI displayed in the right panel being sufficient for the required sensitivity[16].
(Reprinted from [30])

In practice, each laser beam is split twice. Two of these beams leave the space-
craft and travel to the other two, where two new beams with the same phase
are emitted and sent back. This process relies on sufficient phase locking be-
tween the incoming and relayed beams. The incoming beams are time-delayed
by the effective round-trip travel time. They are then recombined with the local
laser beam (see Fig. 4). In the classic TDI algorithm, the phase difference of
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each pair of adjacent round-trip laser beams forms an observable, called the
TDI observables {X, Y, Z}. While these TDI observables have correlated noise
properties, a set of uncorrelated TDI observables {A, E, T} can be obtained by
linear transformations [57]

A =
1√
2
(Z − X) (5)

E =
1√
6
(X − 2Y + Z) (6)

T =
1√
3
(X + Y + Z). (7)

These TDI observables {A, E, T} are the product of the L1 data analysis step
in LISA "constitut[ing] the lowest-level data ready for scientific interpretation"
[16]. However, the real optical bench setup and algorithm are more complex,
accounting for phenomena such as orbital motion [37], the motion of the optical
bench relative to the proof mass, and fluctuations between the lasers within a
spacecraft.
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2.3 Extreme Mass Ratio Inspirals

(a) EMRI orbit

(b) EMRI GW strain

Figure 5: The complex nature of EMRI orbits and their corresponding GW
signals. Fig. 5(a) shows the intriguing orbits of the Compact Object (CO)
as it inspirals into the Massive Black Hole (MBH). These orbits can be retro-
grade, inclined and eccentric. This complex trajectory can be observed in the
corresponding GW signal in 5(b). The orbital frequency, the perihelion preces-
sion frequency and the orbital plane precession frequency all evolve over time,
resulting in many harmonics and a highly intricate signal structure. (Plots cre-
ated with github.com/OllieBurke/animations)

Following the 2020 Nobel Prize observations of stellar dynamics in galactic
nuclei and the imaging of black hole shadows by the Event Horizon Telescope,
it is widely accepted that Massive Black Holes (MBHs) reside at the centres
of most galaxies. Due to mass segregation, MBHs are surrounded by a dense
cloud of stellar remnants, such as stellar-mass black holes, neutron stars and
possibly white dwarfs, which we collectively call Compact Objects (COs). As
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Figure 6: Time-frequency spectrogram of a typical EMRI signal. Shown here
is the time-frequency decomposition of the h+ polarisation mode. The tracks
indicate that the frequencies are not constant throughout the evolution of the
system. Some harmonic frequencies increase and form the typical chirp of the
signal, while some decrease.

a result of their mutual interaction, a CO can be thrown towards a MBH with
a small impact parameter. It loses non-negligible orbital energy in GW bursts
at the periapsis, which modifies its trajectory, making it more bound. After
several passages, the CO is detached from the stellar cloud (cusp) and forms a
bound two-body system where the CO slowly spirals towards the MBH until
the merger; an EMRI is formed.

The mass ratios of EMRIs detectable by LISA range from 10−7 to 10−4. EMRIs
are key targets for LISA, whose observations will enable the study of MBHs.
We will be able to measure their properties (mass and spin) with sub-percent
accuracy and constrain the lower end of the MBH mass distribution (104 − 107

solar masses). With the expected precision of LISA’s measurements, we will be
able to localise the source in the sky to within a few square degrees and study
the co-evolution of the MBH and its host galaxy throughout cosmic history.
The CO acts as a probe of the strongly curved spacetime around the central
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MBH and detecting an EMRI would therefore provide a better understanding
of the strong gravity regime and allow us to test the “no-hair” theorem of GR.
Gravitational wave signals of an EMRI generally comprise ≈ 105 cycles, corre-
sponding to observation times of years. However, their Signal-to-Noise-Ratio
(SNR) is relatively low, and the signal’s structure is highly complex, because
the CO inspirals rapidly and can perform inclined, retrograde and eccentric
orbits (see Fig. 5(a)). The GW signal then contains the evolution of the har-
monics of three fundamental frequencies: the orbital frequency, the perihelion
precession frequency and the orbital plane precession frequency (see Fig. 5(b)).
This evolution is most clearly displayed in time-frequency spectrograms, such
as the one shown in Fig. 6.
In the "clean" EMRI model, the CO orbits the MBH in isolation, unaffected
by external forces. This is a good approximation for most EMRIs for the fi-
nal years of the inspiral within the vicinity of the MBH. In this project, we
aim to consider “dirty” EMRIs, where “dirty” implies the presence of a per-
turber influencing the orbital dynamics of the CO around the MBH that could
potentially be measured.

Aims & Structure

The aim of this work is to assess the significance of environmental effects on
EMRIs and to determine when models including these effects are favoured by
parameter estimation. This thesis is structured as follows. First, I introduce
the fundamental principles of GWs and discuss the properties and scientific
potential of EMRI systems. Next, I establish the external effect influencing
these systems and explain how the resulting signals are modelled. Then, I
present the statistical analysis framework, its implementation, and the obtained
results. Finally, I will summarise my work and provide an outlook for future
research.
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3 Environmental effects

GW astronomy enables us to investigate COs, such as Neutron Stars, Black
Holes (BHs) and White Dwarfs, in a new way. With increasingly accurate
waveform templates, we can estimate the properties of these objects with great
precision, and test GR. However, current waveform templates neglect the real-
istic astrophysical environment and are referred to as vacuum templates. As
astrophysical environments influence CO binaries on all scales, they will im-
pact the GW signal. There are various ways in which the environment could
influence these binaries, and some of these effects could be strong enough to
modify the observed signal such that this effect will be measurable, and should
therefore be accounted for in the waveform model.
In this chapter, we first provide a brief overview of the possible effects, before
motivating and discussing the class of effects that we have employed.

Dirty EMRI

EMRI are especially susceptible to environmental effects as they perform many
orbital cycles and map out large areas of the MBH vicinity[16]. The EMRI pop-
ulation is still relatively unconstrained, and EMRI detection rate estimates in
the LISA band range from a few to thousands per year[7]. Nevertheless, one
of LISA’s science objectives is to "[s]tudy the properties and immediate envi-
ronment of Milky Way-like MBHs using EMRIs"[16]. Such environments could
include overly dense regions, such as populations of cores of massive stars or
accretion disks of Active Galactic Nucleus (AGN), star clusters, dark matter
halos or strong electromagnetic fields [9]. Detailed modelling of the differ-
ent environmental effects would require computationally expensive Numerical
Relativity simulations; however, some of the effects can be approximated as a
correction to the vacuum GW signal’s phase evolution. Tab. 1 provides an
overview of the phase correction to the vacuum GW signal for some environ-
mental effects in quasi-circular EMRI.
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Correction ∆Φ [rad]
planetary migration < 104

thin accretion disks (DF) ≤ 102

thin accretion disks (GP) ≤ 10−3

magnetic field 10−4

charge 10−2

gas accretion onto the central BH 10−2

thick accretion disks (DF) 10−9

Dark Matter accretion onto central BH 10−8

thick accretion disks (GP) 10−11

Dark Matter distribution (DF) 10−14

Dark Matter distribution ρ ∼ r−α̂ (GP) 10−16

galactic Dark Matter halos 10−16

cosmological constant 10−26

Table 1: Table of corrections due to environmental effects. These estimates were
calculated under the assumption of quasi-circular EMRI. The different effects
cover a wide range of phase corrections. DF and GP stand for "dynamical
friction" and "gravitational pull" respectively. (Adapted from [9] Table VI)

MBH are often found in gas-rich environments such as AGN, which could be
an important formation channel for EMRIs[23][21]. Previous studies have also
found, that 1 to 10% of the EMRIs that will be observed by LISA could reside
in accretion disks around AGN[46]. These accretion disks could modify the
orbital trajectory through hydrodynamic or gravitational effects, leading to,
dynamical friction and planetary migration, for example. Another prediction
of these studies is that EMRIs, which have formed in accretion disks are "likely
to have circularised and aligned with (or be[en] born in) the disk"[53] [46][21].
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3.1 Planetary Migration

Figure 7: Schematic of spiral density waves from Lindblad resonances. The
grey spiral tracks represent spiral density waves in a gaseous disk, which can
be induced by an orbiting CO represented by the red dot. The dashed lines
show a circular orbit, indicating that the density waves perform differential
motion interior and exterior of the orbit. (Reprinted from [12])

The dominant effect identified in the study by Barausse et al.[9] is planetary(-
style) migration. As a CO moves through a gaseous accretion disk, it causes
density perturbations which form a wake, i.e. a denser region in proximity to
the CO. The gravitational pull of this local overdensity on the CO can lead
to dynamical friction. However, dynamical friction does not account for the
dynamics and interplay of the wake within the disk, where it can excite Lind-
blad resonances that lead to spiral density waves, as shown in Fig. 7. These
density waves can stretch from the inner to the outer regions of the accretion
disk, resulting in differential motion in the disk’s annuli, caused by the fact
that the rotational velocity is a decreasing function of the radius[9]. Therefore,
part of the wake of the CO will be inside its orbit, increasing the CO’s angular
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momentum and causing it to migrate outwards. Another part of the wake of
the CO will be exterior to its orbit, decreasing the CO’s angular momentum
and causing an inward migration. These two cases are summarised as type I
migration, and the direction of the migration (inward or outward) depends on
the balance between the two effects, requiring sophisticated calculations. How-
ever, in most cases, the torque of the outer spiral dominates, causing the CO to
lose angular momentum and migrate inwards.
Another phenomenon can occur when the CO removes gas from its orbit in
the disk faster than the resulting gap can be filled by viscous flow. This
causes the CO to migrate inwards[40][65]. This process is called type II mi-
gration. However, more recent simulations show that the gas flow is highly
complex, making it uncertain whether or when type II migration can occur
[24][25][33][50]. Reviews of planetary migration can be found in [5][60]. These
models have been developed to account for the dynamics of planets in proto-
planetary disks[4][45]. Unfortunately, there are currently no numerical simu-
lations of EMRI in realistic AGN accretion disks. However simulations of In-
termeditate Mass Ratio Inspiral (IMRI) have proven the approximate validity
of the model (within one order of magnitude)[20][19][21]. These simulations
also suggest that focusing our study on inward type I migration in thin disks
is conservative and avoids overestimating the effect. This approach allows the
migration torque to be modelled using a simple power-law dependency on the
orbital radius [54], which will be extremely useful. Finally, it has been found
that the torque due to planetary(-style) migration is comparable in strength to
the torque due to GW emission[65][40].

3.2 Accretion Disk

The physics of accretion disks is fascinating, combining the fields of electrody-
namics, hydrodynamics and GR. Describing the physics of accretion disks nu-
merically requires expensive simulations within a General Relativistic Magne-
tohydrodynamics (GRMHD) framework [2]. However, there are also analytical
models of accretion disks, such as those developed by Shakura and Sunyaev in
1973 [52]. These models describe the accretion flow of geometrically thin, op-
tically thick disks. They discovered that the internal torque within such disks
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must be proportional to the pressure and they proposed two possible descrip-
tions. In the α description the torque is proportional to the gas pressure and
the radiation pressure trϕ = α(pgas + prad), while in the β description it is only
proportional to the gas pressure trϕ = αpgas, in "both cases α is the viscosity,
which parametrises the complex (and uncertain) magnetohydrodynamic fea-
tures of accretion disks"[53]. An agnostic model of the torque exerted on the
CO of an EMRI including both types of disk, has been derived in [53], moti-
vated by previous work [9][40][65]. This model simply adds the contributions
of the disk’s torque and GW emission torque

L̇ = L̇GW + L̇disk. (8)

The term accounting for the interaction with the disk follows a simple power-
law approach consisting of an amplitude A and a radial slope nr

L̇disk = A
( r

10

)nr
L̇(0)

GW , (9)

it is scaled by the leading order circular orbit GW torque L̇(0)
GW = −32

5 ϵ r−7/2,
motivated by the estimations in [9]. In this parametrisation, the amplitude A
incorporates the information on the accretion disk, specifically its type and the
strength of the effect

A = C
( α

0.1

)nα
(

fEdd

0.1
0.1
ϵ

)n fEdd
(

M
106M⊙

)nM

, (10)

where nα, n fEdd
, nM decode the dependence on the parameters α, fEdd, M for

each disk model and are given in Tab. 2.
This parametrisation is only valid for geometrically thin disks and becomes
invalid at the inner edge of the disk, where the gas density and the torques
decrease. Our waveform models avoid this region anyway, as they only model
systems up to the point at which they approach the Innermost Stable Circular
Orbit (ISCO) (see Sec. 4). Conversely, this parameterisation is agnostic and can,
in principle, be applied to any environmental effect where the exerted torques
are proportional to the orbital separation r.
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Migration (α) Migration (β)

C 7.2 · 10−10 8.1 · 10−6

nr 8 5.9
nα -1 -4/5

n fEdd
-3 -7/5

nM 1 6/5

Table 2: Parameters of the disk torque model. The relevant properties of the
accretion disk torque are combined into a single amplitude using the parame-
terisation derived in [53]. (Adapted from [53])

Detection of GR deviations

EMRIs enable us to test the regime of strong gravity and probe the theory of
GR. If gravity is not fully described by GR, current waveform templates may
be inadequate for analysing GW signals. This could result in biases in param-
eter estimation and reduced detection efficiency[17], similar to unmodelled
environmental effects. To address this issue, parametrised post-Einsteinian wave-
forms have been proposed[62][17]. Some theories, including deviations from
GR, modify the phase of GW compared to GR and can be parametrised using
the presented torque model. For fixed values of the slope parameter nr the am-
plitude A can represent the size of a deviation from GR[53]. Deriving theories
that extend or deviate from GR is outside the scope of this work. However,
since our aim is to investigate confusion between vacuum and perturbed GW
templates in parameter estimation, we incorporate one such deviated model
and its corresponding slope into our analysis.
More precisely, the class of deviations from GR we are considering allows for
a time-varying gravitational constant, which would modify the waveform tem-
plates. Previous studies have found that such a deviation could be described by
an additional term in a post-Newtonian expansion of order -4 [63][14][10][58].
This deviation can therefore be accounted for in our modified torque model by
fixing nr = 4[53].
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4 Signal modelling

To prepare for the upcoming EMRI observations with LISA, we need to under-
stand these sources and develop models for their gravitational wave signals.
This section discusses how the scientific community responds to this call and
the "state-of-the-art" of EMRI modelling. The presented techniques and mod-
els will enable us to prepare EMRI signal analysis and utilise them to answer
research questions from astrophysics, cosmology, and fundamental physics.
In this chapter, we will outline the baseline approach, discuss the FastEMRIWaveforms
(FEW) package and our implementation and finally explain how we extend the
vacuum solution to introduce an environmental effect.

4.1 EMRI Gravitational Wave Strain

Realistic EMRIs can be modelled as the complex motion of the compact object
in an approximately Kerr spacetime with various initial conditions as discussed
in section 2.3. Modelling the EMRI’s gravitational wave signal reflects this
complex nature and therefore poses a significant challenge, which has been
addressed by the self-force approach [8].
As discussed before 2.3, EMRIs could last 4-5 years in the detectable window
of LISA. This translates into 104 − 105 orbital cycles with periods ranging from
minutes to hours. By separating these two timescales, it is possible to simplify
the complexity of the EMRI’s dynamics and study effects on each timescale
separately. The "fast" component corresponds to the periodic motion along the
orbit and is therefore called the orbital timescale Torb ∼ M. The "slow" compo-
nent describes the gradual shift inward due to dissipative effects (radiation of
GW) and is therefore called the radiation-reaction timescale Trad ∼ M/ϵ, with the
MBH’s mass M, the CO’s mass µ and the EMRI’s mass ratio ϵ = µ/M.
Combining the knowledge of the behaviour on the two timescales leads to so-
called adiabatic waveforms. This framework assumes that the orbits are quasi-
stationary on the orbital timescale, such that they can always be considered
bound Kerr geodesics. The effects of GW radiation are averaged on each or-
bit, and at adiabatic order, the secondary shifts from one geodesic to another,
gradually approaching the primary. This forms the inspiral.
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Most of the work in modelling GW waveforms relies on perturbative methods.
EMRIs exist in the strong-field regime, where the post-Newtonian expansion
used for compact binary inspirals is not applicable. Instead, it is necessary to
solve the two-body problem for the perturbed Einstein equations up to linear
order, with the expansion being in the mass ratio ϵ [49]. The spacetime in
which the system evolves is dominated by the primary, making it essentially
Kerr, with the secondary causing a small perturbation. The metric tensor can
then be expanded as gµν = gKerr

µν + hµν. With the perturbative approach, the
linearised Einstein equations can be formulated into the Teukolsky equation
[55], which describes how perturbations evolve in Kerr spacetime.
The motion on the orbital timescale corresponds to the zeroth order in the mass
ratio expansion O(ϵ0) and follows Kerr geodesics. 2nd and higher orders
O(ϵ2+) include Gravitational Self-Force (GSF) effects, which arise due to the
finite size and mass of the secondary as well as the back-reaction with its grav-
itational field [8].
For the motion on the radiation-reaction timescale, the dissipation due to GW
emission has to be calculated. These first-order effects in the expansion are
obtained by solving the Teukolsky equation. The GW strain "at infinity" maps
directly to the dissipation of the constants of motion.
This process is iterative. The Teukolsky solutions provide the radiation reaction
that shifts the orbit to the next geodesic, changing the object’s trajectory. This
then updates the source term in the Teukolsky equation for the next step.
Each bound orbit is described by three fundamental frequencies: Ωr (radial),
Ωθ (polar) and Ωφ (azimuthal) [51], corresponding to the periodic motion in
the respective direction. The solution to the Teukolsky equation is then written
in terms of harmonics of these frequencies

ωmkn = nΩr + kΩθ + mΩφ , m, k, n ∈ Z, (11)

and the GW strain can finally be written in the "multi-voice decomposition"[31]

h(t) = h+ − ih× =
µ

dL
∑

lmkn
Almkn(t) Slmkn(θ, ϕ) exp[−iΦmkn(t)]. (12)
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Therefore in ths approach the waveform can be represented by the sum of
multiple harmonics described by a complex amplitude Almkn, spin-weighted
spheroidal harmonics Slmkn(θ, ϕ) accounting for the viewing angle on the sys-
tem and the oscillatory part exp[−iΦmkn] determined by the phase Φmkn. The
factors µ and dL correspond to the secondary’s mass and the luminosity dis-
tance between the observer and the source, respectively.

To reduce the complexity of the inspiral trajectory and leverage existing wave-
form implementations, we assume prograde, circular and equatorial orbits.
This is justified as most accretion disks lie in the equatorial plane, and we
specifically want to study their influence on the EMRI 3. Further, it is pre-
dicted that EMRIs circularise throughout their evolution [16]. With these as-
sumptions, we reduce the waveform model by two degrees of freedom (radial
and polar motion, indices k,n respectively).
A challenge in computing these waveforms is the spin-weighted spheroidal
harmonics Slm(θ, ϕ), which emerge from the way perturbations are decom-
posed in the Teukolsky equation. For Schwarzschild spacetime (i.e. non-
spinning primaries), the spheroidal harmonics reduce to spherical harmonics
Slm = Ylm. However, determining these factors in Kerr spacetime compli-
cates the waveform computation and can be avoided by introducing a new
set of amplitudes. The amplitudes Alm and spheroidal harmonics Slm become
new amplitudes Clm and are expressed in spherical harmonics Ylm. The exact
derivation can be found in [64]. The GW characteristic from eq. 12 finally
becomes

h(t) =
µ

dL
∑
lm

Clm(t) Ylm(θ) exp[−iΦm(t)]. (13)

Unlike in Schwarzschild spacetime, where the orbits are fully described by en-
ergy E and angular momentum L alone, in Kerr spacetime a third constant
arises due to a hidden symmetry related to the Killing tensor, the Carter con-
stant Q [13]. It carries information about the inclination of the orbit and the
motion in the latitudinal/polar direction. The parametrisation of an orbit in
constants of motion {E, L, Q} and orbital parameters {p, e, ι} (semi-latus rec-
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Parameter Definition Valid range in FEW
M Mass of primary [104, 5 · 107]

µ Mass of secondary [1, 104]

a Dimensionless spin of primary [0, 0.99]
p0 Initial semilatus-rectum [7 · (6 + 2 · e0)− 41.9, 16 + 2 · e0]

e0 Initial eccentricity [0, 0.75]
xI,0 Cosine of initial inclination angle [−1, 1]
dL Luminosity distance -
qS Sky location polar angle [0, π]

ϕS Sky location azimuthal angle [0, 2π]

qK Primary spin polar angle [0, π]

ϕK Primary spin azimuthal angle [0, 2π]

Φϕ0 Initial azimuthal phase [0, 2π]

Φθ0 Initial polar phase [0, 2π]

Φr0 Initial radial phase [0, 2π]

Table 3: EMRI parameters and their valid ranges in few

tum, eccentricity and inclination angle of orbital plane respectively) is equiva-
lent.
A generic EMRI signal in its source frame can be modelled by 9 parameters,
which we call the intrinsic parameters. In the Solar System Barycenter (SSB)
frame, distance dL, sky position (qS, ϕS) and spin orientation (qK, ϕK) of the
MBH are added (the extrinsic parameters), amounting to a total of 14 parame-
ters, as shown in Tab. 3.
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4.2 FastEMRIWaveforms

Input Parameters 
 (M, μ, a, p0, e0, x0, Φφ0, Φθ0, Φr0)

(dL, θS, ϕS, θK, ϕK)

Trajectory

Amplitudes

Waveform 
Build

h

15

FastEMRI Waveform  Architecture

Domain Choice 
(TD, FD, TFD, Wavelet)

p, e, xI

Slmkn

Almkn

Sparse Byproducts

Φφ Φr Φθ

Figure 8: General architecture of FEW. A trajectory is calculated with the input
parameters, which is then used to interpolate the amplitudes of the "multi-
voice decomposition". Finally, amplitudes and orbital phases are summed to
form the waveform approximation. (Reprinted from [38])

The FEW package [38] [15] is a potent tool within the BlackHolePerturbationToolKit
[11]. It provides efficient EMRI waveform generation and has implemented dif-
ferent models for several spacetimes and specific orbits to high precision. Ad-
ditionally, it is GPU compatible and accelerates the computation time for wave-
form generation, enabling us to create waveforms of 4-year inspirals within ∼
10 - 100 ms. This software is crucial to this work, and in the following section,
we will sketch the fundamental functionality of the package and the waveform
implementation we are utilising.
Fig. 8 displays the general scheme of a waveform computation. First, a set of
intrinsic parameters is passed to a chosen trajectory function (spacetime and
orbital assumption). This returns the timeseries of the phases {Φφ, Φr, Φθ} and
the orbital parameters {p, e, xI}. The latter are used to interpolate the Teukol-
sky amplitudes Almkn and Slmkn (or in our model Clm) from a precomputed
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grid. It is obvious that this introduces errors and that the interpolation method
as well as the grid of precomputed data have to be carefully chosen, which was
studied in [31]. Finally, all the factors of the "multi-voice decomposition" are
multiplied and summed up, forming the EMRI waveform. The output can be
either in the source or detector frame.

4.3 Implementation of Non-Vacuum Trajectories

The trajectory function is at the heart of the waveform computation as it pro-
duces the phase evolution factor and is used to interpolate the amplitude fac-
tors in the multi-voice decomposition. It is precisely what we are modifying to
include environmental effects.
In FEW trajectories are computed by solving a set of coupled Ordinary Differ-
ential Equations (ODEs)

ṗ = ϵ fp(a, p, e, xI) (14)

ė = ϵ fe(a, p, e, xI) (15)

ẋI = ϵ fxI (a, p, e, xI) (16)

Φ̇φ,θ,r = Ωφ,θ,r(a, p, e, xI)/M, (17)

where the dot corresponds to the total time derivative d
dt and the pre-factor to

the mass-ratio ϵ = µ
M . The fp, fe, fxI are the orbital elements’ fluxes due to the

emission of GW. Like the Teukolsky amplitudes, they are interpolated from
a precomputed grid in the equivalent constants of motion parameterisation
{E, L, Q}. The derivation scheme is illustrated in [27]. For the case of circular
equatorial orbits, the ODE system simplifies significantly as the evolution of
eccentricity and inclination becomes negligible. The semi-latus rectum p be-
comes equivalent to the radial separation of the two objects r. This allows to
express the evolution of p in terms of one parameter. With the chain rule, it is
possible to express the ODEs as

ṗ = ϵ
dL
dt

dp
dL

= ϵ
L̇
L′ (18)

Φ̇φ = Ωφ/M. (19)
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Here we denote the derivative with respect to p with a prime. The analytical
expression for the derivative L′ is obtained from the KerrGeodesics Mathe-
matica package [59] within BlackHolePerturbationToolKit [11]. It simplifies
to

dp
dL

=
dL
dp

−1
=

(
−3a3 + a2(8 − 3p)

√
p + (−6 + p)p5/2 + 3ap(−2 + 3p)

2 · (2a + (−3 + p)
√

p)3/2 · p7/4

)−1

(20)

in the equatorial circular case. The flux of the angular momentum L̇ can be
transformed into a flux of orbital energy Ė and follows the simple relation
L̇ = Ė/Ωφ, with Ωφ = (r3/2 + a)−1 for Kerr circular orbits. The flux of orbital
energy Ė is, as mentioned before, interpolated from a precomputed grid.

In section 3 we discussed that environmental effects can be modelled by an
agnostic power-law approach

L̇ = L̇GW + L̇env (21)

L̇env = A
( r

10

)nr
L̇(0)

GW , (22)

where L̇(0)
GW = −32

5 ϵ r−7/2 is the leading order circular orbit GW angular mo-
mentum flux. Now, modelling the environmental effect as an additional flux
of angular momentum L is simple and means just adding a term to the ODE
[53]. The modified ODEs including environmental effects are given by

ṗ = ϵ
L̇GW + L̇env

L′ (23)

Φ̇φ = Ωφ/M. (24)

We have now achieved a nested implementation of the environmental effects
model on the trajectory computation. The trajectory is the first step towards
the GW strain. The introduced environmental effect perturbs this trajectory
and its imprint will propagate into the waveform.
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LISA Observables

LISA will not directly measure the gravitational strain. Through the pre-
processing of raw data through the LISA analysis flow and the application
of the TDI algorithm, we will obtain the {A, E, T} observables (see Sec. 2.2 and
[16]). We model this via the fastlisaresponse package [37].
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5 Bayesian Inference

This thesis aims to conduct a statistical analysis of EMRI GW signals. Using
Bayesian model selection techniques, we will assess whether it is possible to
distinguish between the observed data of an EMRI that has been affected by
an environmental effect and one that has not. We employ Bayesian parame-
ter estimation of competing models through stochastic sampling, followed by
Bayesian model selection.

This chapter aims to explain and document the entire stochastic sampling pro-
cess for this project. The following sections will first present the theoretical
framework, followed by the numerical implementation.

5.1 Statistical Inference and Bayes’ Theorem

Statistics can be divided into two primary branches: descriptive and inferen-
tial statistics. Descriptive statistics are a means of describing and summarising
data without making predictions or generalisations. Conversely, inferential
statistics operates under the assumption that the data is a sample of a larger
population. This sample is utilised to make predictions and generalisations
about the population, incorporating uncertainty when drawing conclusions.
In each of these branches there are two general approaches: frequentist and
Bayesian. In the frequentist approach, probabilities are defined as the occur-
rences of events divided by the repetitions of the experiment. This approach is
based on the convergence law, namely that the experiment is repeated infinitely
many times in order to determine the ’true’ value, and does not incorporate
prior knowledge (e.g. physical or non-physical regions in the parameter space).
Furthermore, conditional probabilities of data in the context of a hypothesis or
model can be considered. However, it is impossible to discuss the probabilities
of a model or hypothesis being correct, or of parameters taking certain values,
given some data, as models or hypotheses are not the outcomes of repeatable
experiments. The rejection or acceptance of models and hypotheses is only
possible under the assumption of confidence intervals or significance.

In contrast, the Bayesian approach offers a higher degree of flexibility in these
terms. The analytical expression of Bayes’ theorem follows from fundamental
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properties of conditional probability. The probability of the event A occurring,
given the event B, is expressed as follows:

P(A|B) = P(A, B)
P(B)

, (25)

where A, B denotes both events occurring. Similarly

P(B|A) =
P(B, A)

P(A)
, (26)

where P(A, B) = P(B, A). Solving both expressions for the probability of the
intersection, P(A, B), and equating them, we arrive at

P(A|B)P(B) = P(B|A)P(A) (27)

and finally at Bayes’ theorem

P(A|B) = P(B|A)P(A)

P(B)
. (28)

Another common way to write the Bayes’ theorem emphasises the posterior
distribution of parameters θ for a given model M describing the data d is

p
(

θ⃗|d,M
)
=

L(d|⃗θ,M)π(⃗θ|M)

z(d|M)
, (29)

with L(d|⃗θ,M) describing the likelihood of observing the data for a given set
of parameters in the given model, π(⃗θ|M) the prior probability of these pa-
rameters in the given model and the evidence z(d|M) which is the probability
of observing the data for the given model and i.e. the normalisation factor for
the product in the nominator[48].
Here, we can also understand why Bayes’ theorem proves to be useful. We have
a hypothesis of some parameter values describing a GW signal, and start with
the prior probability of these parameter values. We then observe some data



5 BAYESIAN INFERENCE 33

and update our posterior probability of the parameter values given the data,
accordingly, by incorporating the likelihood of the data given the parameter
values. The posterior becomes more accurate and can be updated as more
data becomes available.
When analysing GW data, the Bayesian approach is preferred over the frequen-
tist approach, as there is only one measurement and we can not repeat the
observation multiple times. It can handle high-dimensional GW models, and
it incorporates information from theory and simulations. Further, it provides
full posteriors, which correspond to the estimates of the parameters, where the
uncertainty correspond to the uncertainty of the measurement. The Bayesian
approach allows testing and comparison of different models and excels at deal-
ing with noise in the data, as it can include stochastic noise models, while the
frequentist approach relies on simplifying assumptions about the noise.

5.2 Stochastic Sampling

The posterior distribution provides the estimates and uncertainties on the model
parameters, but can not be solved analytically as it is complex and high-
dimensional. Therefore, stochastic sampling is employed, which is the process
of selecting members of a statistical population to form a subset that repre-
sents its characteristics. Combined with Bayesian inference, it approximates
the posterior distribution. We use MCMC methods to sample from the product
distribution of the likelihood and prior, which is proportional to the posterior
distribution

p
(

θ⃗|d,M
)

∝ L(d|⃗θ,M)π(⃗θ|M). (30)

Monte Carlo methods are an umbrella term for computational algorithms that
use random sampling to estimate numerical quantities. In our case, these
quantities correspond to the parameter value estimates for a given model. A
Markov chain is a sequence of points in parameter space, where the probability
of each point depends solely on the previous point. These chains are designed
such that, once they have converged, they represent the posterior distribution.
To construct such a chain, we employ Metropolis–Hastings algorithms. The
scheme of this fairly simple method is visualised in Fig. 9.



34 5 BAYESIAN INFERENCE

Figure 9: The MCMC Metropolis-Hastings algorithm scheme of approximating
the posterior probability distribution. Starting on the left with a uniform prior
distribution, the boundaries on the explorable parameter space are set. Then a
random value is drawn as a starting point, and at each iteration, a new value
is proposed. Based on the ratio of the likelihood values of the current and
proposed state, the proposal is accepted or rejected. Recording the accepted
states and binning them finally produces a histogram which corresponds to
the parameter estimate. (Reprinted from [42])

Based on the current state in the parameter space, a new state, called the ’pro-
posal’, is drawn from a distribution q. Then, the acceptance probability is cal-
culated as the ratio of the posterior probabilities of the current and proposed
states [41]

α = min

1,
p
(

θ⃗p|d,M
)

p
(

θ⃗t|d,M
) q(⃗θp)

q(⃗θt)

 (31)

= min

(
1,
L(d|⃗θp,M)

L(d|⃗θt,M)

π(⃗θp|M)

π(⃗θt|M)

q(θp)

q(θt)

)
(32)

where the index t denotes the state at the current iteration and the index p the
proposed state. Bayes’ theorem is employed to rewrite the term, cancelling out
the evidence in the denominator. In the case of uniform priors, the probabilities
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are constant across the parameter space and would also cancel out. While it is
more probable for a chain to move to higher likelihood states, it can still move
to lower states as the probabilities are not constant. This process continues
iteratively, exploring the likelihood surface weighted by the prior. Fig. 10
depicts this process for a multi-dimensional parameter space.

Figure 10: Simplified scheme of a chain exploring a 2D parameter space. The
shaded regions represent a likelihood gradient, and the surrounding box the
limitations of uniform priors. We observe a general tendency to move towards
higher likelihood states, with rejected proposals represented by the crosses.
After a "burn-in" phase (red states), the chain explores the high likelihood
region (green states). Those states are used to produce histograms as in Fig. 9.
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eryn

The employed sampler to perform the parameter estimation is eryn [34][36][26].
This advanced, extended version of the popular emcee sampler implements
parallel tempering, multiple model types, and Reversible Jump (RJ)-MCMC
techniques. The framework is designed to allow users to implement their own
setups, include new proposals and combine moves.
To initialise the sampler, you need to define the data, the likelihood function,
the prior, the starting points for the chains and the proposal. The likelihood
function establishes the link between sampling and the posterior probability
in Bayes’ theorem. The prior constrains the explorable parameter space, and
its width and distribution type depend on the task at hand. In cases where
the general population is unknown or poorly constrained, as is often the case
in GW astronomy and particularly for EMRIs, uniform distributions are typi-
cally chosen, though arbitrary distributions can also be used. The chains are
commonly placed at random starting points within the prior volume; for pa-
rameter estimation, they should be placed close to the true value. The proposal
determines how the chains explore the parameter space; a variety of options
are available in eryn. Tempering or RJ can also be set up optionally.

Likelihood Function

In Metropolis-Hastings algorithms, proposals are accepted or rejected based
on the posterior probability of the proposed and current states. As posterior
probabilities are inaccessible, the criterion is rewritten in terms of the prod-
uct of the likelihood and the prior, using Bayes’ theorem (see eq. 32). The
likelihood describes the probability of the data d given a set of parameters θ

in a gravitational wave strain h(θ). In the simplified case, the data d is as-
sumed to be a sum of gravitational wave strain h projected onto the sensitive
access of the detector and processed through time delay interferometry and
noise n, such that d = h + n. Therefore, the probability of observing the data
d given the strain h is equal to the probability of the noise being n = d − h
(p(d|h) = p(n = d − h)). Thus, the likelihood is computed based on the noise
residuals n = d− h. The noise is typically assumed to be Gaussian and station-
ary. Under this approximation, the noise in the frequency domain is uncorre-
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lated for each frequency bin, and the variance is proportional to (1/2)Sn( f )
[43], where Sn( f ) is the detector’s Power Spectral Density (PSD) [6]. The cor-
responding Gaussian probability distribution then becomes

p(n) ∝ exp
(
−1

2

∫ ∞

−∞

|ñ( f )|2
(1/2)Sn( f )

d f
)

(33)

We can generalise by defining the (noise) weighted inner product

(a(t)|b(t)) = ℜ
∫ ∞

−∞

ã∗( f )b̃( f )
(1/2)Sn( f )

d f (34)

= 4ℜ
∫ ∞

0

ã∗( f )b̃( f )
Sn( f )

d f , (35)

where a(t) and b(t) are real functions such that ã(− f ) = ã∗( f ) [43]. As real
GW data is discrete, this integral is approximated as a sum over frequency bins

(a|b) ≈ 4ℜ∑
k

ã∗( fk)b̃( fk)

Sn( fk)
∆ f . (36)

Using the definition in eq. 35 and the probability distribution function from eq.
33 we can write the likelihood function. eryn and most other MCMC samplers
deal with the logarithm of the likelihood, which is then expressed as

lnL ∝ −1
2
(d − h|d − h) ∝ −1

2
(n|n). (37)

This procedure has the advantage of directly incorporating the noise model
and comparing the powers of the signal and noise curves in all frequency bins.
It accounts for the fact that frequencies contribute differently to signal detection
due to varying noise and sensitivity levels. This makes the likelihood sensitive
to how well the signal model h(θ) explains the data relative to the expected
noise. For LISA, the data is additionally modulated by the detector’s response
function, as discussed in Sec. 2.2.
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Proposal

The choice of proposal is crucial for convergence speed and parameter space
exploration. Simple proposal techniques include Gaussian moves, while more
sophisticated ones include ensemble stretch moves. Still, there are many other
moves.

Gaussian moves are a classic Metropolis–Hastings move, whereby each walker
explores the likelihood surface independently. The proposal state is created by
adding a small perturbation to the current state. This perturbation is drawn
from a Gaussian normal distribution centred on the current state with a pre-
defined variance. One can choose to perturb all dimensions of the state simul-
taneously, sequentially, or randomly select a dimension to be perturbed. The
choice of variance effectively controls the convergence time and exploration of
the parameter space.

A simple example is a unimodal distribution with a strictly monotonous like-
lihood gradient. If the variance chosen for a dimension is too small, the chain
will converge slowly to the maximum likelihood point and explore the region
around this maximum very narrowly. This would lead to a high acceptance
rate. Conversely, if the variance is too large, proposals may overshoot the max-
imum likelihood point and be more likely to be rejected because they do not
indicate a higher likelihood than the current state. This would lead to a low
acceptance rate. The dependence on the initial choice of variances for each
dimension can be avoided by adapting the variance dynamically based on the
spread of previous states. While this proposal is simple, robust and easy to
implement, it is not suitable for complex, high-dimensional or multimodal dis-
tributions.

More sophisticated proposal methods use information from other chains to
suggest new states based on the collective behaviour of the chains as a whole.
Affine invariant methods, for instance, demonstrate consistent performance
when the parameter space undergoes transformations such as rotation, scaling
and stretching. This property is particularly useful for complex parameter
spaces, such as those of EMRIs, where parameters are highly correlated and
have varying scales. These methods are implemented in eryn, and the red-blue
stretch move is a default choice [28].
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The stretch move proposes a new state by moving along the line connecting it
to another chain chosen at random and then scaling it by a random factor Z
with

Z ∝ g(z) ∝


1√
z if z ∈

[
1
a , a
]

,

0 otherwise,
(38)

where a is the stretch scale parameter. It is typically set to a = 2 with a strict
lower bound of a > 1. This parameter allows for adjusting the acceptance
rate: a smaller a would lead to a proposal closer to the current state, and vice
versa. The stretch move effectively "kicks" the chains towards each other. This
proposal is accepted or rejected based on the Metropolis-Hastings criterion 32.
The stretch move scheme is illustrated in Fig. 11.

Figure 11: Schematic of the stretch move. A new state Y is proposed for state
Xj along the line connecting it to state Xk. The stretch parameter a is always
larger than 1, such that the proposed state is outside the space between Xj and
Xk. By employing this proposal, the chains share information between each
other, and the ensemble moves as a group. (Reprinted from [28])

In eryn, this proposal is extended to a red-blue move. In red-blue moves, the
chains are split into groups, each of which is updated based on the states of
the chains in the other group. The advantages of this setup are that autocorre-
lation between the samples is reduced and the exploration is enhanced, and it
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leverages parallelisation since the two groups can be updated simultaneously.
Further details of this framework can be found in [26].
Regardless of the proposal method, the acceptance rate should be tuned to
be around ≈ 40 − 60%. This rate is crucial for convergence and exploration;
however, adapting it is sometimes insufficient for efficient sampling of the pa-
rameter space[34].

Parallel Tempered MCMC

Figure 12: Schematic of tempered likelihood surface. Higher temperatures
(lower β) smoothen out the likelihood surface. The low likelihood gap between
the two peaks becomes less prominent, allowing chains to be more mobile as
the difference in likelihood decreases. Proper normalisation is unnecessary
since these are density functions, and only the ratio of likelihoods for a given
temperature affects the acceptance rate (see eq. 32).

Complex likelihood surfaces may have multiple maxima, which should be
identified by exploring the parameter space. However, if the initial states are
close to the true value (as is the case for parameter estimation), the chains may
fail to explore the likelihood surface; they won’t identify secondary maxima
or other degeneracies. Chains can become trapped at local likelihood maxima,
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which is one of the key challenges in parameter estimation. This challenge is
even more significant on multimodal likelihood surfaces, as the surface will
not be fully explored and convergence can suffer.
Parallel-tempered MCMC methods address this issue by "smoothing out" the
likelihood surface, enabling the chains to traverse it more easily. This involves
transforming the posterior target distribution to the power posterior target distri-
bution, essentially exponentiating the likelihood with the inverse temperature.
Then we have

pβ

(
θ⃗|d,M

)
=

L(d|⃗θ,M)βπ(⃗θ|M)

zβ(d|M)
, (39)

with the inverse temperature β = 1/T. For T = 1 this is the target posterior
density, and in the limit T → ∞ it is the prior density. All temperatures in
between gradually flatten (’smooth out’) the target likelihood landscape, until
it becomes completely flat at an infinite temperature (see Fig. 12).
This allows the walkers to be mobile and increases the acceptance rate.

Temperature Swap

In eryn’s parallel tempering, ensembles of walkers are created in parallel at dif-
ferent temperatures. Hot chains can explore the parameter space more broadly
and then propagate the information down to cold chains. This allows unknown
regions of high likelihood to be discovered by hot chains and explored by cold
chains. Information about these regions is passed on by proposing swaps on
the temperature ladder. Technically speaking, we sample the posterior at dif-
ferent temperatures as shown in Eq. 39. The temperature swap acceptance
probability between chain i and j is the ratio of those posteriors [34]

αT,i→j = min

1,
pT

(
θ⃗i|d,M

)
pT

(
θ⃗j|d,M

)
 (40)

= min

1,

(
L(d|⃗θi,M)

L(d|⃗θj,M)

)βi−β j
 (41)
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Figure 13: Hot and cold chains have different mobility on the likelihood sur-
face. The cold chain stays close to the likelihood maximum, while the hot chain
explores regions further away. The "flattened" likelihood surface of a hot chain
increases the acceptance probability of states distant from the "true" value.

where βi = 1/Ti is the inverse temperature and p(d|θi) is the likelihood. Swap-
ping is done iteratively, starting with the hottest two chains. This ensures that
information on better likelihood values is "passed down" to the cold chains.
Let’s consider two cases to illustrate the principle. When a cold chain proposes
to swap with a hot chain (i.e. cold to hot), the exponent is positive βi − β j >

0. This makes swaps more likely if the likelihood ratio p(d|θi)/p(d|θj) is
favourable; for example, if the cold chain has a better likelihood, the hot chain
will inherit this state. When a hotter chain proposes a swap with a colder
chain (i.e. hot to cold), the exponent is negative βi − β j < 0, which suppresses
swaps. A swap is only accepted if the likelihood ratio significantly favours
the hotter chain, e.g. if the hot chain’s likelihood is significantly better than
the cold chain’s. This ensures that high-likelihood regions propagate to colder
chains while protecting the cold chain’s refined state.
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(a) Likelihood of cold Markov chains

(b) Corner plot of posterior distribution

Figure 14: Example of the parameter estimation with eryn of three parameters
for a typical EMRI. Fig. 14(a) shows how the cold chains take a few iterations
to move towards the likelihood maxima, before exploring the surrounding pa-
rameter space. We can see that through the parallel tempering, the chains
discover a secondary maximum with a lower likelihood. Fig. 14(b) displays
the corresponding corner plot. One maximum around the true value is found,
as well as one secondary maximum. As no iterations were discarded during
the "burn-in" phase, points appear in the corner plot between the two maxima.
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Adapting Temperatures

Figure 15: Adaptation of the temperature scale. The (inverse) temperatures
are tuned until the temperature swap acceptance rate between neighbouring
chains reaches an equilibrium. The highest and the lowest temperatures re-
main fixed.

In order to achieve information flow between the chains, the temperature lad-
der must be set up correctly. It is initialised with inverse temperatures β rang-
ing from 0 to 1, and the interval is divided into log-equidistant values depend-
ing on the number of temperatures. In eryn, the temperatures can then be
adjusted so that the swap acceptance rate is equal between all pairs of neigh-
bouring temperature chains.

The adaptation rate can be customised to allow tuning based on the desired
behaviour. The details of this implementation can be found in [34]. Following
an initial burn-in phase, adaptation of temperatures should cease in a stable
configuration. The final part of the analysis is then carried out. This provides
accurate posterior sampling and allows for evidence calculation via thermo-
dynamic integration or the stepping-stone algorithm, which require constant
temperature.
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5.3 Evidence Calculation

Starting from an environmentally perturbed EMRI, we aim to assess the quality
of the parameter estimation of two competing models: one which includes an
environmental effect and one which doesn’t (i.e. a vacuum case). Finally, we
want to perform Bayesian model selection to quantify the support of one model
over the other.
This process requires an approximation of the evidence (marginalised likeli-
hood). It is the integral of the product of the likelihood and the prior probabil-
ity over the prior parameter space

z(d|M) =
∫

d⃗θ L(d|⃗θ,M)π(⃗θ|M). (42)

Often, there is no analytical closed-form expression for this integral, so numer-
ical methods must be employed. There are a variety of options to obtain this
quantity.

MCMC Integration

The integrand in eq. 42 is the product of the likelihood and the prior distribu-
tion, which is precisely what we are exploring using MCMC sampling. Once
the chains have converged, we can approximate the integral through MCMC
integration, essentially summing the product of the likelihood and the prior
over the samples, and then normalising by the number of samples. This ap-
proach is particularly straightforward in our setup, since the likelihood values
are stored and the priors are independent and uniform, thus forming a con-
stant factor.

z(d|M) ≈ 1
N

N

∑
i=1

Li(d|⃗θi,M)πi (⃗θi|M) (43)

Unfortunately, this approach has its disadvantages. We rely on converged
chains that have thoroughly explored the prior parameter space. If we miss
part of this space — for example, if the chains are not converged or the explo-
ration is insufficient — the calculated evidence will be biased, which is true for
all other methods.
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Power Posterior Methods

Since we used parallel tempering to improve the sampling process, we ob-
tained the power posterior target distribution from eq. 39 at different temper-
atures. These can be used to obtain more accurate approximations of the
evidence using either the thermodynamic integration algorithm [41] or the
stepping-stone algorithm [61]. However, there is a trade-off, as the accuracy of
the algorithms increases with the number of temperatures. In our implemen-
tation, an equal number of chains is required for each temperature; therefore,
each additional temperature multiplies the number of chains. This is particu-
larly costly for high-dimensional parameter spaces, as is the case here. Both
algorithms also require constant temperatures. In the employed framework,
however, the temperatures are adaptive. To use the thermodynamic integration
or stepping-stone algorithm, this adaptation must be stopped, which should
only occur once the chains have approximately converged. As the convergence
depends on the parameters of each set, stopping the adaptation process would
require fine-tuning.

Normalising Flows

Normalising flows can also be used to estimate evidence. This machine learn-
ing approach effectively estimates the probability density of a distribution. A
normalising flow maps an unknown distribution onto a normal distribution via
multiple layers of bijective (invertible) transformations[47]. In theory, therefore,
a normalising flow could approximate any distribution using normal mapping,
provided that a sufficient number of layers are employed and the training sam-
ples accurately represent the unknown distribution.

Therefore, if the flow approximates the distributions well, it is a powerful tool,
enabling sampling from the normalised posterior. We can then obtain the evi-
dence by dividing the unnormalised distribution (likelihood multiplied by the
prior) by the normalised distribution obtained from the normalising flow. This
yields the desired normalisation constant– the evidence [48]
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Figure 16: Concept of a normalising flow. The simple distribution is mapped
to a complex one by applying a series of bijective/invertible transformations.
(Reprinted from [32])

z(d|M) ≈ L(d|⃗θ,M)π(⃗θ|M)

pNF

(
θ⃗|d,M

) . (44)

where pNF

(
θ⃗|d,M

)
represents the learned/approximated posterior probabil-

ity of a sample set of parameters θ⃗. If the normalising flow were an exact map-
ping, calculating the evidence with just one sample would suffice. In practice,
however, one averages evidence calculations for a set of samples to estimate
the evidence.

z(d|M) ≈ 1
N

N

∑
i

Li(d|⃗θi,M)πi (⃗θi|M)

pNF,i

(
θ⃗i|d,M

) . (45)

These samples should be generated using the normalising flow. The normal-
ising flow is trained on the states of the MCMC chains. Therefore, to obtain
a reliable approximation of the unknown distribution, it is necessary to have
converged chains and accurate training data. Although this approach yields
more accurate approximations of the evidence, it requires manual adjustment
of the training process and significant computing resources given the scale of
our analysis.
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5.4 Bayesian Model Selection

Model selection is a well-studied and fundamental problem in statistics. In
frequentist statistics, it is typically evaluated using p-values and significance
tests. However, these methods fail to incorporate additional information (pri-
ors) and can only accept or reject a hypothesis. For this project, we aim to use
a more precise, continuous method that quantifies the support for competing
models Mi through their evidence and the ratio between them, – the Bayes
factor

BF =
z(d|M1)

z(d|M2)
, (46)

with z(d|Mi) being the evidence of posterior target distribution of model i. At
a high level, a Bayes factor of BF > 1 means that the data are more likely to
be explained by M1 than by M2. The Bayes factor naturally penalises com-
plex models with more parameters, because their probability is spread across a
larger parameter volume, thus decreasing the evidence. Only when the model
offers a significantly better description of the data, the Bayes factor favours the
complex model with the additional parameters. For a more precise interpreta-
tion, thresholds have been defined for Bayes factor values. A commonly cited
table is given in Table 4.

Table 4: Bayes factor interpretation scale (Adapted from [35])

log10 BF BF Strength of Evidence

0 to 1/2 1 to 3.2 Not worth more than a bare mention
1/2 to 1 3.2 to 10 Substantial

1 to 2 10 to 100 Strong
> 2 > 100 Decisive
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Savage-Dickey Density Ratio

For nested models, the Bayes factor can be approximated using the Savage–Dickey
density ratio. Models are nested when the parameters of one model are a
subset of the parameters of another, or, put simply, when one model incor-
porates additional parameters, making it a "special case" of the other. The
Savage–Dickey density ratio can be applied when fixing the additional param-
eters in the complex model to specific values yields the simple model. Then
the Bayes factor is given by the ratio of the posterior and prior densities of
the complex model, evaluated at the specific value that produces the simple
model.
To illustrate this, consider two models, M0 and M1. Both models include a set
of parameters θ and are distinguished by θ0, which is allowed to vary in M1

and fixed to be θ0 = 0 in M0. The ratio was derived in [22] and is given by

BF =
p(θ0 = 0, θ1,2,..|d, M1)

p(θ0 = 0, θ1,2,..|M1)
, (47)

where the model M1’s posterior and prior distributions are evaluated at the
slice of the parameter space of M1 where θ0 = 0. To apply the method, the
prior of M1 has to be continuous at θ0 = 0 (such that the density ratio is
well defined) and the posterior of M1 needs to be accurate, which is challeng-
ing with poor MCMC convergence. The advantage of this method over the
standard approach of computing the Bayes factor is that it only requires the
posterior and prior of one model (M1) at the fixed point of interest, which is
set to zero.

RJ-MCMC

In a RJ-MCMC set-up, the Bayes factor can be approximated as the ratio of iter-
ations within each model. The trans-dimensional nature of RJ-MCMC makes
it especially applicable to nested models [29]. We mention this because this
class of MCMC algorithms is particularly important for LISA as it allows us to
address the problem of an unknown number of signals in the data. However,
there are a few prerequisites to meet to use this fairly simple approximation.
For further reading, there is an extensive discussion of this method in [34].
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6 Results

This thesis project aimed to determine when environmental effects are signif-
icant and when perturbed and unperturbed EMRIs are distinguishable. Two
types of effect were considered: migration in thin accretion disks and modifi-
cations to GR due to a varying gravitational constant, which have both been
studied in previous work [53]. We extend those studies by implementing more
accurate trajectories and waveforms developed in [39] and extending the statis-
tical analysis. We investigated the ability to detect and characterise the perturb-
ing effect. Furthermore, we quantified model distinguishability by computing
Bayes factors and established a link to the dephasing. This chapter presents
these results and discusses their implications.

6.1 Numerical Setup

To investigate the significance of the environmental effect, we first define 21
EMRI systems with their corresponding parameter sets. We randomly draw
parameter sets from the detectable and physically plausible parameter regions,
which are further constrained by the available waveform model[39], given in
Tab. 5.

Parameter Definition Random draw interval limits
M Mass of primary [104, 5 · 107]

µ Mass of secondary [1, 104]

a Dimensionless spin of primary [0.1, 0.99]
p0 Initial semilatus-rectum 9, 35
qS Sky location polar angle [0, 0.9 · π]

ϕS Sky location azimuthal angle [0, 0.9 · 2π]

qK Primary spin polar angle [0, 0.9 · π]

ϕK Primary spin azimuthal angle [0, 0.9 · 2π]

Φϕ0 Initial azimuthal phase [0, 0.9 · 2π]

A Amplitude of perturbing effect [10−6, 10−3]

nr Slope parameter of perturbing effect {4, 5.9, 8}

Table 5: Limits of the random draw intervals for the parameter sets.
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We confirm that their mass ratio is within the EMRI range ϵ ∈ [10−4, 10−7]

and select the 21 systems so that they cover dephasings in the range ∆Φ ∈
[10−1, 105]. Finally, we adjust the luminosity distance dL of each system, such
that the corresponding SNR is 30 for an observation time of 4 years before the
merger. These parameter sets can be found in Tab. 7 in the appendix. We then
inject these parameters into the waveform generator and project the gravita-
tional wave strain h onto the LISA constellation to obtain the A, E, T observ-
ables, which define the data. To simulate the estimation for 1, 2, 3, and 4 years
of observation data before the merger, we adjust the initial separation p0 to
ensure the data has the correct length (correct observation time). This slightly
decreases the SNR, but we confirmed that it always exceeds 20, which is the
minimum detection limit for LISA [16]. We then proceed to perform Bayesian
parameter estimation on this data using both the vacuum template and the
perturbed template, which takes the environmental effect into account. Our
MCMC setup uses a red-blue stretch move proposal with stretch parameter
a = 1.4. This value produces the desired acceptance rates between 0.4 and 0.6.
We use 25 chains to ensure that there are twice as many chains as there are di-
mensions in the estimation, and to enable the red-blue proposal. We initialise
an adaptive temperature ladder with three temperatures, where the lowest and
highest correspond to β = 1 and β = 0. Finally, we run the algorithm for 3500
iterations to ensure that our chains are much longer than a hundred times the
autocorrelation time. The priors are defined as in Tab. 6 with the δ parameter
being set to δ ∈ {0.01, 0.1, 0.5} depending on the posterior uncertainty. We
initialise the chains at starting points close to the "true" values.
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Parameter Prior distribution
log M U[(1 − δ) · log M̄, (1 + δ) · log M̄]

log µ U[(1 − δ) · log µ̄, (1 + δ) · log µ̄]

a U[(1 − δ) · ā, (1 + δ) · ā]
p0 U[(1 − δ) · p̄0, (1 + δ) · p̄0]

dL U[0., 10.]
cosθS U[−0.999999, 0.999999]

ϕS U[0, 2π]

cosθK U[−0.999999, 0.999999]
ϕK U[0, 2π]

Φϕ0 U[0, 2π]

A U[10−3, 103]

nr U[−10, 20]

Table 6: Priors for the parameter estimation. Barred values correspond to the
injection parameters, and U denotes the uniform distribution. The δ parameter
controls the width of the uniform prior distribution. It is set to a value δ ∈
{0.01, 0.1, 0.5} to ensure that the priors are broad enough to contain the full
posterior, but small enough to reduce computational time.

This process returns the MCMC chains, which form the unnormalised poste-
rior distributions. These distributions are then used to compute the evidence
and ultimately the Bayes factors. Fig. 17 summarises the multiple frameworks
discussed in the previous sections.
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Figure 17: Flowchart of Bayes factor computation for model selection.
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Dominant Regime of Environmental Effect

Figure 18: Example comparison of angular momentum fluxes. In the power
law model, the dissipation due to the migration effect dominates at large sep-
arations of the two objects, i.e. in the early phase of the inspiral. The provided
example uses the typical values from [53][39] with mass ratio ϵ = 10−6, ampli-
tude A = 1.92 · 10−5 and power law slope nr = 8.

The flux of angular momentum continuously decreases the orbital separation,
driving the inspiral. For our model there are two phenomena, which cause
such an angular momentum dissipation. The emission of GW and the torque
on the secondary due to migration effect in the accretion disk. The latter is
modelled as given in eq. 22. Because the considered parameterisations have
positive power-law exponents nr and amplitudes A, the dissipation is propor-
tional to the separation between the objects. Further, the effect is scaled by
the leading-order circular orbit GW angular momentum dissipation. There-
fore, the environmental effect dominates the dissipation at large separations
or early times and becomes negligible in the last part of the inspiral at small
separations. This behaviour is illustrated in Fig. 18. This radial dependency
allows predictions about the significance of the environmental effect on the
inspiral. If it is observed close to the merger (i.e. at small separations), the
environmental effect is negligible and may not be detectable. Therefore, in this
study, we assume that the signal begins at least one year prior to the merger.
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6.2 Dephasing

Figure 19: Schematic representation of dephasing. The same system evolves
differently in the presence of an environment. The red line depicts the per-
turbed trajectory and the black one the unperturbed case. The dephasing is
the difference in the azimuthal phase.

The first measure to quantify this perturbation is through the so-called de-
phasing. It describes the azimuthal phase difference between a system which
evolves with an environmental effect and one without (see scheme in Fig. 19).
Dephasing accumulates during the inspiral, and the value considered in this
work is the cumulative dephasing up to the end of the inspiral (i.e. when
the secondary reaches the primary’s ISCO and "plunges"). Due to its cumu-
lative nature, dephasing depends not only on the amplitude A and slope nr

of the perturbative effect but also on the observation time T (see Fig. 20), or
equivalently on the initial separation p0. Conversely, the environmental effect
decreases during the inspiral (see Fig. 18), such that the dephasing only varies
comparatively slowly for most of the inspiral.
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(a) Variable amplitude parameter A, fixed nr

(b) Variable slope parameter nr, fixed A

Figure 20: Dephasing accumulates over observation time. While the amplitude
controls the magnitude of the dephasing (see Fig. 20(a)), the slope parameter
controls how much dephasing is accumulated in the early and late phases of
the inspiral(see Fig. 20(b)).

Dephasing is a quick and accessible measure to compare the sensitivity of sys-
tems to the environmental effect. We use it to identify candidate systems for
the model selection process. The proposed parameter sets and the correspond-
ing dephasings after four years of signal before plunge are given in Tab. 7.
Still, the dephasing is not directly observed and is an insufficient measure to
distinguish environmentally perturbed EMRIs from vacuum EMRIs.
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6.3 Parameter Estimation

Figure 21: Bias in the parameter estimation due to an environmental effect.
We present the results of the parameter estimation for set 20 with four years
of observation time. The two templates converge and produce an offset in
the posterior distributions. The vacuum template produces a biased estimate
when attempting to account for the increased inspiral rate.

The MCMC sampling yields the approximate posterior distributions of the
model parameters. Because the data is simulated, we have access to the true
values and use the sampling results to understand the parameter’s variances,
degeneracies and the overall behaviour of the parameter space. We run the
selected parameter for 1, 2, 3 and 4 years before the plunge and examine the
posterior marginal distributions.



58 6 RESULTS

We can evaluate the impact of environmental effects on parameter estimation
by comparing the posterior distributions of the vacuum and environmental
templates. We reproduce the behaviour mentioned in [53]: "In particular, un-
accounted (inward) migration leads to an overestimation of the mass and spin
of the primary, as it increases the rate of inspiral." Additionally, we find that
the vacuum template converges on a lower initial separation and a lower sec-
ondary mass. An example of this behaviour is evident in the parameter esti-
mation result of set 20 for four years of observation time (see Fig. 21). These
results suggest that neglecting the environmental effect can introduce biases in
the parameter estimation for certain EMRI systems.
Furthermore, we found that, for the systems with high dephasings, the vac-
uum template often fails to estimate the parameters, i.e. produce a consistent
posterior distribution. The posterior density distributions of these systems are
uniform, as can be seen in Fig. 22. This will be very important later on when
computing the Bayes factors.
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Figure 22: Corner plots of converged and non-converged parameter estima-
tions. Fig. 22(a) displays the posterior distribution of parameter set 5 (de-
phasing ∆Φ ≈ 50) with 1 year of data recovered using the environmental and
vacuum templates. All parameters exhibit a distinct maximum, and the con-
tours lie within the prior range. Fig. 22(b) shows the posterior distribution of
parameter set 10 (dephasing ∆Φ ≈ 104) with 3 years of data. The vacuum tem-
plate fails to identify the posterior distribution. In contrast, the environmental
effect template converges on the true values.
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Detection and Constraints on the Amplitude of the Effect

(a) 1 year of data (b) 4 years of data

Figure 23: Histograms of amplitude parameter A estimation. We present ex-
ample histograms that demonstrate how longer observation times allow for
more precise constraints on the amplitude of the perturbing effect. The 95%
credible intervals for parameter set 17 also illustrate the necessary observation
time required to rule out an amplitude of A = 0, which corresponds to no
effect. For this set with a dephasing of ≈ 100 [rad], around four years of signal
data prior to the merger are required to rule out the no effect hypothesis and
claim detection.

Using the results of the parameter estimation, we can examine the constraints
on the amplitude A. This amplitude includes the properties of the central en-
gine, the AGN, as well as properties of the disk (see Sec. 3). Constraining
A constrains these properties. As explained in [53], an additional electromag-
netic counterpart observation can be leveraged to break the degeneracy and
constrain the AGN and disk parameters individually.
To detect the effect, we examine the posterior distributions of the amplitude
parameter estimations. We can claim detection when the hypothesis of A = 0
is excluded from the 95% credible interval of the distribution, following the
analysis in [53]. This implies that the estimation is inconsistent with an ampli-
tude of A = 0. This approach is illustrated in Fig. 23 for one system.
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Figure 24: The width of the 95% credible interval on A as a function of the
observation time. The longer a system is observed before merging, the more
accurately the amplitude of the perturbative effect can be constrained. This
enables us to constrain the properties of the accretion disk further.

We observe that the credible interval shrinks and the amplitude becomes better
constrained with longer observation times. This enables us to impose tighter
constraints on the properties of the disk (see Fig. 24 for comparison of all
systems). This is because longer observation times correspond to larger sepa-
rations, which is exactly where the environmental effect is strongest. Therefore
if there is data available from this region, it allows us to constrain the ampli-
tude effectively.
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Figure 25: The required observation time for the detection of an environmental
effect. We observe a correlation between strong effects with large dephasing
and a short required observation time for detection. Below the threshold of
≈ 30[rad] (indicated by the orange region), it is not possible to claim detection,
even with 4 years of observational data. These systems are marked with a "×".

We investigate how much observation time is required to detect an environ-
mental effect. We found a correlation between dephasing and the observation
time required for detection. This correlation is depicted in Fig. 25. Further-
more, we found that, for small dephasing ∆Φ ≲ 30, the hypothesis A = 0 lies
within the 95% credible interval, even with 4 years of observation time, and
detection cannot be claimed. This suggests that weak effects are hard to detect.
It provides an approximate threshold for the amount of dephasing needed for
detection within the mission lifetime of LISA.
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Identifying the Perturbative Effect

(a) 1 year of data (b) 4 years of data

Figure 26: Histograms of the estimation of the model parameter nr. We present
an example of how the model identification increases with observation time.
The histograms and 95% credible regions of the parameter set 6 are shown
for 1 and 4 years of observed data before the merger. As observation time in-
creases and more data becomes available, the value of nr becomes increasingly
constrained. This means that with 1 year of data, it is not possible to identify
the type of perturbing effect, whereas with 4 years, it is.

The parameter estimation further yields the credible intervals for the slope
parameter nr. As nr is physically constrained to the values (nr ∈ {4, 5.9, 8}),
the estimation results can be used to determine the underlying process. By
comparing the credible regions, we can establish whether the processes could
be confused. We claim identification of the perturbative process when two of
the three possible values of nr are excluded from the 95% credible region. As
with detection, we can examine how much observation time is necessary to
resolve the confusion. We found that identification improves with observation
time, with an example given in Fig. 26.
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Figure 27: The required observation time before merger for identification as a
function of the dephasing. We observe a loose correlation between large de-
phasing and a short observation time required for identification. Below the
threshold of ≈ 5 [rad] (indicated by the orange region), identification is impos-
sible, even with 4 years of observational data. These systems are marked with
a "×". Furthermore, we observe that the identification is independent of the
process type (i.e. the slope parameter nr).

Furthermore, we found that a larger dephasing (i.e. a stronger effect) is only
weakly correlated with the required observation time for identification. This
behaviour is independent of the value of the slope parameter nr, as shown in
Fig. 27. We also found that it is impossible to identify the process below a
dephasing of ≈ 5[rad].
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6.4 Bayes Factors

(a) All Bayes factors (b) Zoomed-in on reasonable Bayes factors range

Figure 28: Bayes factors for different observation times. Fig. 28(a) shows
how the systems with large dephasing (indicated by the colorbar) can produce
unreasonably high Bayes factors. This is due to a failure in the parameter
estimation using the vacuum template. Zooming in on the region with reason-
able Bayes factors in Fig. 28(b), we find that some systems, with comparably
low dephasing, demonstrate an approximately constant Bayes factor of ≈ 15
for all observation times. Other systems with intermediate dephasing show
significantly increasing Bayes factors as the observation time increases. How-
ever, for some systems, this increase is not monotonous, suggesting mistuned
parameter estimation.

We quantified the difference in support for the models with and without an en-
vironmental effect using the Bayes factor, which is the ratio of the evidence. We
obtained the evidence for each parameter estimation via MCMC integration.
We then examined the trends in the Bayes factors for the different observation
times. We found that, for some systems, the Bayes factor remains approx-
imately constant regardless of the observation time. For other systems, the
Bayes factor steadily increases with observation time. These relations between
the Bayes factor and observation time are presented in Fig. 28. We found that
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systems with approximately constant Bayes factors have a low dephasing and
are therefore only mildly influenced by the environmental effect. In contrast,
systems with increasing Bayes factors exhibit greater dephasing and are thus
more strongly affected by the environmental effect.

Figure 29: Bayes factors for different dephasing and observation times. We
identify three regimes of low, moderate and high dephasing. In the low de-
phasing regime, the Bayes factors are strongly in favour of the model with an
environmental effect, and remain roughly constant across different observation
times. In the moderate regime, sufficient observation time is required for the
Bayes factors to become decisively in favour of the model with an environmen-
tal effect. In the high dephasing regime, the Bayes factors decisively favour
the model with an environmental effect. However, in this regime, the vacuum
model fails to estimate the parameters, and the exact value of the Bayes factor
is not statistically meaningful.
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This led to the discovery that our considered systems, which exhibit effects
ranging from weak to strong effects (as quantified by dephasing), can be di-
vided into three regimes. The first regime is characterised by low dephasing
between 0.1 [rad] and 20 [rad], corresponding to weak effects. Here, the Bayes
factor is ≈ 15 for all observation times, thus providing strong evidence for the
model that considers the environmental effect, but not being decisive (see Tab.
4). In the intermediate dephasing regime, between 20 [rad] and 200 [rad], the
Bayes factors vary from ≈ 15 to ≈ 6000 depending on the observation time.
With sufficiently long observation times, we can conclude that the evidence
decisively favours the model with an environmental effect. In the third regime,
dephasing exceeds 500 [rad] and the Bayes factors reach values of up to 1046.
These values are unreasonable and arise because the model that considers the
vacuum case, fails to find a maximum likelihood point within the prior range.
Consequently, the evidence for these parameter estimations is extremely low.
In this regime, the model with an environmental effect outperforms the vac-
uum model, but the statistical analysis is not meaningful. These results are
shown in Fig. 29.
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7 Summary

In this thesis, I laid out the perspectives of observing GW originating from
EMRI with the future space-based GW observatory LISA, explaining the fun-
damentals of the observatory and the observables that will form the data. I also
discussed the scientific potential of EMRI observations, which will enable us
to measure the properties and population of MBHs as well as their evolution
throughout cosmic history. This will allow us to study the strong regime of
gravity and test GR. I also explained how environmental effects can impact the
dynamics of EMRIs and modify the emitted GW signal. In this thesis, I consid-
ered the expected dominant environmental effect: planetary(-like) migration
in gaseous accretion disks. I outlined the fundamental mechanism behind this
effect and introduced an agnostic parameterisation. I then discussed the theo-
retical basis of EMRI waveform modelling and the current state of numerical
implementation. I demonstrated how the agnostic environmental effect param-
eterisation can be used to extend vacuum waveform models and thus model
"dirty" EMRIs. Previous research has shown that unaccounted environmental
effects can lead to biases in parameter estimation. The objective of this thesis
project was therefore to assess the significance of environmental effects. To
achieve this, I explained the principles of Bayesian inference and parameter
estimation, and performed Bayesian model selection.

As accurate generic waveform models are not yet available, I worked under the
simplifying assumptions of prograde, equatorial and circular orbits, as moti-
vated by previous studies[46][21]. I simulated noise-free LISA data of "dirty"
EMRIs performing type I migration in a thin accretion disk, as well as EM-
RIs that are described by a deviation from GR, namely a varying gravitational
constant. I then performed parameter estimation using vacuum and perturbed
templates. Using posterior distributions, I estimated the evidence for each
template via MCMC integration and performed Bayesian model selection, i.e.
I computed Bayes factors. I repeated this analysis for different strengths of
effect and different EMRI parameters in the parameter space, which will be
detectable by LISA.
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The key results are as follows:

A longer observation time before the merger corresponds to a larger initial
separation. Since planetary migration dominates at large separations, it leaves
a stronger imprint on the signal. The accumulated shift in orbital phase is an
easily accessible initial measure of the strength of this imprint, and therefore
of the environmental effect.

Tighter constraints on the model parameters can be obtained by observing the
system for a longer period before the merger. Constraints on the amplitude A
also constrain the properties of the accretion disk (see Fig. 23). I found that
weak effects can be undetectable, indicating that the credible interval of the
amplitude A is consistent with no effect (A = 0). Constraints on the slope nr

allow distinction between α disks, β disks and the GR deviation. Once again,
I found that weak effects do not permit such identification, implying that the
credible intervals are consistent with multiple of the three possible values for
the slope parameter. Both detection and identification require less observation
time with increasingly strong effects. This is because a strong effect has a suffi-
ciently strong impact on the signal, even in the final part of the inspiral, where
the torque from GW emission dominates.

This behaviour is also reflected in the results of the Bayesian model selec-
tion. I found that Bayes factors increased with observation time, indicating
strong support for the environmentally perturbed template. I identified a
region where the Bayes factors decisively favoured the environmentally per-
turbed template. The effect must be strong enough to result in less accurate
modelling of the waveform with the vacuum template, but not so strong that
the vacuum template fails to identify the posterior distribution. In the latter
case, the Bayes factors would be meaningless, as no evidence of the vacuum
template could be calculated.

In this thesis project, I established dephasing as an initial measure of the
strength of an environmental effect. I tested the point at which environmental
effects become significant enough to make Bayesian model selection decisive,
and established a link to dephasing.
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8 Outlook

In general, there are two ways in which the project could be adapted to cre-
ate more realistic scenarios. One approach would be to use realistic data or
consider more generic signals, and identify areas where the imprints of envi-
ronmental effects and deviations from GR can be confused.

More realistic data would be a superposition of many signals with underlying
noise from multiple sources[16], and the parameters of the GW sources would
be unknown. The first step would be to detect an EMRI in this data. Even a
single source and simplified noise assumptions could pose a significant prob-
lem. Once an EMRI has been detected in such data, an initial estimate of its
parameters can be made. However, this estimate would be biased by environ-
mental or post-Einsteinian effects, so the parameter estimation process would
need to distinguish between them. Thus Bayesian model selection would need
to be performed again.

Alternatively, we could consider more generic signals by allowing for generic
trajectories of the CO and considering other types of environmental effects,
such as interaction with the stellar cloud around the MBH, dynamical friction
effects, or others listed in Tab. 1. EMRIs could perform inclined, eccentric
and retrograde orbits; therefore, incorporating generic trajectories is necessary.
Such complex motion translates into complex GW signals, which are very chal-
lenging to model efficiently. As the EMRI population is not well constrained
all types of scenarios need to be considered.

From a technical perspective, the statistical analysis performed in this study
could be refined further. Bayesian model selection relies on estimates of the
evidence for the posterior distributions of different templates. We calculated
these quantities approximately through MCMC integration, which is easily ac-
cessible and enabled us to investigate multiple systems in a reasonable amount
of time. However, this approach results in decreased accuracy. Using normal-
ising flow techniques would allow us to achieve greater accuracy and estimate
errors in the evidence and the Bayes factors. Another approach would be to
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adapt the sampling so that the Savage-Dickey density ratio could be applied to
estimate the Bayes factor, thus bypassing the challenge of evidence calculation
entirely. Lastly, the RJ-MCMC setup, which has gained popularity in GW data
analysis, could be employed to address the issue of multiple competing and
possibly nested models, as well as providing easily accessible estimates of the
Bayes factor.
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2.37392

2.289245
2.677491

3.473567
5.57356

0.000393
8

8
1024.816

357592.5
2.002429

0.036858
13.07368

0.362066
1.969308

4.311553
2.74117

3.459257
2.382526

9.32E-05
8

9
4988.031

1544475
83.64545

0.952836
14.05438

1.612572
0.445894

5.418243
0.690651

2.375298
0.525891

0.000724
4

10
10107.11

879695.1
36.07532

0.53161
15.74777

2.111487
0.939184

3.042049
1.472884

2.85118
3.256173

0.000817
5.9

11
0.957627

17341148
5.967198

0.064204
6.18116

0.000621
2.681882

4.113389
0.030759

3.841514
2.79715

2.03E-05
4

12
5.166436

7585480
36.1331

0.232795
7.256523

0.052618
1.794968

5.562349
1.498194

1.634896
0.694756

0.000262
5.9

13
10.14056

6368842
8.61162

0.288568
6.291576

0.028238
0.699124

1.178115
1.325155

5.654642
4.48611

0.000319
4

14
39.16409

4365714
403.5097

0.032295
13.92274

0.166814
0.766112

4.914105
2.26859

0.722508
0.704489

4.32E-05
5.9

15
58.56316

4867876
215.4171

0.822736
10.14368

0.607181
1.140157

4.038511
1.548025

2.5511
3.270218

0.000148
5.9

16
78.86281

2344804
98.99892

0.2268
13.10716

0.76419
2.082908

5.632099
0.481758

2.000576
0.89094

3.69E-05
8

17
100.8696

727545.3
17.48519

0.529976
14.49971

1.277957
0.471162

2.515964
1.818283

4.940436
2.078411

1.28E-05
4

18
30.51608

4238863
107.5062

0.791365
9.211959

0.909786
2.777658

2.971076
2.176275

3.902703
3.973612

0.00013
5.9

19
70.03691

5203144
266.4053

0.789177
10.41477

0.906208
0.344877

0.529888
2.644924

1.687361
4.768129

0.000156
4

20
93.22843

229422.1
1.085091

0.542629
12.94509

0.185128
0.442751

2.967745
1.766549

1.123101
0.083594

5.86E-06
4

Table
7:

T
he

injected
param

eter
sets.

The
initial

separation
value,

p
0 ,

is
adjusted

for
each

estim
ation

run
to

account
for

observation
tim

es
of

T
∈
{1,2,3,4}

years.
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