
Faculty 13
Institute for Theoretical Physics

Goethe University Frankfurt am Main

Dark Matter Effects on the Black
Hole Shadows of Sgr A* and M87*

A thesis submitted for the degree of Master of Science in
Physics

by

Lukas Prinz, born on August 23, 1997 in Gelnhausen
Matriculation number: 6333140

First supervisor: Prof. Dr. Laura Sagunski
Second supervisor: Dr. Alejandro Cruz-Osorio

November 29, 2022



Contents

Conventions, notation and abbreviations 4

1 Introduction 5
1.1 Dark matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Black holes and black hole shadows . . . . . . . . . . . . . . . . . . 7
1.3 Black hole shadows as a probe of dark matter . . . . . . . . . . . . 8
1.4 Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Theoretical preliminaries 11
2.1 Dark matter models . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Cold collisionless dark matter . . . . . . . . . . . . . . . . . 11
2.1.2 Self-interacting dark matter . . . . . . . . . . . . . . . . . . . 11
2.1.3 Dark matter density spikes . . . . . . . . . . . . . . . . . . . 12

2.2 Technical description of black holes . . . . . . . . . . . . . . . . . . 13
2.3 Geodesic motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Circular orbits around a Kerr black hole . . . . . . . . . . . . . . . . 17

3 Method 19
3.1 Modeling the dark matter halos . . . . . . . . . . . . . . . . . . . . . 19
3.2 Deriving a metric of a spacetime of a black hole in a dark matter

halo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.1 Geometry of a dark matter halo . . . . . . . . . . . . . . . . 21
3.2.2 Including a Schwarzschild black hole . . . . . . . . . . . . . 23
3.2.3 Introducing a spin parameter . . . . . . . . . . . . . . . . . . 25
3.2.4 Restricting the dark matter halo’s size . . . . . . . . . . . . . 25

3.3 Equations of motion for photons . . . . . . . . . . . . . . . . . . . . 26
3.4 Technical definition of a black hole shadow and Bardeen’s coordi-

nates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.5 Performing the black hole shadow calculations . . . . . . . . . . . . 32

4 Results 34
4.1 Densities of the dark matter halos . . . . . . . . . . . . . . . . . . . 34
4.2 Properties of the black hole shadows . . . . . . . . . . . . . . . . . . 37
4.3 Semi-analytical results on the width of a black hole shadow . . . . 47
4.4 Uncertainty and measurability estimates . . . . . . . . . . . . . . . 49
4.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Summary and outlook 54

References 56



A Appendix 62
A.1 Existence of an outermost event horizon . . . . . . . . . . . . . . . . 62
A.2 Solutions to equation (4.2) . . . . . . . . . . . . . . . . . . . . . . . . 62

B Acknowledgments 64

C Declaration of originality 65



CONVENTIONS, NOTATION AND ABBREVIATIONS 4

Conventions, notation and abbreviations

In this thesis, the Einstein summation convention will be used: If an index ap-
pears twice in an equation, a summation over that index over its entire range,
usually 0, ..., 3, is implied unless stated otherwise. We will choose the sign con-
vention (− + ++) for the signature of the Lorentzian metric underlying rela-
tivistic spacetime.
Also take note of the following two tables for abbreviations and symbols in
mathematical expressions that might need clarification.

Abbreviation Meaning
GR General Relativity
DM Dark matter

CDM Cold collisionless dark matter
SIDM Self-interacting dark matter

BH Black hole
SMBH Supermassive black hole
MW Milky Way
M87 Messier 87

Sgr A* Sagittarius A*
EHT Event Horizon Telescope
NFW Navarro-Frenk-White

Symbol Meaning
R+ / R+

0 The set of all positive / non-negative real numbers
ḟ , f ′ The derivative of a function f of a single variable
∂µ f The partial derivative of a function f of several vari-

ables with respect to the µ-th variable
r → 0+ r approaches 0 from above

f ◦ g Composition of two functions f and g
G Newton’s gravitational constant
c The speed of light in vacuum

M⊙ The solar mass
pc Parsec
as Arcsecond
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1 Introduction

1.1 Dark matter

The theory of General Relativity (GR) as the theory of gravity and the Stan-
dard Model of particle physics are very successful in explaining a wide range of
physical phenomena, yet there are large discrepancies between the predictions
of these established theories and, among others, observations on galactic and
cosmological scales.
Though not historically the first, one easily accessible example to demonstrate
this is the study of rotation curves of galaxies. Imagine an axisymmetric galaxy
containing a star of mass m ∈ R+ which is subject to only gravity on a circular
orbit of some radius r ∈ R+ around the galaxy’s center. The star has a certain
rotation velocity v ∈ R+

0 which generally depends on r. A plot of the corre-
spondence r 7→ v(r) is called the galaxy’s rotation curve and its shape mainly
depends on how gravitating matter is distributed in the galaxy. A very simple
calculation within the Newtonian theory of gravity can shed light on this de-
pendence: The centripetal force on the star is given by its gravitational attraction
force towards the center. Equating these two forces, one obtains [1]

mv(r)2

r
=

GM(r)m
r2 ⇔ v(r) =

√
GM(r)

r
(1.1)

with Newton’s gravitational constant G and the total enclosed mass M(r) within
the radius r, calculated from the mass density in the galaxy. Given the density
function, one can obtain the rotation curve and vice versa. Let us assume that
the galaxy only consists of visible matter. When r approaches the radius of the
galaxy as measured from luminous matter, the density is expected to drop to
zero, M(r) converges to a finite value and becomes independent of r, so we ex-
pect rotation curves to behave as r−1/2 for large r.
Rotation curves can be obtained experimentally by measuring the redshift of, for
example, the 21 cm hydrogen line [2, 3]. In many galaxies the rotation curves
are found to increase very slowly or form plateaus at large r [4]. In any case,
they do not decrease as r−1/2 at large distances, see figure 1.1, so these results
contradict the predictions.

Of course this quick argument was based on Newtonian gravity and symmetry
assumptions, but there are other situations in which measurements indicate that
there seems to be more gravitating matter than expected. For example, already in
the year 1933, Zwicky studied the dynamics of the Coma Cluster and concluded
that its density, averaged over the entire cluster, is larger by a factor of at least
400 when compared to observations of visible matter [6]. Gravitational lensing,
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Figure 1.1: Sketch of a typical galaxy rotation curve. The dashed line A shows
the decrease ∼ r−1/2 from the predictions while the solid line B represents a
rotation curve as obtained from observations. Here, r0 denotes the radius of the
galaxy as defined by visible matter. This image has been adopted from [5].

i.e. the distortion of images due to light deflection by large masses, provides us
with a similar clue: The strengths of these distortions indicate that there must
be more gravitating matter than the one that is visible [7].
Since these and many more independent experiments come to the conclusion
that there is some form of ‘missing mass’ which cannot be detected from electro-
magnetic measurements, it is reasonable to postulate a new type of gravitating
matter which is called ‘dark matter’ (DM), as popularized by Zwicky [7]. In
modern cosmological models, the contribution of DM to the total energy of the
universe is estimated to be about 27 % while baryonic matter only contributes
around 5 % [8]. Many different DM models have been proposed throughout the
years, but the nature of DM is still an active field of research as summarized in
[9]. In section 2.1 we will present two popular rather simple models, namely
cold collisionless dark matter (CDM) and self-interacting dark matter (SIDM)
and discuss what DM density spikes are.
It is certainly worth noting that there might also be other explanations of the ob-
servations described above like modified gravity theories. This thesis, however,
assumes GR to be sufficiently accurate and attributes the missing mass problem
to the existence of DM.
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1.2 Black holes and black hole shadows

In 1915, Einstein published his full theory of GR. The first exact solution to
the theory’s fundamental set of equations, the Einstein field equations which
determine the geometry of spacetime, was found by Schwarzschild soon after
in 1916. [10]. His solution is nowadays called the Schwarzschild solution. It
describes gravity in the vacuum around a static spherically symmetric mass dis-
tribution or a point mass. It turns out that the Schwarzschild solution contains a
point-shaped singularity. A singularity can be intuitively thought of as a region
where the spacetime geometry ‘breaks down’ or is not ‘well-behaved’. Around
the singularity there is a region from which no classical particle can ever escape
[11]. Leaving aside the proper technical definitions, such a region is nowadays
called a black hole (BH) and its boundary is referred to as an event horizon.
This terminology is meaningful as an observer would simply see a black spot at
the BH’s position since its strong gravitational pull even traps photons, making
everything inside the event horizon unobservable from the outside. Although
Schwarzschild used different terminology, he had discovered BHs as a predic-
tion of GR. For a long time, BHs were seen as a purely mathematical solution
that is not realized in nature [12, 13]. In 1939, Oppenheimer and Snyder found
that a BH might be able to form from the gravitational collapse of a star at the
end of its lifetime [14], therefore providing a possible mechanism through which
BHs could in fact form in nature. Bolton found in 1972 that observations of the
X-ray source Cygnus X-1 were consistent with the existence of a BH as its com-
panion [15].
Today we have plenty of experimental evidence that BHs are indeed physical
reality and that they come in at least two groups defined by the BH’s masses:
The first group consists of stellar-mass BHs with approximately 3 to 100 solar
masses and the second group is made up of supermassive BHs (SMBHs) with
much larger masses of around 105 to 1010 solar masses [16]. Even though the
origin of SMBHs is still being debated [17], there is evidence for their existence
at the center of many, if not all, sufficiently large galaxies [18], including the
Milky Way (MW) and Messier 87 (M87), a galaxy estimated to be located about
16.8 Mpc away from the MW [19]. These massive objects suspected to be BHs
are called Sagittarius A* (Sgr A*) and M87* for the MW and M87*, respectively.
The two names have appeared in the media a lot recently as the Event Horizon
Telescope (EHT) collaboration has been able to produce pictures of these sys-
tems [20, 21]. These images can be found in figure 1.2. They show a dark region
surrounded by a bright ring. The dark spot corresponds to the position of the
BH and the ring is caused by an accretion disk, i.e. a mostly flat accumulation
of material which moves around the BH and emits radiation along its way [22].
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Figure 1.2: EHT images of Sgr A* (left) and M87* (right). The figures are taken
from [20] and [21].

To be more precise, the dark part in the middle of such a picture does not show
the BH’s singularity which is unobservable, but its so-called BH shadow. The
shadow of a BH is the part of an observer’s field of view that remains completely
black even if the line of sight points directly at the BH and if light sources are po-
sitioned everywhere except between the observer and the BH [23]. A BH shadow
has non-zero extent which is a consequence of the bending of light around a BH,
as described by GR. Photons emitted in directions pointing too close to the sin-
gularity will eventually be captured by the BH and not reach the observer. On
the other hand, photons on trajectories sufficiently far away from the singularity
can escape from the gravitational pull and possibly be detected by the observer.
Each detected photon is seen as a bright spot on the observer’s sky while the
absence of photons from a particular direction leaves the corresponding point
on the observer’s sky black. A useful illustration of the situation is shown in
figure 1.3. We will come back to the formation of BH shadows and define them
in a more technical way in section 3.4.

1.3 Black hole shadows as a probe of dark matter

DM is by definition coupled to the gravitational interaction and might form
‘clouds’ that are stabilized by their own gravity. These so-called DM halos are
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Figure 1.3: This image shows the basic principle behind the formation of a BH
shadow. Some part of the observer’s field of view remains black, even with light
approaching the BH from various directions. The figure is taken from [24].

especially expected to exist around large masses like SMBHs due to their strong
gravitational attraction. In these cases, the DM halos could form DM density
spikes, i.e. highly increased DM densities near the BHs. We will discuss density
spikes in more detail in section 2.1.3. Since the geometry of spacetime depends
on the distribution of mass, energy and momentum in the system, it will be af-
fected by the mass provided by the DM halo in addition to the BH. The changed
geometry, in turn, results in deformed photon trajectories which should also
lead to a different BH shadow compared to the one observed in the case without
DM. The more DM the halo contains, the stronger the effect on the BH shadow
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should be. Now the idea is to use a DM model, predict the properties of the halo
it would form around a BH, calculate the movement of photons in the BH+DM
halo system and hence predict the BH shadow one would observe. Different DM
models might lead to different BH shadows and the hope is that the comparison
between the predicted and the experimentally observed BH shadows can rule
out some DM models. This would bring humanity closer to understanding the
particle physical properties of DM.
In our work we covered the theoretical part of such a study of DM by modeling
ten different hypothetical DM halos around the two BHs Sgr A* and M87* and
calculating the resulting BH shadows of the combined systems.

1.4 Structure of this thesis

This thesis is organized as follows: In chapter 2, we will collect a couple of re-
sults from DM models and GR. They are not specific to our research, but will
be useful in chapter 3 where we present the method for our BH shadow calcu-
lations in detail, including the modeling of the DM halo densities, a derivation
of a suitable class of spacetimes and an explanation on how precisely different
photon trajectories lead to an image of a BH shadow. Chapter 4 presents and
discusses the results for the DM densities and the BH shadows from our calcu-
lations, shows a method to estimate the width of a BH shadow, addresses the
uncertainties and limitations of our method and comments on the measurability
of the DM effects in our results. Finally, a summary and an outlook are given in
chapter 5.
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2 Theoretical preliminaries

2.1 Dark matter models

In this section we will give a short overview of different DM models. We restrict
ourselves to the models underlying our research, so this presentation is of course
far from complete. A useful summary of DM candidates is given in [7].

2.1.1 Cold collisionless dark matter

Among all DM models, the CDM model is probably the most common and can
be found in the standard description of cosmology, the ΛCDM model. There
it successfully serves the purpose of explaining observations on large scales
[25]. The CDM model assumes that DM consists of individual particles which
move slowly compared to the speed of light (‘cold’) and do not scatter with one
another (‘collisionless’). Using these assumptions, Navarro, Frenk and White
(NFW) ran simulations of a CDM halo (without a BH). Their famous result is
that its mass density distribution ρ can be well described by a spherically sym-
metric profile of the form [26]

ρNFW(r) =
ρ0

r
r0

(
1 + r

r0

)2 (2.1)

where r is the distance from the halo’s center. ρ0 and r0 (not to be confused with
r0 in figure 1.1) are positive constants of the dimensions density and length, re-
spectively, that need to be fitted to the concrete system at hand. This so-called
NFW profile has the property ρ(r) ∼ r−1 for 0 < r ≪ r0, thereby forming a
‘cusp’ in the center of the system. For r ≫ r0, on the other hand, ρ(r) ∼ r−3.

2.1.2 Self-interacting dark matter

SIDM is a label given to all DM models in which there exist individual DM par-
ticles that can scatter with one another. Here the term ‘scatter’ is supposed to
be understood in a very general sense. How precisely these self-interactions are
implemented in theory varies from model to model, see for example the Jeans
and the self-coupled scalar models [27].
One way to motivate the possibility of DM self-interactions is the following: As-
trophysical observations of galaxies and galaxy clusters on various scales show
that their density profiles in the inner regions are actually lower and flatter than
expected from the CDM approach [28]. Such a flat density profile in the center is
called a density ‘core’. The discrepancy between observations preferring a core
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or a cusp is summarized by the term ‘core-cusp problem’. Figure 2.1 visualizes
the need for a density core from observations of rotation curves.

Figure 2.1: The rotation curve of the dwarf galaxy DDO 154 as constructed from
observations (black dots) together with two fits corresponding to a density cusp
(blue) and a density core (red). The cored density leads to a much better fit of
the observed rotation curve. The plots are taken from [27]. Please also note the
references therein for the origin of the shown data.

In order to form a density core from a cusp, there should be some mechanism
that allows DM particles to be removed from the center and fed into the outer
parts of the DM halo. DM scattering is one way to achieve this as shown in
simulations [29]. Intuitively, one way to think about this effect is the following:
In the center where the density is expected to be high compared to other parts
of the halo, DM self-interactions are much more likely to occur. Assuming ran-
dom scattering angles, more particles will be kicked out of the center since there
is a larger solid angle available for a particle to move out rather than in. This
depletes the center and decreases its DM density.

2.1.3 Dark matter density spikes

Usually, CDM and SIDM are models for a DM halo without any further effects.
However, if, as is expected in reality, the halo has been formed by accretion
onto a BH one should think about how the presence of the BH changes the DM
density. This issue is addressed in [30]. The authors assume that a DM halo
with a fixed density profile is given and that there is a very small seed BH in
the halo’s center. The BH will accrete matter from the halo and grow. Assuming
that this growth progresses adiabatically, an initial profile behaving as ρ ∼ r−Γ

near the center will lead to an altered density ρ ∼ r−γ near the center after the
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growth of the BH. The new exponent γ is related to the initial one, Γ, by [30]

γ =
9 − 2Γ
4 − Γ

. (2.2)

From equation (2.2) it is not hard to verify that γ increases monotonically with
Γ and that γ ≥ Γ for 0 < Γ < 4. The first property means that the steeper the
initial density profile, the steeper the final one. The second statement tells us
that the final profile is always at least as steep as the one before the BH grew.
Phrased differently, after the BH growth the density increases much faster the
closer one gets to the BH. This increase in density near the BH is called a DM
density spike and its density profile may be written as

ρspike(r) = ρsp

(rsp

r

)γ
, 0 < r ≤ rsp (2.3)

with some fixed rsp, the so-called spike radius, and a proportionality constant
ρsp = ρspike(rsp). Notice that the restriction r ≤ rsp in equation (2.3) is needed
because a density spike is only an adequate description close to the BH.

2.2 Technical description of black holes

In GR, spacetime is modeled as a smooth four-dimensional manifold M that is
equipped with, among other structures, a Lorentzian metric g and its Levi-Civita
connection [11]. Gravity emerges as a consequence of spacetime’s curvature in
this formulation. The Einstein field equations relate the energy and momen-
tum content of the physical system at hand to the geometry of the underlying
spacetime. In an arbitrary coordinate system the Einstein field equations may be
expressed as [31]

Rµν −
1
2

Rgµν =
8πG

c4 Tµν , µ, ν = 0, ..., 3 (2.4)

where Rµν is the (µ, ν)-component of the Ricci tensor with respect to g, R is
the Ricci scalar, gµν is the (µ, ν)-component of the metric, G is Newton’s gravita-
tional constant, c is the speed of light in vacuum and Tµν is the (µ, ν)-component
of the energy-momentum tensor. One can see that the left-hand side contains
geometric quantities and the right-hand side consists of the energy-momentum
content of the system. Sometimes, the Einstein field equations are written with
an additional summand Λgµν on the left-hand side. The real number Λ is called
the cosmological constant and is related to dark energy and the expansion of the
universe. Since we will only study stationary systems at some arbitrary but fixed
point in time, we will not take cosmological effects into account and neglect the
summand with the cosmological constant in the Einstein field equations.
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Since the Ricci tensor, the metric and the energy-momentum tensor are symmet-
ric, we may restrict ourselves to µ ≤ ν and are left with ten coupled non-linear
differential equations for the metric components. Naturally, they are really hard
to solve so only very few analytical solutions exist and those make use of certain
symmetries or simplifying assumptions.

A class of comparatively simple systems to study is the vacuum for which all
densities, pressures and momenta vanish so that Tµν = 0 everywhere for all µ, ν.
One such solution to the Einstein field equations is called a vacuum solution.
Probably the simplest non-trivial vacuum solution is the Schwarzschild solution
which we already mentioned in section 1.2. With respect to a chart (U, x), the
Schwarzschild chart, the Schwarzschild metric at some point p := x−1(t, r, θ, φ)

is expressed as [31]

gµν(p) =


−
(
1 − rS

r
)

0 0 0
0

(
1 − rS

r
)−1 0 0

0 0 r2 0
0 0 0 r2 sin2(θ)


µν

(2.5)

with t ∈ R, r ∈ R+ \ {rS}, θ ∈ (0, π) and φ ∈ (0, 2π). rS = 2 GMBH/c2 is
the so-called Schwarzschild radius. It depends on MBH ∈ R+

0 which may be
interpreted as a mass as will be clarified later in this section.
One immediately sees that the metric components exhibit singularities at the
coordinates r = 0 and r = rS. In order to decide whether those points are
physical singularities or merely coordinate-singularities arising from the choice
of chart, one has to study quantities that do not depend on the chosen coordinate
system. One such quantity is the Kretschmann scalar K := RµνρσRµνρσ which is
constructed by contracting all components of the Riemann tensor and is thus a
true scalar: Its values may be expressed using coordinates but ultimately they
do not depend on the coordinate system but only the actual points in spacetime.
For the Schwarzschild solution (2.5), the Kretschmann scalar takes the form [32]

K(p) =
12r2

S
r6 . (2.6)

with p as defined above. Notice how K is perfectly well-behaved at r = rS.
Hence, the hypersurface defined by the Schwarzschild radius does not stand out
in any way in terms of geometry and we conclude that r = rS is a coordinate-
singularity. However, K diverges to ∞ for r → 0+ which means that r = 0 is a
physical singularity. The hypersurface of points with r = rS turns out to bound
a region from which, once entered, no classical particle can escape and in this
sense, it is not possible for two observers on opposite sides of the hypersurface



2 THEORETICAL PRELIMINARIES 15

to ‘communicate’. In other words, that hypersurface is an event horizon and
the Schwarzschild solution describes a BH. Since the radius of the event horizon
grows with MBH, it is reasonable to interpret MBH as the mass of the BH, as
indicated above.

More generally, whenever a solution to the Einstein field equations exhibits “a
region of spacetime causally disconnected from future infinity” [12], we speak
of a BH solution. In fact, the Schwarzschild solution is only one example of a
much bigger class of BH solutions. Another important example is the class of
Kerr solutions, given by [32]

gµν( p̃) =


−
(

1 − rSr
Σ(r,θ)

)
0 0 − rSa sin2(θ)

Σ(r,θ) r

0 Σ(r,θ)
∆(r) 0 0

0 0 Σ(r, θ) 0

− rSa sin2(θ)
Σ(r,θ) r 0 0 Ψ(r, θ) sin2(θ)


µν

(2.7)

where p̃ := x̃−1(t, r, θ, φ) in so-called Boyer-Lindquist coordinates x̃ and with
the abbreviations Σ(r, θ) = r2 + a2 cos2(θ), ∆(r) = r2 − rSr + a2 and Ψ(r, θ) =

r2 + a2 + rSa2 sin2(θ)
Σ(r,θ) r. In addition to the BH MBH, the Kerr metrics have an addi-

tional free parameter a ∈ [−1, 1] GMBH/c2 which can be interpreted as a mea-
sure of rotation of the BH and is thus called the spin parameter of the Kerr BH.
In the case a = 0, the Kerr metric (2.7) reduces to the Schwarzschild metric (2.5).

The Schwarzschild and Kerr metrics will be helpful guidelines in section 3.2
where we will construct metrics for the systems we want to study, namely rotat-
ing BHs within DM halos.

2.3 Geodesic motion

In order to be able to compute BH shadows we need to understand how photons
move in a given spacetime. It is a central postulate of GR that free particles move
on geodesics with respect to the spacetime metric g. Here and in the following,
calculations will be carried out with respect to a fixed but arbitrary chart (U, x)
of M. In such local coordinates, a smooth curve γ : I → U from some real
interval I into a subset of spacetime is a geodesic if it satisfies the geodesic
equation [11]

γ̈α(λ) + Γα
µν(γ(λ))γ̇

µ(λ)γ̇ν(λ) = 0 , α = 0, 1, 2, 3 (2.8)

for all λ ∈ I. The γα = xα ◦ γ are the coordinate representations of the curve
γ, Γα

µν are the Christoffel symbols of the Levi-Civita connection of g in the same
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coordinates and a dot denotes a derivative with respect to the curve parameter.

The inner product of tangent vectors is conserved under parallel transport de-
fined by the Levi-Civita connection, so all tangent vectors to a geodesic either
have a negative, zero or positive inner product with themselves and we classify
such curves as time-like, null and space-like, respectively [11]. If γ is the trajec-
tory of a particle, γ is time-like if the particle is massive and null if the particle
has zero mass like a photon [11]. In formulae, we have

gµν(γ(λ))γ̇
µ(λ)γ̇ν(λ)

< 0 for a massive particle

= 0 for a massless particle
(2.9)

for all λ ∈ I.

It will be convenient to identify conserved quantities along geodesics and this
can be achieved by translating the mechanical problem into a Hamiltonian frame-
work. To this end we first note that the equations (2.8) are precisely the Euler-
Lagrange equations for a Lagrangian L : TM → R on the tangent bundle TM
whose local canonical coordinate representation L with respect to x is given by

L(Q0, ..., Q3, V0, ..., V3) =
1
2

gµν(x−1(Q0, ..., Q3))VµVν . (2.10)

The corresponding Hamiltonian H : T∗M → R on the cotangent bundle / phase
space T∗M by virtue of the musical isomorphism induced by g has a local coordi-
nate representation H that can be obtained from L by a Legendre transformation,
resulting in

H(Q0, ..., Q3, P0, ..., P3) =
1
2

gµν(x−1(Q0, ..., Q3))PµPν . (2.11)

The functions gµν are the component functions of the cometric g with respect
to g that satisfy gµνgνρ = δ

µ
ρ everywhere in U with δ being the Kronecker delta

symbol. In this formalism, the equations of motion for γ are given by Hamilton’s
equations:

q̇µ(λ) = (∂4+µH) (q(λ), p(λ)) , µ = 0, ..., 3 ,

ṗµ(λ) = −(∂µH) (q(λ), p(λ)) , µ = 0, ..., 3 .
(2.12)

We write (q, p) ≡ (q0, ..., q3, p0, ..., p3) for the coordinate representation of the lift
of γ into T∗M with respect to the musical isomorphism. Again, these equations
need to hold for all λ ∈ I.
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2.4 Circular orbits around a Kerr black hole

An aspect that will be important for modeling the DM density profiles is how
close particles can orbit a BH without falling into it. Consider a particle moving
in a Kerr spacetime (2.7). In [33] it was shown that if the particle is massive,
a bound circular orbit of Boyer-Lindquist radius r in the equatorial plane with
θ = π/2 is completely stable if and only if r > rms, massive where

rms, massive =

[
3 + Z2 ±

√
(3 − Z1)(3 + Z1 + 2Z2)

]
GMBH

c2 ,

Z1 = 1 + 3
√

1 − A2
(

3
√

1 + A + 3
√

1 − A
)

,

Z2 =
√

3A2 + Z2
1 ,

A =
a

GMBH/c2 .

(2.13)

rms, massive is the radius of the marginally stable circular orbit, which means it
separates the stable from the unstable orbits [34]. The choice of sign in equation
(2.13) depends on whether the particle is in retrograde (+) or prograde (−)
motion with the Kerr BH.
If a similar analysis is done for massless particles like photons, one finds that
there are only two possible radii for circular orbits in the equatorial plane, given
by [33, 35]

rmassless = 2
[

1 + cos
(

2
3

arccos(±|A|)
)]

GMBH

c2 . (2.14)

As before (+) corresponds to retrograde and (−) to prograde motion and A is
defined as in equation (2.13). When the restriction of equatorial trajectories is
lifted, photons can only move on trajectories of constant r between these two
values [35].

Figure 2.2 visualizes the important radii from equations (2.13) and (2.14) by con-
sidering them as functions of the BH spin parameter a while fixing MBH. The
radii for prograde and retrograde orbits obviously coincide at a = 0 with a value
of 6 GMBH/c2 for massive and 3 GMBH/c2 for massless particles. Independent
of the particle mass, for increasing a, the prograde orbits have decreasing radii
and this decrease becomes stronger at large a. In the case of retrograde mo-
tion, on the other hand, there is an almost linear increase. The main piece of
information to keep in mind from this section is that prograde circular motion
in the equatorial plane is more strongly affected by a large spin parameter than
retrograde motion.
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Figure 2.2: Radii of the discussed orbits around a Kerr BH of mass MBH in
dependence of the spin parameter a.
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3 Method

3.1 Modeling the dark matter halos

For the halos around Sgr A* and M87*, we will use ten different spherically
symmetric DM density profiles each: one NFW profile, four SIDM profiles for
different interaction cross-sections and variants of these five profiles that include
DM density spikes. The overall approach is the same for Sgr A* and M87*, the
only difference will be the values of certain parameters in the models.

For the NFW profile, one only needs to provide ρ0 and r0. The values and their
references can be found in table 3.1.

ρ0/(M⊙ kpc−3) r0/kpc
Sgr A* 1.936 · 107 [36] 17.46 [36]
M87* (4π)−1 · 107.51 [37] 128.4 [37]

Table 3.1: NFW parameters ρ0 and r0 that we are going to use for a CDM halo
around Sgr A* and M87*.

For SIDM, we will follow the approach taken in [28] and make use of the Jeans
model as also thoroughly described in [38] to model the self-interactions: In
short, one assumes DM particles to constitute an ideal gas, so perfectly elastic
self-interactions between its constituents are allowed. From the ideal gas law
and the assumption of hydrostatic equilibrium between pressure and gravity
one can derive [28]

σ2
0 (∆(ln ◦ ρ)) (r) = −4πGρ(r) (3.1)

where ∆ is the Laplace operator on 3D Euclidean space. This equation relates
the DM density ρ(r) at r to the one-dimensional velocity dispersion σ0 of the DM
particles which encodes their relative velocities. As mentioned in section 2.1.1,
the NFW profile has been seen in experiments to be an appropriate description of
DM on large scales, so it will be kept with its parameters unchanged outside of a
specific radius rm, the matching radius. It is determined by the requirement that
there is only one expected self-interaction of DM particles over the entire lifetime
tage of the system. We are going to make the simplifying assumption that the
DM self-interaction cross sections per unit mass σ/m are velocity-independent.
They can then be shown to depend on the matching radii rm like [28]

σ

m
=

√
π

4σ0ρ(rm)tage
. (3.2)
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Within rm, the interactions are not negligible and are taken into account by using
a specific solution ρJeans to equation (3.1) for r < rm in the halo. For this solution,
the constants of integration are chosen such that ρJeans(rm) = ρNFW(rm) and
MJeans(rm) = MNFW(rm) which ensures continuity of the whole density function
and that the mass within rm is the same as if it were described by an NFW profile.
The lifetime of the system will be set to tage = 10 Gyr as in [28]. In summary,
our SIDM density profile is given by

ρSIDM(r) =

ρJeans(r) 0 < r < rm

ρNFW r ≥ rm
. (3.3)

Motivated by the expected order of magnitude for the cross section per unit
mass [27], we use σ/m = 0.01, 0.1, 1 and 5 cm2 g−1 and call the corresponding
density profiles SIDM 1, SIDM 2, SIDM 3 and SIDM 4. How precisely those are
obtained is explained in [38]. [39] provides the code to do the calculations.

In order to take the BH in the center of the DM halo into account, within some
spike radius rsp, we introduce a density spike into the profiles (2.1) and (3.3) by
hand. For CDM obeying an NFW profile, we have ρ(r) ∼ r−1 close to the center
and can set Γ = 1 in equation (2.2) so that γ = 7/3. For SIDM, we set γ = 7/4 as
also done in [40]. The NFW and SIDM profiles with the spikes are hence given
by

ρspiked NFW(r) =

ρspike(r) with γ = 7/3 0 < r < rsp, spiked NFW

ρNFW(r) r ≥ rsp, spiked NFW

, (3.4)

ρspiked SIDM(r) =


ρspike(r) with γ = 7/4 0 < r < rsp, spiked SIDM

ρJeans(r) rsp, spiked SIDM ≤ r < rm

ρNFW(r) r ≥ rm

. (3.5)

The implicit assumption that rsp, spiked SIDM < rm is justified because the spike
radius characterizes the DM spike with a very large DM density while the match-
ing radius, by definition, lies at a radius with a rather low density. Again, the
free parameters are determined by continuity requirements and the spiked SIDM
density profiles are labeled spiked SIDM 1, spiked SIDM 2, spiked SIDM 3 and
spiked SIDM 4 for the four different cross sections as before.
The question that remains is how to determinate the spike radii. In [41] and [42],
it is suggested to fix rsp (standing for rsp, spiked NFW or rsp, spiked SIDM here) by the
requirement that the enclosed mass within 5 rsp is twice the mass of the central
BH:

4π
∫ 5 rsp

0
r2ρ(r)dr = 2MBH . (3.6)
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To emphasize, the density ρ in this equation is taken to be given by equation
(3.4) or (3.5). For a given MBH, the existence and uniqueness of rsp is guaranteed
by the observation that the function R 7→

∫ R
0 r2ρ(r)dr is continuous, strictly

monotonically increasing and has R+ as its image. Solving equation (3.6) for rsp

needs to be done numerically. We use the values MBH = 4.3 · 106 M⊙ for Sgr A*
[43] and MBH = 6.5 · 109 M⊙ for M87* [44].

3.2 Deriving a metric of a spacetime of a black hole in a dark
matter halo

In order to study shadows of BHs which are surrounded by DM halos, we need
to understand how photons move in these systems. Since gravity near the BHs
is strong, this requires a general relativistic treatment. The goal of this section
is to derive a spacetime metric which describes a DM halo containing a possibly
rotating BH in its center, so that later on the photon paths can be calculated with
the geodesic equation. The derivation of the metric is done in a couple of steps:
First, a metric for a spherically symmetric and stationary DM halo is constructed.
Then, we will derive a modification of this result which additionally accounts
for a Schwarzschild BH. In the next step, this metric will be generalized to allow
for rotating BHs. Finally, a small retroactive modification will be done to the
DM densities.

3.2.1 Geometry of a dark matter halo

For the moment, let us restrict to a system consisting only of a spherically sym-
metric and stationary DM halo. The goal is to find a general relativistic descrip-
tion of a spacetime with such a halo. More concretely, given a density profile
ρ in three-dimensional Euclidean space, we would like to find a way to obtain
a corresponding spacetime metric ĝ. We will derive a few results in [45], but
present an alternative approach using the geodesic equation.

Consider a massive test particle moving through the halo on a circular orbit of
radius R, subject to the halo’s gravitational pull only. We assume that the circle’s
center coincides with the halo’s center. Since, for now, the DM halo is assumed
to be static and spherically symmetric, there exists a chart (U, x̂) such that the
metric components at a point p̂ := x̂−1(t, r, θ, φ) with respect to that chart have
the form [31]

ĝµν( p̂) = diag
(
−F(r), G(r)−1, r2, r2 sin2(θ)

)
µν

(3.7)

for some functions F and G. Here we have t ∈ (−∞, ∞), r ∈ J where J ⊆ (0, ∞),
θ ∈ (0, π) and φ ∈ (0, 2π). We make another assumption by requiring G = F
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everywhere. This condition has not been imposed in [45]. In later parts of section
3.2, we will mainly follow [46] and [47] where G = F is assumed, so we will do
the same at this point already to simplify the following arguments. In this case
we have the ansatz

ĝµν( p̂) = diag
(
−F(r), F(r)−1, r2, r2 sin2(θ)

)
µν

(3.8)

and F(r) is the only unknown quantity that we need to find.
Let λ 7→ (t(λ), r(λ), θ(λ), φ(λ)) := (γ0(λ), γ1(λ), γ2(λ), γ3(λ)) be a parametriza-
tion of the particle’s trajectory γ in x̂ coordinates. Due to spherical symmetry,
we can assume without loss of generality that the circular orbit lies on the ‘equa-
tor’, i.e. we have θ(λ) = π/2 and r(λ) = R for all λ. In particular, we have
θ̇(λ) = ṙ(λ) = 0 for all λ. We calculate the Christoffel symbols of the Levi-Civita
connection with respect to ĝ by [48]

Γλ
µν =

1
2

ĝλσ
(

∂ĝµσ

∂x̂ν
+

∂ĝνσ

∂x̂µ −
∂ĝµν

∂x̂σ

)
(3.9)

where ∂ĝµσ

∂x̂ν =
(
∂ν

(
ĝµσ ◦ x̂−1)) ◦ x̂ and find that the geodesic equation (2.8) for γ

reduces to

ẗ(λ) = 0 , (3.10)

F′(R)(ṫ(λ))2 − 2R(φ̇(λ))2 = 0 , (3.11)

φ̈(λ) = 0 . (3.12)

From the first and third equation, we conclude ṫ(λ) = Ξ(R) and φ̇(λ) = ω(R)
for all λ where Ξ(R) and ω(R) are constant with respect to the curve pa-
rameter λ but might depend on R. Since we look at the motion of a mas-
sive particle, γ is a time-like curve and we can arrange such that, for all λ,
we have gµν(γ(λ))γ̇µ(λ)γ̇ν(λ) = −1. This equation is equivalent to Ξ(R)2 =

(R2ω(R)2 + 1)/F(R) which we can substitute into equation (3.11) to obtain

F′(R)
R2ω(R)2 + 1

F(R)
− 2Rω(R)2 = 0 . (3.13)

This equation can be rearranged into

F′(R)
F(R)

=
2
R

R2ω(R)2

R2ω(R)2 + 1
. (3.14)

In this form the differential equation for F(R) can formally be solved by integra-
tion. In agreement with the ansatz (3.8) and the signature of ĝ, we take F(R) to
be positive so that we do not need absolute values. We obtain

ln (F(R))
∣∣∣R2

R1
=
∫ R2

R1

2
R

R2ω(R)2

R2ω(R)2 + 1
dR . (3.15)
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The integral, however cannot be solved explicitly yet because it is not clear
how ω(R) depends on R. This is where we unfortunately need some hand-
waving arguments to build the connection: We identify R2ω(R)2/(R2ω(R)2 + 1)
from equation (3.15) with v(R)2/c2 where v(R) is the velocity of the parti-
cle as in equation (1.1). This step is not as arbitrary as it may seem because
R2ω(R)2/(R2ω(R)2 + 1) is proportional to (Rω(R))2 where ω can be seen as the
angular velocity of the particle. We also have R2ω(R)2/(R2ω(R)2 + 1) ∈ [0, 1)
which is required for the square of the velocity of a massive particle in units of
c2.
After this identification we can rewrite equation (3.15) as

ln (F(R))
∣∣∣R1

R2
= −2G

c2

∫ R2

R1

M(R)
R2 dR . (3.16)

After taking the limit R2 → ∞, requiring limR2→∞ F(R2) = 1 for asymptotic
flatness, exponentiating and renaming variables for convenience we arrive at

F(r) = exp
{
−2G

c2

∫ ∞

r

M(r′)
r′2

dr′
}

. (3.17)

One should think briefly if the expressions in equation (3.17) are all well-defined.
The enclosed mass function M will be guaranteed to be well-defined for our
purposes because we will only consider density profiles with an asymptotic
behavior ρ(r) ∼ r−γ with γ < 3 as r → 0+. For the convergence of the improper
integral, we note that we will only use density functions that, outside of some
radius, have the shape of an NFW profile whose enclosed mass function r′ 7→
M(r′) diverges logarithmically as r′ → ∞. The integral is therefore of the form∫ ∞

x0
ln(1 + x)/x2dx which can be shown to converge. So mathematically, the

result (3.17) is well-defined.
For numerical purposes it is more convenient to manipulate the result further
by integration by parts, inserting the definition for the enclosed mass M(r′) and
using its asymptotic behavior:

F(r) = exp
{
−8πG

c2

[
1
r

∫ r

0
r′2ρ(r′)dr′ +

∫ ∞

r
r′ρ(r′)dr′

]}
(3.18)

In this form, we can easily make a small cross-check: If the DM density ρ van-
ishes everywhere, we have F ≡ 1. Thus, we have recovered the Minkowski
metric with spherical spatial coordinates, as required.

3.2.2 Including a Schwarzschild black hole

Once the metric of the DM halo is known it can be extended to include a
Schwarzschild BH. Following [46], the idea is that a Schwarzschild spacetime
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is a vacuum solution of the Einstein equations, meaning that its corresponding
energy-momentum tensor is zero everywhere, and therefore the spacetime of
the DM halo and the spacetime of a Schwarzschild BH within the same DM
halo should have the same energy-momentum tensors.
In order to make this concrete, let ĝ, R̂, T̂ and g̃, R̃, T̃ denote the metrics, Ricci
tensors and scalars and energy-momentum tensors of the spacetimes with the
DM halo alone and with the DM halo around a Schwarzschild BH, respectively.
Then the mixed contravariant/covariant Einstein equations for these spacetimes
read

R̂µ
ν −

1
2

R̂δ
µ
ν = T̂µ

ν , (3.19)

R̃µ
ν −

1
2

R̃δ
µ
ν = T̃µ

ν . (3.20)

Using the equality of energy-momentum tensors as discussed before we obtain

R̂µ
ν −

1
2

R̂δ
µ
ν = R̃µ

ν −
1
2

R̃δ
µ
ν . (3.21)

For the moment we still assume both spacetimes to be spherically symmetric
and static. This allows us to make an ansatz as in equation (3.8) and we can
write

g̃µν( p̃) = diag
(
− f (r), f (r)−1, r2, r2 sin2(θ)

)
µν

(3.22)

at some point p̃ := x̃−1(t, r, θ, φ) for a suitable chart map x̃. The new metric
function f (r) := F(r) + Fc(r) includes a correction term Fc(r) due to the BH.
Computing the components of the Ricci tensors from our ansatz, equation (3.21)
reduces to the following two equations:

F′
c(r)
r

+
Fc(r)

r2 = 0 , (3.23)

F′′
c (r)
2

+
F′

c(r)
r

= 0 (3.24)

By differentiation, the second one can be shown to follow from the first, so we
only need to solve the first equation. Its general solution is

Fc(r) =
κ

r
(3.25)

with an arbitrary constant κ ∈ R. It can be fixed by demanding that for
no DM (or, equivalently, F ≡ 1 as mentioned before), g̃ should turn into the
Schwarzschild solution with a BH mass MBH. From

F(r) + Fc(r) = 1 +
κ

r

= 1 − 2GMBH

c2r

(3.26)
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we find κ = −2GMBH/c2 so that

f (r) = F(r)− 2GMBH

c2r
(3.27)

and the pure DM halo spacetime is recovered for MBH = 0, exactly as needed.

3.2.3 Introducing a spin parameter

At this point, the metric is still spherically symmetric and static. These symme-
try assumptions will need to be relaxed to axial symmetry if rotating BHs are
supposed to be considered. There is a standard, albeit debatable, procedure to
turn a spherically symmetric BH metric into an axially symmetric metric: the
Newman-Janis algorithm. It was first proposed in [49] as a sequence of purely
mathematical steps to construct the Kerr metric from the Schwarzschild metric
without any physical justification. Throughout the years, a lot of work has been
done to better understand why and under which conditions the algorithm pro-
duces physical metrics. An overview is given in [50].
We follow [46] and apply the Newman-Janis algorithm to the metric (3.22) to
obtain the metric of a rotating BH in a DM halo, given by

gµν(p) =


−
[
1 − r2− f (r)r2

Σ(r,θ)

]
0 0 − (r2− f (r)r2)a sin2(θ)

Σ(r,θ)

0 Σ(r,θ)
∆(r) 0 0

0 0 Σ(r, θ) 0

− (r2− f (r)r2)a sin2(θ)
Σ(r,θ) 0 0 Φ(r, θ) sin2(θ)


µν

(3.28)

at p := x−1(t, r, θ, φ) with respect to some new chart map x. f (r) is the metric
component as in equation (3.27), a ∈ [−1, 1] GMBH/c2 is interpreted as the BH
spin parameter, Σ(r, θ) = r2 + a2 cos2(θ) as in equation (2.7), ∆(r) = r2 f (r) + a2

and Φ(r, θ) =
[
(r2 + a2)2 − a2∆(r) sin2(θ)

]
/Σ(r, θ). The negative signs in the

off-diagonal terms were dropped by accident in [46], but apart from that, our
result agrees with theirs. One can quickly see that the metric (3.28) reduces to
(3.22) for a = 0, as required. For later use, by inverting the matrix above, the
components of the cometric are found to be

gµν(p) =


−Φ(r,θ)

∆(r) 0 0 − a(r2− f (r)r2)
Σ(r,θ)∆(r)

0 ∆(r)
Σ(r,θ) 0 0

0 0 1
Σ(r,θ) 0

− a(r2− f (r)r2)
Σ(r,θ)∆(r) 0 0 a2 cos2(θ)+r2 f (r)

sin2(θ)Σ(r,θ)∆(r)


µν

. (3.29)

3.2.4 Restricting the dark matter halo’s size

From a physical point of view, there should not be any DM particles inside
the radius of the prograde marginally stable circular orbit of a massive particle
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(recall section 2.4) since we are only going to study stationary systems. This
means that the DM density should be set to zero within that radius which we
will call rmin here instead of rms, massive, prograde. The calculations for rmin for the
different BHs, spin parameters and DM halos have been carried out by Jorden
Roberts who worked with us on the project. He used the method of effective
potentials and found that all DM halos have a negligible contribution to rmin

so that equation (2.13) which is derived from a Kerr metric, is still sufficiently
precise. Furthermore, one would expect the DM halo to not extend to infinity,
meaning that the DM density should also be zero outside of some large radius
rmax with rmax > rmin, which will be kept as a free parameter in the calculations
to study its effects. Taking these ‘cut-off’ radii into account, equation (3.18) takes
the form

F(r) =


exp

{
−8πG

c2

∫ rmax
rmin

r′ρ(r′)dr′
}

0 < r ≤ rmin

exp
{
−8πG

c2

[
1
r

∫ r
rmin

r′2ρ(r′)dr′ +
∫ rmax

r r′ρ(r′)dr′
]}

rmin < r ≤ rmax

exp
{
−8πG

c2
1
r

∫ rmax
rmin

r′2ρ(r′)dr′
}

r > rmax

(3.30)

and this is the expression for F(r) that we will actually use in equation (3.27) for
f (r).

3.3 Equations of motion for photons

The shadow of a BH is determined by how photons move in its geometry. Since
we assume that the only form of matter present is in the form of DM which
does not interact with photons by definition, the photons may be treated as free
particles. As discussed in section 2.3, the equations of motion for a free photon
in a Hamiltonian framework are given by equations (2.12) under the condition
(2.9). In this section, we will be guided by [47]. We use the metric (3.28) in order
to study photons in the BH+DM system and write (q, p) ≡ (t, r, θ, φ, pt, pr, pθ, pφ)

for the phase space coordinates of some photon’s trajectory. For simplicity, we
will mostly drop the argument λ in our notation in this section. The first set of
Hamilton equations (2.12) can then be written as

ṫ = − (r2 + a2)2 − a2∆(r) sin2(θ)

Σ(r, θ)∆(r)
pt −

a(r2 − f (r)r2)

Σ(r, θ)∆(r)
pφ , (3.31)

ṙ =
∆(r)

Σ(r, θ)
pr , (3.32)

θ̇ =
1

Σ(r, θ)
pθ , (3.33)

φ̇ = − a(r2 − f (r)r2)

Σ(r, θ)∆(r)
pt +

a2 cos2(θ) + r2 f (r)
sin2(θ)Σ(r, θ)∆(r)

pφ . (3.34)
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Some simplifications can be achieved by exploiting conserved quantities. Notice
that since the metric components are independent of t and φ, it immediately fol-
lows from the second set of Hamilton equations that pt and pφ are both constant
along a given geodesic. Let us denote these conserved quantities by −E and L,
respectively, and refer to E and L as the energy and the angular momentum of
the photon. Another constant of motion was derived by Carter using Hamilton-
Jacobi theory [51]. We use the letter K for what Carter labeled Q and refer to it
as the Carter constant. It is given by

K = p2
θ +

(
L2

sin2(θ)
− a2E2

)
cos2(θ)

=
1

∆(r)

[
E(r2 + a2)− aL

]2
− ∆(r)p2

r − (aE − L)2
(3.35)

in our notation. The equality can be verified using the null condition (2.9). If one
knows the result already, it is easy to convince oneself that K is indeed constant
along a geodesic by showing that the Poisson bracket of K with the Hamiltonian
(2.11) vanishes.
Solving equation (3.35) for pr and pθ and substituting the results as well as −E
and L into the equations of motion (3.31) to (3.34), we find

Σ(r, θ)ṫ =
r2 + a2

∆(r)

[
E(r2 + a2)− aL

]
− a(aE sin2(θ)− L) , (3.36)

Σ(r, θ)ṙ = ±
√
[E(r2 + a2)− aL]2 − ∆(r) [(aE − L)2 +K] (3.37)

=: ±
√
R(r) ,

Σ(r, θ)θ̇ = ±
√
K−

(
L2

sin2(θ)
− a2E2

)
cos2(θ) (3.38)

=: ±
√

Θ(θ) ,

Σ(r, θ)φ̇ =
a

∆(r)

[
E(r2 + a2)− aL

]
−
(

aE − L
sin2(θ)

)
. (3.39)

All of these equations need to be true in order to have a geodesic. However,
the equations for ṙ and θ̇ only depend on r and θ. When these two equations
are solved, then the remaining two can in principle (and that is enough) also be
solved by plugging in the solutions for r(λ) and θ(λ). The only thing one needs
to worry about is the existence of a solution to the r and θ equations which
requires R(r(λ)) ≥ 0 and Θ(θ(λ)) ≥ 0 for all λ. The first requirement is not
a problem because for our purposes, as we will see in the next section, we are
only interested in photons whose trajectories satisfy

R(r(λ)) = 0 , (3.40)

R′(r(λ)) = 0 (3.41)
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for all λ. The condition Θ(θ(λ)) ≥ 0 is not met as easily, but we will implicitly
take it into account in section 3.4 by restricting the range of the allowed radii r.

For later use, we will now find a connection between r and the conserved quan-
tities E and L for trajectories for which (3.40) and (3.41) hold. Since R(r(λ)) = 0
ensures that r is constant along the trajectory, we again abbreviate r ≡ r(λ) to
simplify the notation. From now on we assume E(r) ̸= 0 and define ξ(r) :=
L(r)/E(r) and η(r) := K(r)/(E(r)2) where we emphasized in the notation that
these quantities are conserved along a fixed trajectory, but may depend on the
radius r of the orbit. The equations (3.40) and (3.41) can then be rewritten as(

r2 + a2 − aξ(r)
)2

−
[
η(r) + (ξ(r)− a)2

] (
r2 f (r) + a2

)
= 0 , (3.42)

4r
(

r2 + a2 − aξ(r)
)
−
[
η(r) + (ξ(r)− a)2

] (
2r f (r) + r2 f ′(r)

)
= 0 (3.43)

which, for a ̸= 0, can be solved for ξ(r) and η(r), resulting in

ξ(r) =
(r2 + a2)(r f ′(r) + 2 f (r))− 4(r2 f (r) + a2)

a(r f ′(r) + 2 f (r))
, (3.44)

η(r) =
r3 [8a2 f ′(r)− r(r f ′(r)− 2 f (r))2]

a2(r f ′(r) + 2 f (r))2 . (3.45)

3.4 Technical definition of a black hole shadow and Bardeen’s
coordinates

In order to find a more concrete definition of a BH shadow than in section 1.2,
consider an observer who looks at a BH from far away in front of a star-lit
background. Some photons that are emitted by the stars will approach the BH,
be deflected and maybe even orbit around the BH several times but ultimately
escape to infinity where they have a chance of being detected by the observer
as a bright spot on the observer’s sky. On the other hand, some photons will
be emitted in a direction pointing close to the BH and will be captured by its
gravitational field. Such photons cannot reach the observer. Even if we assume
that there are light sources everywhere except between the observer and the BH,
a part of the observer’s sky will remain black if there does not exist any pho-
ton trajectory along the corresponding direction and which crosses the observer.
This black patch is the BH shadow and it is fully determined if its boundary
is known. The boundary points can be thought of as corresponding to those
photons that neither move to infinity after passing the BH nor disappear behind
the BH’s event horizon. This limiting case consists of photons that orbit the BH
indefinitely. Finding the BH shadow reduces to understanding what precisely
these photon trajectories around the BH look like and how they translate to
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points in the observer’s sky. The first question has a quick answer: As it turns
out, the BH shadow boundary can be found from photon orbits that satisfy the
equations (3.40) and (3.41) [47, 52, 33]. For the second question, we need a math-
ematical prescription of how to map trajectories of photons that reach a distant
observer onto a 2D plane. Phrased differently, we need a method to plot the BH
shadow and this is achieved by introducing Bardeen’s coordinates [53, 23].

In order to understand their meaning, consider the following: Assume an ob-
server in 3D Euclidean space at a point P with cartesian coordinates (xo, yo, zo)

chosen in a way such that yo = 0. We consider the plane through the origin
and perpendicular to the line connecting the observer with the origin and call
it the observer’s sky. It consists of all points with cartesian coordinates (x, y, z)
satisfying

xox + zoz = 0 . (3.46)

The points with (0, 1, 0) and
(
−zo/

√
x2

o + z2
o, 0, xo/

√
x2

o + z2
o

)
as cartesian co-

ordinates obviously lie in the observer’s sky. Let eO
x , eO

y and eO
z be the canon-

ical cartesian unit vectors at the origin. Then the vectors eα := eO
y and eβ :=

−zo√
x2

o+z2
o
eO

x + x0√
x2

o+z2
o
eO

z at the origin are orthogonal and have unit length as well

and can be used to parametrize the observer’s sky. The situation is visualized in
figure 3.1.

Figure 3.1: Overview of the geometry for the construction of Bardeen’s coordi-
nates. Created with GeoGebra.
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Now consider a photon on a smooth trajectory λ 7→ γ(λ) with cartesian co-
ordinates (x(λ), y(λ), z(λ)) crossing the observer. Then there exists a λo such
that γ(λo) = P. The tangent vector v to γ at P is given by v = ẋ(λo)eP

x +

ẏ(λo)eP
y + ż(λo)eP

z with the parallel-transported canonical unit vectors eP
x , eP

y and
eP

z at P (this is well-defined because of the flatness of Euclidean space). Con-
struct a line l whose cartesian coordinates are parametrized by µ 7→ (xo, 0, zo) +

µ(ẋ(λo), ẏ(λo), ż(λo)). This line obviously meets the observer and its tangent
vector at P is equal to v and can thus be interpreted as the direction from which
the observer would see the approaching photon. The point in the observer’s sky
that is assigned to this photon is defined to be the unique point Q where the line
l intersects the observer’s sky. Using equation (3.46) it can be shown that Q is
given by

Q =̂ µẏ(λo)(0, 1, 0) +

√
x2

o + z2
o

xo
(zo + µż(λo))

(
−zo√
x2

o + z2
o

, 0,
xo√

x2
o + z2

o

)
in cartesian coordinates

(3.47)

with µ = − x2
o+z2

o
xo ẋ(λo)+zo ż(λo)

. From this representation one can simply read off the
α-β coordinates as the coefficients of the expansion. Changing from cartesian to
spherical coordinates (r, θ, φ) finally results in

Q =̂

(
−r2

o sin(θo)
φ̇(λo)

ṙ(λo)
, r2

o
θ̇(λo)

ṙ(λo)

)
in α-β coordinates. (3.48)

In order to transfer this into the GR setting that the BH shadow calculations
are based on, we identify the spherical coordinates (r, θ, φ) in equation (3.48)
with the spatial coordinates that the metric (3.28) is written in and place the
singularity of the BH in the origin. Since the calculations above made use of the
flatness of Euclidean space, it is best to only accept equation (3.48) in the limit as
ro → ∞, i.e. with an observer ‘at infinity’, where spacetime can be approximated
as flat:

α := lim
ro→∞

(
−r2

o sin(θo)
φ̇(λo)

ṙ(λo)

)
, (3.49)

β := lim
ro→∞

(
r2

o
θ̇(λo)

ṙ(λo)

)
(3.50)

These or very similar expressions for Bardeen’s α-β coordinates appear in other
publications, e.g. in [54] and [47].

We will evaluate (3.49) and (3.50) with the equations of motion (3.37), (3.38) and
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(3.39) for photons. We remember that limro→∞ f (ro) = 1 and arrive at

α(r) = − ξ(r)
sin(θo)

, (3.51)

β±(r) = ±
√

η(r) + a2 cos2(θo)− ξ(r)2 cot2(θo) . (3.52)

with ξ(r) and η(r) as in (3.44) and (3.45) because we are looking Bardeen’s
coordinates for the BH shadow boundary points. In this step the + sign needs to
be chosen for equation (3.37) because we want to consider photons approaching
the observer at infinity and those have ṙ(λo) > 0. For θ̇, the ambiguity in sign
cannot be resolved. The BH shadow boundary in Bardeen’s coordinates is then
obtained by plotting the images of the parametric curves r 7→ (α(r), β+(r)) and
r 7→ (α(r), β−(r)). Figure 3.2 shows a helpful visualization of this concept.

Figure 3.2: Illustration showing how a BH shadow boundary in Bardeen’s coor-
dinates is generated. Adapted from [23].

It is useful to plot α values on the horizontal and β values on the vertical axis
because, by construction, α has the meaning of the width of the BH shadow
perpendicular to the axis of symmetry of the system while β measures the BH
shadow’s size parallel to the axis of symmetry, both with respect to an observer
at infinity. This interpretation is supported by equation (3.51) because α is pro-
portional to the angular momentum L.
As a consequence of the above, the BH shadow is symmetric with respect to re-
flection about the α-axis. From the equations (3.51) and (3.52) it is also apparent
that the coordinates α and β± do not change when replacing θo by π − θo which
means that the upper and the lower hemispheres are in that sense on equal foot-
ing. This was to be expected from the axial symmetry of the spacetime at hand
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and is therefore a good cross-check.

Unfortunately, the calculation of a BH shadow becomes a little more complicated
because there are some restrictions we need to impose on the range of allowed r
values. Firstly, the obvious requirement

η(r) + a2 cos2(θo)− ξ(r)2 cot2(θo) ≥ 0 (3.53)

guarantees that β± can be calculated in the first place. Secondly, remember that
we want to consider closed photon orbits as the limiting case between photons
reaching the observer and photons ultimately falling into the BH. However, if r
is inside the radius roeh of the BH’s outermost event horizon, it is impossible for
photons at a radius that is only slightly larger than r to escape to infinity. For the
construction of the BH shadow, we take this into account by further requiring

r > roeh . (3.54)

In analogy to how the outer event horizon of a Kerr BH is found, roeh is given
by the largest solution to ∆(r) = 0 [11] where ∆(r) = r2 f (r) + a2 as in equation
(3.28). For details on the existence and uniqueness of roeh in our situation, see
A.1.

As a concluding note, the geometric approach to Bardeen’s coordinates that we
presented here hides something very subtle: Their construction assumes that a
photon actually reaches the observer. However, for the calculation of the BH
shadow boundary we use photon orbits that never reach the observer, but we
still assign Bardeen’s coordinates to them as if they did. For a short discussion
of this issue we refer to the paragraph “Injection of Light Rays into a Photon
Orbits [sic]” in the appendix of [52].

3.5 Performing the black hole shadow calculations

The results for the BH shadow boundaries in section 4.2 are obtained by running
a combination of Python codes. These were mainly written by myself. The code
which calculates the DM densities was written by Lukas Hölker for the most
part [39] with a couple of adaptations from my side. Credits also go to Jorden
Roberts for creating a very reliable root-finding algorithm and for his Mathe-
matica calculations of rmin as well as to Niklas Becker for rewriting parts of my
code to increase its speed. Apart from the Mathematica code, all the necessary
files can be found on my GitHub repository [55].

The computations take the following pieces of data as variable input: MBH, ρ0,
r0, a, rmax and θo and are carried out in the following way:
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1. The ten DM density functions each for Sgr A* and M87* are determined as
described in section 3.1. This step makes use of the specific values of MBH,
ρ0 and r0. For reference, we also include the vacuum case where the DM
vanishes everywhere.

2. For all BHs, DM density profiles and spin parameters a, rmin is found with
Jorden Roberts’ code.

3. Together with rmin and rmax, the DM densities are used to calculate f (r)
with the equations (3.27) and (3.30) as well as the derivative f ′(r).

4. We find the outermost event horizon roeh as the largest root of ∆ with
∆(r) = r2 f (r) + a2 as in (3.28).

5. For any r > roeh, we need to calculate ξ(r) and η(r) using equations (3.44)
and (3.45) and check if condition (3.53) is satisfied with the chosen θo. If
it is, save the pair (α(r), β+(r)) with α(r) and β+(r) given by (3.51) and
(3.52).

6. By plotting the points (α(r), β+(r)) and (α(r), β−(r)) = (α(r),−β+(r)) for
all such r, the BH shadow boundary is drawn.

7. For some BH shadow plots, the ranges of both axes are set manually to
zoom into parts of the BH shadow boundaries that are of particular inter-
est.
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4 Results

4.1 Densities of the dark matter halos

The numerical results for the densities of the different DM halos are presented
in figure 4.1 and table 4.1. One has to keep in mind that the units in the DM
density plots are different between Sgr A* and M87* because they depend on
the masses of the BHs. In units independent of MBH, the following observa-
tions might not necessarily be true. However, it makes sense to work in units
of GMBH/c2 nonetheless because many essential geometric quantities like the
Schwarzschild radius scale with the BH mass.

An immediate observation is that the overall shapes of the curves are very sim-
ilar and that for both BHs, the DM densities at small r have the same ordering:
The spiked NFW model leads to the largest densities, followed by the spiked
SIDM models and the NFW profile without a spike. By far the smallest densities
near the BH are obtained by the spike-less SIDM profiles. It is remarkable that,
near the BH, some density profiles differ by several orders of magnitude from
other profiles. This is especially true when one compares a profile with a spike
with its counterpart without one. The strong increase in density after adding a
spike confirms the mathematical observation γ ≥ Γ from section 2.1.3.
Clearly visible are the different slopes of the density profiles at small radii:
Within a spike, the density ρ(r) depends on r like ρ(r) ∼ r−γ which translates
into a straight line in a double-logarithmic plot. Since the spike is the steep-
est for the spiked NFW model (γ = 7/3), its density approaches those of the
spiked SIDM profiles (γ = 7/4) with increasing r. All spiked SIDM profiles
share γ = 7/4 which leads to their lines being parallel in the plots. The NFW
profile also seems to have a purely exponential shape with ρ(r) ∼ r−1 at small
r. This is due to the behavior ρNFW(r) ∼ r−1 for r ≪ r0 that we already saw in
section 2.1.1. The SIDM profiles without spikes are all close to constant over a
large distance. This meets the expectations because the model is already known
to form cored density profiles, recall the discussion in section 2.1.2.
Within the groups of SIDM and spiked SIDM profiles, a smaller self-interaction
cross section leads to a higher density, although the differences are rather small
compared to how far the NFW and spiked NFW profiles deviate from the SIDM
and spiked SIDM profiles in general. A smaller cross section shifts the matching
radius rm to smaller radii for the reason that rm was defined to be the radius
where only one self-interaction is expected during a time span of tage and the
decrease in cross section needs to be compensated by an increase in DM density.
One can imagine that the matching radius becomes even smaller for σ/m → 0+
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Figure 4.1: DM densities around Sgr A* (top) and M87* (bottom) for the ten
different DM halo models. The dashed lines mark the matching and spike radii.
Note that the cut-off outside of [rmin, rmax] is not considered here because rmin

and rmax are not fixed by the BH and the DM model.
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rsp/(GMBH/c2) rm/(GMBH/c2)

NFW - -
spiked NFW 5.97 · 107 -

SIDM 1 - 5.20 · 109

SIDM 2 - 4.85 · 1010

SIDM 3 - 1.59 · 1011

SIDM 4 - 3.08 · 1011

spiked SIDM 1 1.28 · 108 5.20 · 109

spiked SIDM 2 2.70 · 108 4.85 · 1010

spiked SIDM 3 3.90 · 108 1.59 · 1011

spiked SIDM 4 3.93 · 108 3.08 · 1011

rsp/(GMBH/c2) rm/(GMBH/c2)

NFW - -
spiked NFW 1.57 · 106 -

SIDM 1 - 4.39 · 106

SIDM 2 - 1.09 · 108

SIDM 3 - 4.80 · 108

SIDM 4 - 9.88 · 108

spiked SIDM 1 1.60 · 106 4.39 · 106

spiked SIDM 2 3.12 · 106 1.09 · 108

spiked SIDM 3 5.09 · 106 4.80 · 108

spiked SIDM 4 6.10 · 106 9.88 · 108

Table 4.1: Spike and matching radii for the different DM models in the Sgr A*
(top) and M87* (bottom) systems.

so that the part of an SIDM profile that is equal to an NFW profile by con-
struction becomes larger and larger. In the limit, this makes the SIDM profile
converge to the NFW profile as it needs to.
The most interesting observations can be made between the regions of the dif-
ferent spike radii and about three orders of magnitude of r within. Due to the
different slopes, the spiked SIDM densities are eventually ‘overtaken’ by the
NFW density and this ordering remains true until very far out where they ap-
proach each other again. At the spike radii, the corresponding profiles with
and without spikes become identical, so any difference that we are going to see
between their BH shadows must be a consequence of the difference in density
within the spike radii. An analogous statement can be made for the matching
radii: Outside its matching radius, a particular density profile is identical to the
NFW profile and anything distinguishing the BH shadows of those two systems
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is necessarily an effect of the different densities inside the matching radius. One
might think that the spike and matching radii are so far away from the BHs that
the densities in those regions should not affect the BH shadows. This point will
be addressed in section 4.2.

All observations so far are true both for Sgr A* and M87*. However, there are
a couple of differences in the density profiles between these two systems. In
general, the DM densities are larger around M87*, but around Sgr A* they cover
a larger range. If one considers the densities close to the BHs, for example at
r = 10 GMBH/c2, one notices that the DM densities for Sgr A* vary over about
18 orders of magnitude, while it is roughly 14 for M87*. It is also clearly visible
that the spike and matching radii are located at larger distances in the Sgr A*
system. Therefore, the density profiles maintain their shapes until these large
radii. For M87*, the smaller spike and matching radii have the consequence that
the densities are equal over a much larger interval in r. This is a good reason to
suspect that the outer parts (≳ 109 GMBH/c2) of the halos should not matter for
the relative sizes of the M87* shadows, but for Sgr A*, they might. For M87*, the
matching radius for the (spiked) SIDM 1 profiles lies between the different spike
radii, in contrast to the situation for Sgr A* where the spike and matching radii
are clearly separated from each other. Therefore we might expect the (spiked)
SIDM 1 profiles to behave differently between the two systems.

4.2 Properties of the black hole shadows

In this section we will describe and analyze the results for the BH shadows of
Sgr A* and M87* under a couple of different conditions. This will also allow us
to see if the expectations from section 4.1 are actually fulfilled.
Firstly, we will explore the effects of a varying spin parameter a and inclination
angle θo of the observer while we keep the other parameters constant. It turns
out that all effects are qualitatively equal for the Sgr A* and M87* shadows,
so for simplicity we will only look at M87*. Furthermore, we will fix rmax =

1014 GMBH/c2 for the moment. This value has not been chosen for physical
reasons, but simply because it is close to the largest one that our code can handle.
However, even larger rmax are not sensible, at least for the M87* system, because
in this case 1014 GMBH/c2 ≈ 30 Gpc which is larger than the estimated radius of
the observable universe [56]. In addition, as apparent from figure 4.1, the DM
densities would be the same and extremely low for r > 1014 GMBH/c2, so this
choice of rmax will not affect the following results in any noticeable way.
The three figures 4.2, 4.3 and 4.4 show the results for the BH shadows of M87*
as they depend on a and θo.
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First of all, it might come as a surprise that only the shadows using the spiked
SIDM 4 model are visible. This is not a mistake, but due to the fact that the
different DM models lead to BH shadows that are extremely similar in size and
shape. With the axes on this scale, the BH shadows within one plot are basically
identical and hence only the one that was plotted last is visible. We will take a
closer look and zoom into the BH shadows later in this section to see the actual
differences.
Comparing the different plots in the figures 4.2, 4.3 and 4.4, one realizes that
the BH shadows are almost circular and centered for small a, independent of
θo. This meets the expectations because in the limit a → 0, spacetime recovers
its spherical symmetry and no observer position is preferred. On the contrary,
for the two larger values of a, the effects of θo become apparent: The more the
observer approaches θo = π/2, i.e. the equatorial plane, the stronger the BH
shadows are deformed and shifted into the positive α-direction. In the most ex-
treme case with a = 0.999 GMBH/c2 and θo = π/2, the left-most points of the
BH shadows basically form a straight line while the right halves of the shadows
preserve their overall shapes.
One can understand these properties by recalling figure 2.2. Photons contribut-
ing to the left rims of the BH shadow boundaries move on prograde orbits in or
close to the equatorial plane. Since circular photon orbits exist at smaller radii
if the photon is in prograde rather than retrograde motion with the BH, the BH
shadows get a ‘dent’ on their very left. Analogously, retrograde photon orbits
that are responsible for the right-most points of the BH shadow boundaries are
shifted to larger radii with increasing a, moving these points in the plots to the
right as well. That this shift of points to the right is stronger at negative rather
than positive α is due to the fact that rmassless, prograde depends more strongly on
a than rmassless, retrograde, see figure 2.2 again. The effect of θo on the BH shadows
is also clear: At small θo, the observer’s line of sight almost coincides with the
BH’s axis of symmetry so that, again, no direction in the observer’s sky is pre-
ferred and this is true for all a. With increasing θo up to π/2, the observer’s line
of sight deviates more strongly from the axis of symmetry and the prograde and
retrograde photon orbits start to show their effects as discussed before.

Secondly, we are going to examine the relative sizes of the BH shadows as they
depend on the upper cut-off radius rmax. We will restrict ourselves to the case
a = 0.5 GMBH/c2 and θo = π/4. For the standard value rmax = 1014 GMBH/c2,
consider the figures 4.5 and 4.6. They show the shadows of Sgr A* and M87*
within the DM halos again, but now at different levels of magnification to be
able to tell them apart. The zooms are centered at the arbitrarily chosen value
α = 4.5 GMBH/c2 and the α and β axes are equally scaled within one plot.
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Figure 4.5: Shadow boundaries of Sgr A* with a = 0.5 GMBH/c2, θo = π/4 and
rmax = 1014 GMBH/c2 at different zooms around α = 4.5 GMBH/c2.
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Figure 4.6: Shadow boundaries of M87* with a = 0.5 GMBH/c2, θo = π/4 and
rmax = 1014 GMBH/c2 at different zooms around α = 4.5 GMBH/c2.
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We see immediately that we need a precision of around 10−3 to 10−4 GMBH/c2

to see the lines for the vacuum and the spiked NFW profiles separate clearly
from the rest. With this knowledge, it is not surprising that there appeared to
only be a single line in the plots showing the full BH shadows. The spiked NFW
profile leads to the largest and the vacuum to the smallest BH shadows. It is in-
tuitively clear that a larger DM density increases the gravitational pull towards
the BH and therefore forces circular photon orbits to larger radii. This effect
leads to larger BH shadows. How precisely the size of a BH shadow depends on
the density of the surrounding DM halo will be studied in section 4.3.
In order to resolve the remaining nine BH shadows, we increase the magnifica-
tion. In the case of Sgr A*, we need to zoom to the length scale 10−8 GMBH/c2

before can read off the relative sizes of the different BH shadows. For Sgr A*,
the BH shadow corresponding to the NFW profile is the second largest. The
lines for the eight spiked and non-spiked SIDM profiles form four pairs that are
mostly isolated from each other. Only the lines for the (spiked) SIDM 3 and
(spiked) SIDM 4 BH shadows are relatively close together. The BH shadows de-
crease in size if the DM particles’ self-interaction cross section increases. This is
because a higher probability for scattering leads to a lower DM density, as previ-
ously discussed in section 4.1. For a fixed cross section, the spiked SIDM model
exhibits a larger density than its counterpart without a spike and this is also
reflected in the sizes of the BH shadows: Those for a spiked profile are larger
although the effect of the spike is rather weak, especially for the higher cross
sections (notice the different scales of the plots). For very low cross sections, the
spike is more dominant and one can easily imagine that, in the limit σ/m → 0+,
the BH shadows for the (spiked) SIDM models converge to those of the (spiked)
NFW models. This actually has to be the case because a cross section of zero
reduces the (spiked) SIDM profile to a (spiked) NFW density profile. In short,
we can conclude that the self-interaction cross section is more important to the
BH shadow size than the existence of a density spike.
Almost exactly the same observations are also true when one studies the shad-
ows of M87*. The only notable difference is that the spiked SIDM 1 and the NFW
models switch positions in terms of their BH shadow sizes. We can understand
this by comparing the corresponding density profiles between Sgr A* and M87*.
In the Sgr A* system, the NFW density eventually becomes larger than that of
spiked SIDM 1 which does not seem to be the case for M87* or only in a very
small interval.

We can repeat a similar analysis for smaller rmax and arrive at the results in table
4.2. DM following a spiked NFW profile is by far the most dense in our calcula-
tions, so it is clear that the BH shadows are also the largest in the spiked NFW
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104 106 108 1010 1012 1014

sp. NFW sp. NFW sp. NFW sp. NFW sp. NFW sp. NFW
sp. SIDM 1 sp. SIDM 1 NFW NFW NFW NFW
sp. SIDM 2 sp. SIDM 2 sp. SIDM 1 sp. SIDM 1 sp. SIDM 1 sp. SIDM 1
sp. SIDM 3 sp. SIDM 3 sp. SIDM 2 SIDM 1 SIDM 1 SIDM 1
sp. SIDM 4 sp. SIDM 4 sp. SIDM 3 sp. SIDM 2 sp. SIDM 2 sp. SIDM 2

NFW NFW sp. SIDM 4 SIDM 2 SIDM 2 SIDM 2
SIDM 1 SIDM 1 SIDM 1 sp. SIDM 3 sp. SIDM 3 sp. SIDM 3
SIDM 2 SIDM 2 SIDM 2 SIDM 3 SIDM 3 SIDM 3
SIDM 3 SIDM 3 SIDM 3 sp. SIDM 4 sp. SIDM 4 sp. SIDM 4
SIDM 4 SIDM 4 SIDM 4 SIDM 4 SIDM 4 SIDM 4
vacuum vacuum vacuum vacuum vacuum vacuum

104 106 108 1010 1012 1014

sp. NFW sp. NFW sp. NFW sp. NFW sp. NFW sp. NFW
sp. SIDM 1 sp. SIDM 1 sp. SIDM 1 sp. SIDM 1 sp. SIDM 1 sp. SIDM 1
sp. SIDM2 NFW NFW NFW NFW NFW
sp. SIDM 3 sp. SIDM 2 SIDM 1 SIDM 1 SIDM 1 SIDM 1
sp. SIDM 4 sp. SIDM 3 sp. SIDM 2 sp. SIDM 2 sp. SIDM 2 sp. SIDM 2

NFW SIDM 1 SIDM 2 SIDM 2 SIDM 2 SIDM 2
SIDM 1 sp. SIDM 4 sp. SIDM 3 sp. SIDM 3 sp. SIDM 3 sp. SIDM 3
SIDM 2 SIDM 2 SIDM 3 SIDM 3 SIDM 3 SIDM 3
SIDM 3 SIDM 3 sp. SIDM 4 sp. SIDM 4 sp. SIDM 4 sp. SIDM 4
SIDM 4 SIDM 4 SIDM 4 SIDM 4 SIDM 4 SIDM 4
vacuum vacuum vacuum vacuum vacuum vacuum

Table 4.2: Ranking of BH shadow sizes for Sgr A* (top) and M87* (bottom)
around α = 4.5 GMBH/c2 with a = 0.5 GMBH/c2, θo = π/4 for different rmax.
The head of each column is the respective value of rmax in units of GMBH/c2.
Within a column, the sizes of the BH shadows decrease from top to bottom. A
colored entry indicates that the BH shadow could not be distinguished from the
rest, even at a precision of about 10−13 GMBH/c2, and its position in the column
was guessed based on our expectations. “sp.” is short for “spiked”.



4 RESULTS 46

model. This is true for all rmax and both Sgr A* and M87*. On the opposite end of
the list, we find the vacuum case as it must be. The SIDM 4 model always takes
the second-to-last place. The other DM models show a more interesting behav-
ior, but let us first note the following: It turns out that the Sgr A* shadows for an
SIDM halo and for the vacuum are extremely similar if rmax = 104 GMBH/c2 or
106 GMBH/c2. In fact, they are so similar that we cannot distinguish them at all
with our methods. This is most likely a consequence of the four SIDM densities
being of the order of about 10−20 M⊙(GMBH/c2)−3 up until r = 109 GMBH/c2.
Because of this, the densities are not only very small in total, making the BH
shadows indistinguishable from that of Sgr A* in vacuum, but also too similar
relative to each other so that we cannot differentiate the BH shadows for the dif-
ferent cross sections. The reason that this does not happen in the M87* system
is that the SIDM densities are much larger (in the BH-dependent units) to begin
with.

Apart from that, at small rmax, the spiked SIDM models are grouped together,
separated from their equivalent models without a spike. It would be surprising
if this were not the case because within comparatively small radii a spike adds
several orders of magnitude to the density. The density of the NFW profile is
between the SIDM and the spiked SIDM ones and the same is true for the BH
shadow sizes. As observed earlier for rmax = 1014 GMBH/c2, the BH shadows
always grow when the cross section is reduced, independent of the maximal ra-
dius of the DM halo. The contribution of the spike, on the other hand, depends
on rmax: The larger the halo becomes, the smaller the fraction that is described
by the spike gets and the shape of the density profile very far away from the BH
becomes more important. This causes the initial splitting between the groups
of spiked SIDM and SIDM models to disappear. Instead, these models increas-
ingly pair up according to their cross sections. For Sgr A*, the relative sizes of
all BH shadows stabilize when rmax reaches and exceeds 1010 GMBH/c2 whereas
this already happens at 108 GMBH/c2 for M87*. Once again, this can easily be
explained by the densities. Since the spike and matching radii are smaller in the
M87* system, the densities equalize closer to the BH. Finally, we see the different
ordering of the NFW and the spiked SIDM 1 models in tables for Sgr A* and
M87* at intermediate and large rmax, so the observation made in figures 4.5 and
4.6 was not exclusive to rmax = 1014 GMBH/c2.

In summary, the results in table 4.2 are physically plausible and it is not difficult
to see the correspondence between the DM densities and the BH shadow sizes.
Note that the discussion in this section assumed a = 0.5 GMBH/c2, θo = π/4 and
that it was based only on the arbitrarily chosen region around α = 4.5 GMBH/c2
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in the BH shadow plots. However, we do not expect the results and conclusions
to change substantially when these restrictions are lifted.

4.3 Semi-analytical results on the width of a black hole shadow

Some of the results presented in section 4.2 can be understood more easily if one
makes a couple of (semi-) analytical observations. In particular, we will study
the maximal horizontal width of the BH shadow boundary as a function of rmax

and the total amount of DM in the halo.

For r < rmin, we know from the equations (3.27) and (3.30) that the metric
function f is of the form

f (r) = C − 2GMBH

c2r
(4.1)

with C = exp
{
−8πG

c2

∫ rmax
rmin

r′ρ(r′)dr′
}

∈ (0, 1] which, in particular, depends on
rmax and the DM density profile. For simplicity, set θo = π/2. The points where
the BH shadow boundary in Bardeen’s coordinates crosses the horizontal axis
correspond to β = 0. With our choice of θo, this is equivalent to η(r) = 0 which
can be shown to be equivalent to

R3 − 6
C

R2 +
9

C2 R − 4A2

C2 = 0 (4.2)

after using the explicit forms (3.45) and (4.1) of η(r) and f (r) and the shorthand
notation R := r

GMBH/c2 and A := a
GMBH/c2 . This cubic equation in R can be

shown to have three distinct real solutions R1, R2 and R3 of which only these
two lie outside the (dimensionless) outermost event horizon (see section A.2 in
the appendix for details):

R1 =
2
C

[
1 + cos

(
2
3

arccos
(
|A|

√
C
))]

, (4.3)

R3 =
2
C

[
1 + cos

(
2
3

arccos
(
|A|

√
C
)
+

4π

3

)]
< R1 (4.4)

This result is only valid as long as R1 < Rmin because we used equation (4.1).
For small |A|, this is satisfied because there rms, massive, prograde ≡ rmin is rather
large, as can be seen in figure 2.2. R1 and R3 provide the right and left crossing
points of the BH shadow boundary of the α-axis. The horizontal ‘diameter’ dα,
i.e. the maximal size of the BH shadow in α-direction, is therefore

dα = α

(
R1

GMBH

c2

)
− α

(
R3

GMBH

c2

)
=

[
CR3

1 − 3R2
1 + 2A2R1

A(CR1 − 1)
−

CR3
3 − 3R2

3 + 2A2R3

A(CR3 − 1)

]
GMBH

c2

(4.5)
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where we used equation (3.51). Note that R1 and R3 depend on C. For all A
we can now plot dα as a function of C for C slightly smaller than one as long as
R1 < Rmin. The results are shown in figure 4.7.

Figure 4.7: dα as a function of C on two exemplary orders of magnitude for a
couple of different spin parameters A. Larger A are not considered here because
they violate R1 < Rmin.

One can see that C 7→ dα(C) can be approximated as affine linear in this region.
Hence we can write dα ≈ −λC + µ for some λ, µ > 0 that are independent of C
and, as a consequence, also independent of rmax since C is the only place where
rmax enters this analysis. Now define ϵ := 8πG

c2

∫ rmax
rmin

r′ρ(r′)dr′. This quantity is a
small positive number for all systems we are interested in. Since C = exp(−ϵ),
we can expand C = 1 − ϵ +O(ϵ2) and obtain to first order in ϵ the connection

dα = (µ − λ) + λϵ . (4.6)
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We can easily read off that for the vacuum case with ϵ = 0 the BH shadow has a
width of µ− λ and starting from this value dα grows linearly in ϵ. Hence, within
the model at hand and under the assumptions that have been made, the BH
shadow width is directly related to

∫ rmax
rmin

r′ρ(r′)dr′ and not the total DM mass
4π
∫ rmax

rmin
r′2ρ(r′)dr′.

We can take this analysis a step further by noticing that all the density pro-
files in this thesis have the property that there is some radius rn such that
the density is an NFW profile outside of rn. It follows that one can write
ϵ = δ + 8πG

c2 ρ0r2
0

(
1

1+rn/r0
− 1

1+rmax/r0

)
with δ being the contribution from be-

tween rmin and rn. Therefore we have

dα = µ − λ + λδ + λ
8πG

c2 ρ0r2
0

(
1

1 + rn/r0
− 1

1 + rmax/r0

)
. (4.7)

Now it is clear that dα approaches a finite value for rmax → ∞. This means that
for the systems in this thesis, the choice of rmax is not crucial for the absolute
size of a BH shadow and for numerical purposes one should choose a very large
value unless one has a good reason not to do so.

The situation is different when we consider a hypothetical density profile of the
shape ρ(r) = ρp(rp/r)γ in [rmin, rmax], i.e. a pure power-law, and 0 otherwise.
rp ∈ R+ is some constant radius, γ ∈ R+ and ρp = ρ(rp). In this case we have

ϵ =

8πG
c2 ρpr2

min(rp/rmin)
γ 1−(rmin/rmax)γ−2

γ−2 γ ̸= 2
8πG

c2 ρpr2
p ln(rmax/rmin) γ = 2 .

(4.8)

For γ ≤ 2, ϵ diverges for rmax → ∞ which implies that one can achieve arbitrarily
large dα by simply choosing a large enough rmax (remember that λ and µ are
independent of rmax). In such a case it is important to make a very educated
guess for a specific value of rmax. In contrast, for γ > 2, ϵ converges to a finite
value for rmax → ∞. Intuitively, this result means that the density has to decrease
sufficiently fast in order for dα to converge. As a cross-check, consider again an
NFW profile. For large r, the density decreases approximately as r−3 which
corresponds to a power law with γ = 3 > 2, implying that we should expect ϵ

to converge for an NFW profile for rmax → ∞ and indeed it does as seen from
equation (4.7).

4.4 Uncertainty and measurability estimates

Apart from the systematic errors and uncertainties that will be covered in section
4.5, there is also an uncertainty in the BH shadow sizes originating from the un-
certainty of the parameters that entered the calculations. One parameter whose
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effect on the BH shadows can be understood fairly easily is the NFW parame-
ter ρ0. We demonstrate the procedure on the example of a CDM halo around
M87* with the properties a = 0.5 GMBH/c2, rmax = 1014 GMBH/c2. In order
to be able to make use of the analysis from section 4.3, we also set θo = π/2.
According to [37], the NFW density parameter ρ0 is expected to lie in the inter-
val (4π)−1[107.51−0.12, 107.51+0.13] M⊙ kpc−3 =: [ρ0, small, ρ0, large]. To simplify the
following, we assume r0 = 128.4 kpc [37] without any errors which is of course
an enormous oversimplification since the uncertainty in r0 is actually very large.
From these pieces of information one can, for ρ0, small, ρ0 as in table 3.1 and
ρ0, large, calculate rmin, C, R1 and R3. The requirement R1 < Rmin turns out to
be clearly fulfilled in all three cases, justifying the use of equations (4.3) and
(4.4). Equation (4.5) finally yields dα, small ≈ (10.235215 − 1.91 · 10−4) GMBH/c2,
dα ≈ 10.235215 GMBH/c2 and dα, large ≈ (10.235215 + 2.77 · 10−4) GMBH/c2 for
ρ0, small, ρ0 and ρ0, large, respectively. Even though these values are fairly similar
and might suggest that the error on ρ0 is negligible, this is not quite true consid-
ering how alike all the BH shadows were. Looking at figure 4.8, one sees that the
differences in the shown BH shadows’ sizes are of the order of 10−5 GMBH/c2

or even smaller.
Taking into account the very ambitiously calculated errors for dα from above, it
becomes clear that the uncertainty in ρ0 for the NFW profile alone could change
the relative sizes of the BH shadows significantly. Of course one should mention
that the parts of the BH shadows in figure 4.8 do not show dα but they still give
a good impression on the order of magnitude for the difference in dα values.
Furthermore, other uncertainties as for r0 have not been taken into account at
all, so it is reasonable to conclude that the uncertainties in parameters dominate
over the small differences in BH shadow sizes and we expect this analysis to
yield similar results for Sgr A* and different a, θo and rmax. The results for the
spiked NFW profile stand out but a more careful analysis of the errors involved
is necessary to estimate the reliability of these results.

The main purpose of the research in this thesis is to find out how tightly particle
physical properties of DM could be constrained by observations of the geometry
of BH shadows or if it is possible at all, see section 1.3. In order to answer this
question, we want to understand how one could quantify the shadow geometry.
We present the approach taken by [57] which captures the size and shape of a
BH shadow by two quantities Rs and δs that are defined as follows: Let A be the
point where the BH shadow boundary crosses the positive α-axis and set B and
D to be the points where β is maximal and minimal, respectively. Then there
exists a unique circle that passes through A, B and D and hence approximates
the BH shadow boundary. Rs is defined to be the radius of this circle and is
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Figure 4.8: BH shadow boundaries of M87* with a = 0.5 GMBH/c2, θo = π/2,
rmax = 1014 GMBH/c2 around α = 4.5 GMBH/c2. For ρ0, the standard value of
(4π)−1 · 107.51 M⊙ kpc−3 from [37] was used.

therefore a way to assign a radius to the in general non-circular shape of the BH
shadow boundary. δs, on the other hand, measures how much the shape of the
BH shadow boundary deviates from the fitting circle by relating the size of the
‘dent’ on the left side to Rs. If the distance between the left-most points of the
BH shadow boundary and the fitting circle is denoted by ds, then δs := ds/Rs. A
sketch of the construction is shown in figure 4.9.
Rs may be used to find the angular diameter ϑ of the BH shadow for an observer
on Earth. Letting DBH ≫ Rs be the distance between the Earth and the BH in
question, we can write

ϑ = 2 arctan
(

Rs

DBH

)
≈ 2Rs

DBH

= b
GMBH

c2DBH

= bϑg

(4.9)
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Figure 4.9: Illustration for the definition of Rs and δs. The figure is taken from
[47].

for some dimensionless b ∈ R+. ϑg is called the angular gravitational radius.
Using these observables, the authors in [47] arrive at the result that in order to
even distinguish between the vacuum and a halo consisting of CDM around Sgr
A*, one needs an angular resolution of 10−3 µas which is far more precise than
the 15 µas that are expected to be achievable in future EHT observations [58]. The
Sgr A* shadows for the vacuum and a surrounding CDM halo are quite different
in size relative to, say, the cases with SIDM 4 and spiked SIDM 4. As we saw in
section 2.1.2, at least in the dwarf galaxy DDO 154 experimental evidence points
towards cored density profiles as in our SIDM models. With this in mind, the
chances of being able to tell apart two of the DM models in our discussion from
the Sgr A* shadow geometry are slim. A halo described by a spiked NFW profile
could be a bit more easily distinguished from the vacuum, but certainly not from
the other DM models given the current resolution. The same conclusions should
hold for M87* because the angular gravitational radius ϑg of M87* has been
measured to be smaller than that of Sgr A* [20, 21]. Of course it is possible that
the EHT or other (networks of) observatories will improve their resolutions even
further in the near future, but an improvement by several orders of magnitude
is probably out of reach.
In summary, it seems unlikely that anything new about the properties of DM
can be learned from measurements of the Sgr A* and M87* shadow shapes and
sizes alone in the next couple of years.
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4.5 Limitations

The results presented here have certain limitations due to the simplicity of our
models. Probably the biggest shortcoming of our approach is to completely ne-
glect baryons and their interactions because the recent observations of Sgr A*
and M87* show the BH shadows embedded in a luminous ring, see figure 1.2
again. Furthermore, our DM models were not very refined as they contained
density spikes that were added by hand, velocity-independent self-interaction
cross sections and they did not take quantum properties into account. On top of
that, we also made the oversimplifying assumptions of a stationary and axisym-
metric system. The construction of the metric (3.28) made use of a non-rigorous
correspondence between Newtonian gravity and GR (recall the discussion be-
low equation (3.15)) and the use of the Newman-Janis algorithm while keeping
a spherically symmetric density profile in the equations raises the question what
the density profile even means for a ̸= 0. Finally, it is not clear at this point
which energy-momentum tensor the spacetime geometry determined by (3.28)
corresponds to and what the physical interpretation of that energy-momentum
tensor could be.
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5 Summary and outlook

In this thesis, we constructed density profiles for DM halos around Sgr A* and
M87*, a spacetime metric for a rotating BH in a DM halo and visualized the
resulting BH shadows of Sgr A* and M87* for an observer at infinity using
Bardeen’s coordinates. We also studied how the BH’s spin parameter, the incli-
nation angle of the observer and the halo’s extent affect the shapes and the sizes
of the BH shadows. In addition, we derived a concrete formula to estimate their
widths given the DM density and made a very rough estimate of the uncertainty
in this analysis stemming from the uncertainty of a density parameter.
What we found is that, within our framework and the limitations of the method,
the BH’s spin parameter and the observer’s polar angle relative to the axis of
symmetry have the strongest effects on the BH shadows. The larger the spin
parameter, the stronger the deformation and horizontal shift of the BH shadows
in the α-β plane, and these transformations are the most effective when the ob-
server is located in the equatorial plane. In addition to that, we saw that, for a
fixed BH, spin parameter and observer position, the various DM models do not
lead to significantly different BH shadows. Relative deviations are on the order
of ≲ 10−3 GMBH/c2, measured in Bardeen coordinates. Among all DM mod-
els, the spiked NFW model always results in the largest BH shadows while the
spike-less SIDM model with the largest self-interaction cross section leads to the
smallest. Systems with density spikes always exhibit larger BH shadows than
their respective counterparts without spikes, the BH shadows grow when the
cross section for SIDM decreases and these observations can be easily explained
by the shape of the DM density profiles. DM densities at large distances from
the BH, albeit small, cannot be neglected as they might change the relative sizes
of the BH shadows. Therefore, one needs a good reason to pick a specific value
for rmax in a concrete system.
All of these aspects are true both for Sgr A* and M87*. One clear difference
between these two systems is that the spike and matching radii are further away
from Sgr A* than from M87*, causing the density spikes to have a stronger im-
pact on the shadows of Sgr A* at intermediate halo radii rmax. It also makes the
relative BH shadow sizes stabilize at larger halo sizes in the Sgr A* system. This
stable ordering in size is almost identical between both BHs. The only difference
is the NFW and the spiked SIDM 1 models switching positions which can be
understood by a look at their densities.
In general, all the DM effects on the BH shadows of Sgr A* and M87* are tiny.
As explained in section 4.4, it seems highly unlikely that it will be possible for
any observatory or network of individual observatories to reach a sufficiently
high angular resolution within the next couple of years.
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Of course these conclusions only hold within our framework which has its weak-
nesses. One way to avoid at least some of the problems from section 4.5 in future
research could be to derive an energy-momentum tensor from given accretion
disk and DM halo models for the right-hand side of the Einstein equations.
Although it would surely demand advanced numerical methods, the Einstein
equations could be solved and hence provide a solid general relativistic descrip-
tion of the system. Of course finding adequate models for the accretion disk and
the DM halo is quite challenging and certainly also needs a lot more work.

Despite its limitations, our result that possible DM effects on the BH shadows
of Sgr A* and M87* are too small to be observable as of now may still be a hint
that it is important to continue the ongoing work on improving the resolution
of observatories. In addition to that, it is also useful to conduct studies on other
observables of BH systems that might allow conclusions about DM properties.
Furthermore, as explained in section 1.1, there is a number of physical systems
that point to the existence of DM and that can still serve as laboratories for its
properties. In parallel, the alternative approach of trying to solve the missing
mass problem by modified gravity theories might also be helpful in illuminating
the nature of DM.
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A Appendix

A.1 Existence of an outermost event horizon

For r < rmin, the condition ∆(r) = 0 for an event horizon has the shape

r2
(

C − 2GMBH

c2r

)
+ a2 = 0 ⇔ r2 − 2GMBH

c2C
r +

a2

C
= 0 (A.1)

with C = exp
{
−8πG

c2

∫ rmax
rmin

r′ρ(r′)dr′
}
∈ (0, 1]. This quadratic equation is solved

by

r1,2 =
1
C

GMBH

c2 ±

√(
GMBH

c2

)2

− a2C

 . (A.2)

For |a| ∈ (0, 1) GMBH/c2, these are indeed two distinct real and positive solu-
tions because

0 =

(
GMBH

c2

)2

−
(

GMBH

c2

)2

≤
(

GMBH

c2

)2

−
(

GMBH

c2
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C

<

(
GMBH

c2

)2

− a2C

<

(
GMBH

c2

)2

.

(A.3)

In addition, the smaller solution r2 is smaller than 1
C

GMBH
c2 which, for our pur-

poses where C is only very slightly below 1, is smaller than rmin for all spin
parameters that we are interested in. This means that at least r2 is a valid so-
lution to ∆(r) = 0. There could be more and larger solutions, but this is not a
problem: If there are finitely many solutions, we simply take roeh to be the largest
of those. In the unlikely case that there are infinitely many, we could set roeh to
be the supremum of the set of roots which is guaranteed to exist: Since f has a
unique root r∗ and f is strictly increasing, we have ∆(r) = r2 f (r) + a2 > a2 > 0
for r > r∗, so the set of roots is bounded from above and non-empty.

A.2 Solutions to equation (4.2)

If we use the definition in [59], it is clear that the discriminant D of equation
(4.2) is D = 4A2

C5 (A2C − 1) which is negative for 0 < A2 < 1/C. This is always
the case in what we want to consider because 0 < |A| < 1 and C ≤ 1. It follows
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that there are three distinct real solutions R1, R2 and R3 to (4.2) which are given
by

Rk =
2
C

[
1 + cos

(
arccos(2A2C − 1) + 2π(k − 1)

3

)]
, k = 1, 2, 3 . (A.4)

With the identity arccos(2x2 − 1) = 2 arccos(x) for x ∈ R+
0 which can be derived

from the double-angle formula for cos, this can be turned into

Rk =
2
C

[
1 + cos

(
2
3

arccos(|A|
√

C) + (k − 1)
2π

3

)]
, k = 1, 2, 3 . (A.5)

We want to see which of these solutions are positive and lie outside the outer-
most event horizon Roeh which, as we see from section A.1, is given by

Roeh =
1
C

(
1 +

√
1 − A2C

)
. (A.6)

In order to do this, notice that 2
3 arccos(|A|

√
C) ∈ (0, π/3) and, as a conse-

quence, R1 ∈ (3, 4) 1
C , R2 ∈ (0, 1) 1

C and R3 ∈ (1, 3) 1
C . For the outermost event

horizon, we obviously have Roeh ∈ (1, 2) 1
C . From these observations it already

follows that R1 > R3 > R2 and R1 > Roeh > R2. The relative position of R3 and
Roeh, however, is not clear at this point but it can be obtained by noticing that
with ψ := 2

3 arccos
(
|A|

√
C
)
+ 4π

3 ∈ (4π/3, 5π/3), we have

R3 > Roeh

⇔ (1 + 2 cos(ψ))2 > 1 − cos2 (3
2 ψ
)

⇔ 4 cos2(ψ) + 4 cos(ψ) > −
(

2 cos3(ψ)− 3
2 cos(ψ) + 1

2

)
⇔ 2 (cos(ψ) + 1)

(
cos(ψ) + 1

2

)2
> 0

(A.7)

which is true because cos(ψ) ∈ (−1/2, 1/2). In summary, we have R1 > R3 >

Roeh > R2 > 0.
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