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Abstract

The 21-cm line signal from neutral hydrogen is the subject of great interest as a
unique window into the thermal and (re-)ionization history of the early Universe.
Complementing extensive observational data expected in the coming decades from
a theoretical standpoint, numerical radiation hydrodynamics simulations are an
indispensable tool shedding light on the first galaxies and the Epoch of Reionization.
In this context, accurately modeling high-redshift X-ray sources is crucial for predic-
tions of the 21-cm signal, in particular due to the latter’s sensitive dependence on
the temperature of the intergalactic medium.

To this end, the first aim of this thesis is to implement the X-ray emissions of
key astrophysical sources at high redshifts in the radiation hydrodynamics solver
AREPO-RT within the moving-mesh code AREPO. This is accomplished by extending
the modeled spectra of stars and active galactic nuclei into the soft X-ray band,
described by added higher-energy frequency bins, as well as by newly incorporating
the radiative contributions of the supernova shock-heated interstellar medium and
high-mass X-ray binaries as additional sources.

Necessitated by the large mean free path of X-ray photons on cosmological scales,
the other major aim is implementing a term accounting for the effects of cosmological
redshifting. Two different methods for this are investigated and compared. The
first modifies the moment equations of numerical radiative transfer based on an
isotropic, piecewise power-law approximation of the specific radiative intensity across
successive frequency bins. Additionally, a new numerical redshifting method is
developed and introduced. This second method is based on an effective re-binning
of radiative energy in frequency space, directly modeling the transfer of photons
towards lower-energy bins at each timestep of a simulation.

The theoretical and numerical basis of the redshifting models, as well as the
extended spectrum and newly included sources of X-ray radiation, are described
in detail. Further, results of test runs verifying the physical validity and numerical

stability of the implementation are presented and discussed.
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Zusammenfassung

Das 21-cm-Signal von neutralem Wasserstoff ist von grolem Forschungsinteresse,
da es einzigartige Einblicke in die thermische Entwicklung und den (Re-)Ionisiations-
prozess des frithen Universums ermdoglicht. Neben umfangreichen Beobachtungs-
daten, die in den kommenden Jahrzehnten zu erwarten sind, stellen numerische,
strahlungshydrodynamische Simulationen ein unverzichtbares Mittel dar, um die
ersten Galaxien und die Reionisationsepoche zu erforschen. In diesem Kontext
ist es wichtig, Rontgenquellen im frithen Universum korrekt zu modellieren, um
Vorhersagen iiber das 21-cm-Signal zu treffen — insbesondere da letzteres stark von
der Temperatur des intergalaktischen Mediums abhéngt.

Daher ist das erste Ziel dieser Masterarbeit, die Rontgenemissionen von wichti-
gen astrophysikalischen Quellen bei hoher Rotverschiebung in den strahlungs-
hydrodynamischen Code AREPO-RT zu implementieren, der Teil des ‘moving-mesh’
(‘mitbewegtes Gitter’) AREPO-Codes ist. Dies wird erreicht, indem das model-
lierte Spektrum von Sternen und aktiven galaktischen Kernen auf die Energien
weicher Rontgenstrahlen ausgeweitet wird, welche durch zusétzliche, energiereichere
Frequenz-Bins beschrieben werden. Zudem werden als weitere Rontgenquellen die
Strahlung des interstellaren Mediums, das von Supernovae schockerhitzt wurde, und
die Strahlung massereicher Réntgendoppelsterne neu miteinbezogen.

Aufgrund der grofien mittleren freien Weglidnge von Roéntgenphotonen im Uni-
versum ist das weitere Hauptziel dieser Arbeit, einen Term zu implementieren,
der die Effekte kosmologischer Rotverschiebung beriicksichtigt. Zwei verschiedene
Methoden hierfiir werden untersucht und verglichen. Die erste Methode modifiziert
die Momentengleichungen des numerischen Strahlungstransports und basiert auf
der Approximation einer isotropen, stiickweise durch ein Potenzgesetz zwischen
Frequenz-Bins beschriebenen spezifischen Strahlungsintensitédt. Zuséatzlich wird
eine neue Methode zur Modellierung numerischer Rotverschiebung entwickelt und
beschrieben. Diese zweite Methode basiert auf einem effektiven ‘Re-binning’ von
Strahlungsenergie in den Frequenz-Bins und modelliert den Ubergang von Photonen
in energiedrmere Bins in jedem Zeitschritt einer Simulation.

Die theoretische und numerische Basis der Rotverschiebungsmodelle sowie der
ausgeweitete Frequenzbereich und die neu implementierten Roéntgenquellen werden
detailliert beschrieben. Weiterhin werden Ergebnisse von Testsimulationen, welche
die physikalische Validitdt und numerische Stabilitdt der Implementierung bestétigen,

vorgestellt und diskutiert.
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1 INTRODUCTION

1 Introduction

The Epoch of Reionization (EoR) is a crucial, yet observationally and theoretically still
rather uncertain, period in the evolution of the Universe (e.g. |[Furlanetto et al.| 2006}
Kannan et al. [2022a; Asthana et al.||2024). Following the formation of the first stars
and (proto-) galaxies at cosmic dawn, the EoR is characterized by a cosmic-scale phase
transition from mostly cold neutral gas to a hot ionized plasma, occurring within the
first billion years of cosmic history (see Fig. . As such, it represents a key link in
the Universe’s evolution from the linear regime of structure formation constrained by
the Cosmic Microwave Background (CMB) to the highly non-linear, clustered structures
observed in the local Universe (e.g. Mellema et al.|[2013; |Dayal & Ferrara|2018]).

Years after the Big Bang

400 thousand 0.1 billion 1 billion 4 billion 8 billion 13.8 billion

The Big Bang

saby eq eyl
Aep jussaid

on
&3
83
32

IS]
35
‘5o
o 2
o5
g o
[
=)
%

. Reionisation
P

Fully ionised Fully ionised

10
Redshift + 1

Figure 1: Schematic diagram of cosmic history. This figure was obtained from ESO /
NAOJ| (2016).

The process of reionization is primarily driven by stellar sources emitting UV-range Lyman
continuum (LyC, e > 13.6eV) radiation (e.g. Kannan et al.|[2022a). Consequently, the
phase transition progresses in growing ‘bubbles’ of hot, ionized gas around these sources,
which eventually overlap as the entire Universe is reionized in the final stages of the EoR
(see Fig. [2).

Notably, both cosmic dawn and the EoR remain highly active areas of investigation, with
open questions concerning e.g. (i) the precise timing of the reionization of the Universe (e.g.
Dayal & Ferrara|2018; Kannan et al.[2022a), (ii) the first appearance, radiative output,
masses, and growth of early galaxies and active galactic nuclei (AGN; e.g. [Silk et al.|2024;
Harikane et al.|[2024; Yuan et al.2024; Greene et al.|2024), and (iii) the detailed thermal
history of the intergalactic medium (IGM) during these periods (e.g. Pritchard & Loeb
2012).

Considerable observational effort is therefore dedicated to exploring these questions using
both current and upcoming instruments. Firstly, the recently launched James Webb Space

Telescope (JWST;|Gardner et al.2006]) has already revolutionized our understanding of
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the typical luminosities and masses of distant galaxies (e.g. Harikane et al./2024; Weibel
et al.|2024; |[Labbé et al.2023) and AGN (e.g. |Greene et al.[2024; |Asthana et al.|[2024),
marking the beginning of a new era of precision observations of the early Universe.
Secondly, radio frequency interferometers such as the Low Frequency Array (LOFAR;
Stappers et al.||2011)), Precision Array for Probing the Epoch of Reionization (PAPER;
Parsons et al. 2010), Murchison Widefield Array (MWA; Tingay et al.|2013), Hydrogen
Epoch of Reionization Array (HERA; DeBoer et al.2017)), and the Square Kilometre Array
(SKA; Mellema et al.[2013; Braun et al.[2019)) currently under construction, are all striving
to shed light on the EoR and gain a more complete picture of the physical processes
governing it.

Specifically, the 21-cm line signal is a key observational probe in this context, serving as a
signature of neutral hydrogen (H1) in the Universe and encoding information about both
its distribution and temperature. This emission line — with its characteristic rest-frame
microwave wavelength A = 21 cm — originates from a spin-flip transition in H1 atoms, in
which the orientation of the electron spin reverses with respect to the proton spin (van
de Hulst||1945; Ewen & Purcell/1951)).

The effects of cosmological redshifting then allow observations to map out the 21-cm
signal’s evolution in cosmic time, thereby providing insights into the evolution of the
thermal and ionization state of the Universe (e.g. Furlanetto et al. 2006 Pritchard & Loeb
2012).

HII Fraction.®’

E] p \,: .
Gas Temperature * . -

Figure 2: Mock lightcones showing the ionized hydrogen (H11) fraction and gas tempera-
ture from the THESAN reionization simulations (Kannan et al.2022a; |Smith et al. 2022}
Garaldi et al.2022)) in relative units, illustrating the evolution of these properties in the
intergalactic medium throughout the Epoch of Reionization. This figure was obtained and
adapted from (Kannan et al.|[2022a)).
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To complement this anticipated wealth of observational data in the coming years and
decades, numerical radiation hydrodynamics (RHD) simulations are a crucial theoretical
approach to testing and constraining current models of the EoR. RHD simulations are
uniquely capable of directly, accurately, and self-consistently modeling the coupling of
simulated cosmic structures to the radiation fields driving reionization (see Sec. . This,
in turn, opens the door to a wide range of detailed predictions for key observables from
a theoretical standpoint (see e.g. |Gnedin 2014; Rosdahl & Teyssier| 2015}, |Ocvirk et al.
2016, [2020; [Kannan et al|[2022a}; |Garaldi et al.|[2024; [Kannan et al.|2025} Zier et al.[2025b);
Shen et al.|2025)). Examples include the evolution of the neutral hydrogen and helium
fractions with redshift, i.e., the reionization histories, as well as the evolution of not
only the average temperature of astrophysical gas, but also the spatial distribution of
different gas temperatures in the simulation (see e.g. Sec. . Sufficiently large-volume
(V Z O((100 cMpc)?)) RHD simulations additionally facilitate numerical predictions for
the 21-cm signal (e.g. Kannan et al.|[2022a).

The latter is a key science goal of the currently ongoing THESAN-XL project (Zier et al.
2025a)), forming the broader context of this thesis. At its core, THESAN-XL includes an
extremely large-volume (V' ~ (400 cMpc)?) high-resolution reionization simulation, which
employs the RHD simulation code AREPO-RT (Kannan et al.|2019; Zier et al.|2024; see also
Sec. within the moving-mesh finite-volume hydrodynamics code AREPO (Springel|[2010b;
Pakmor et al.[2016} see also Sec. . It further builds on previous simulation efforts
using AREPO-RT, most notably the recent large-volume (V' = (95.5 cMpc)?) reionization
simulation suite THESAN (Kannan et al.|2022a; [Smith et al.|2022; Garaldi et al.|[2022)).
Due to the sensitive dependence of the 21-cm signal on the IGM temperature during the
EoR, accurately modeling high-redshift X-ray sources — as well as the evolution of the
radiative energy emitted by them — is crucial in this context. Specifically, the temperature
of the IGM strongly depends not only on the presence and total luminosity of X-ray sources
(e.g. |[Furlanetto|[2006; Mesinger et al. 2013|), but also on the details of their respective
spectral energy distributions (SEDs; Pacucci et al.[2014)).

Consequently, the first major aim of this thesis is to implement numerical models capturing
the radiative emissions of key X-ray sources at high redshifts in AREPO-RT. To this end,
the range of photon energies tracked by the code is increased from THESAN’s extreme UV
(EUV) range [13.6 eV, 100¢eV] to include the soft X-ray band ([500eV,2000eV]), resulting
in the significantly extended total range [13.6eV,2000€V] (see Sec. [3.3.1)).

Further, new numerical models of high-mass X-ray binaries (HMXB) and the supernova
shock-heated interstellar medium (ISM) are integrated into the code (Secs. [3.3.3[and [3.3.4)).
Finally, the SED of the radiative emissions of AGN is updated in order to more accurately
model the extended photon energy range (Sec. |3.3.5).
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Notably, X-ray photons have a significantly larger mean free path than the lower-energy
UV photons due to the energy dependence of the photoionization cross-sections of neutral
hydrogen H1, neutral helium He1, and singly ionized helium Hel1 (e.g. [Furlanetto et al.
20006}, |[Eide et al. 2020; see also Sec. . Therefore, they have the potential to undergo
significant cosmological redshifting before being absorbed. This decrease of photon energies,
caused by the expansion of the Universe (see e.g. Baumann|2022 for further details), is
commonly neglected in numerical radiative transfer (RT; e.g. |Gnedin & Ostriker 1997}
Gnedin & Abel 2001; |[Petkova & Springel [2009; [Kannan et al.|[2019, 2022a)).

This is based on the assumption that the mean free path of EUV photons is sufficiently
short — given their large photoionization cross-sections with the astrophysically abundant
H1, Her1, and Helr species — for the impact of redshifting to be negligible on the scales
of interest. However, the same approximation is no longer well-justified when modeling
X-ray photons, particularly on the extensive spatial scales of a large-volume simulation.
Therefore, the second major aim of this thesis is to implement cosmological redshifting in
AREPO-RT. Due to the complexity and fundamental limitations of numerical redshifting,
two separate methods are integrated into the code, investigated, and compared. While the
first of these approaches (piecewise power-law (PPL) method; Sec. is primarily based
on an existing method (Finlator et al.[2009, 2018)) that is adapted to the requirements
of the AREPO-RT code base, the second approach (‘effective energy-rebinning’ (EER);
Sec. introduces a conceptually new method developed in the context of this thesis.

This work is organized as follows. First, the relevant theoretical background concerning
X-ray heating and key high-redshift X-ray sources, as well as essentials of fluid dynamics
and RHD, are introduced in Sec. [2] Sec. [3] forms the core of this thesis; it first presents
an overview of the numerical methods used in cosmological (radiation-) hydrodynamic
simulations, focusing on those employed within AREPO-RT, before discussing the newly
developed implementations of X-ray sources and cosmological redshifting in detail. Results
of test runs performed in the context of these new implementations are presented and

discussed in Sec. [ Finally, the summary and conclusions to this thesis are provided in

Sec. Bl




2 THEORETICAL BACKGROUND

2 Theoretical background

2.1 X-ray heating and key sources at high redshifts

During the EoR, soft-band X-ray radiation is expected to cause a more uniform heating of
the IGM than UV photons alone, thereby leaving a characteristic imprint on the large-scale
21-cm power spectrum (Mesinger et al.|2013; cf. Sec. . In the following, we briefly
describe the two key causes of this, before discussing the specific astrophysical sources

most relevant to X-ray heating at high redshifts.

Firstly, we note that the photoionization cross-sections of H1, Hel, and Hell can be
described in terms of analytic fitting functions (see Eq. (1) and Table 1 of Verner et al.
1996); these functional forms are shown in Fig. 3| for the EUV to soft X-ray energy range
relevant to AREPO-RT ([13.6eV,2000¢V]). Crucially, Fig. [3|shows that the photoionization
of these species is most efficient for photon energies at and slightly above their respective
ionization threshold energies in the EUV range — i.e., 13.6¢eV for H1, 24.59¢V for Her,
and 54.42 eV for He 11~ while the cross-sections rapidly decrease with increasing photon

energies.
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Figure 3: Photoionization cross-sections o (Verner et al.|[1996)) of neutral hydrogen H1
(purple solid curve), neutral helium Her (orange dashed curve), and singly ionized helium
He1r (red dash-dotted curve) as a function of photon energy e. Gray dotted vertical lines
indicate the ionization threshold energies of these chemical species at 13.6eV, 24.59¢€V,
and 54.42 eV, respectively.




2 THEORETICAL BACKGROUND

This is the key reason for the long mean free path of X-ray photons mentioned in Sec. []]
which typically significantly exceeds the mean free path of EUV photons during the
EoR due to the high abundances of H1, Hel, and Helr gas (cf. e.g. Eide et al. [2020,
App. A). Consequently, X-rays are capable of propagating further into the IGM even while
the neutral fractions of hydrogen and helium are still substantial, i.e., during the early
stages of reionization, in which EUV photons still tend to be absorbed in the immediate

surroundings of galaxies.

Secondly, X-ray photons contribute more energy to photoheating per ionization event
than EUV photons. Specifically, photoheating due to the chemical species j is caused by
photoionization events in which the photon energy e = hv exceeds the ionization threshold

energy hu, ;, thereby transferring the ‘leftover’ energy,
Ae; = hv — hu; | (1)

to heat. Here, h and v refer to Planck’s constant and the photon’s frequency, respectively,

while 74 ; denotes the ionization threshold frequency for species j.

On the one hand, higher-energy photons therefore cause a larger injection of energy in
the form of heat per ionization event; on the other hand, for photons with energies above
~ 2keV, photoionization itself becomes so inefficient due to the small cross-sections that
their contribution to both ionization and heating becomes negligible (Pacucci et al. 2014]).
For these reasons, the soft X-ray band is key to the uniform IGM heating mentioned above:
here, the photon energies are large enough to allow propagation far into the IGM — but not
so large that the photons essentially free-stream, never interacting with the vast majority
of astrophysical gas — and each ionization event contributes a more substantial amount to

photoheating than is the case for the lower-energy EUV photons.

Consequently, the most relevant sources of X-rays during the EoR are those which (i) emit
a substantial amount of energy within the soft X-ray band, and (ii) already do so at the
high redshifts (z 2 5 — 6) of this epoch in cosmic history.

The dominant sources fulfilling both of these criteria are those mentioned in Sec. [I} the
hot ISM, HMXBs, and AGN (Pacucci et al.[|2014; Eide et al. 2018, [2020).

Firstly, the hot ISM refers to the diffuse, volume-filling, hot (7"~ O(10° — 10" K); Mineo
et al.|2012b; |[Pacucci et al.[2014) phase of gas surrounding stars within a galaxy. This
gas is primarily shock-heated by the effects of supernovae and stellar winds, resulting in
an SED that is well-approximated by a thermal bremsstrahlung spectrum (Pacucci et al.
2014} see Sec. for details).

Secondly, HMXBs are binary systems comprised of a massive star and a compact object,
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i.e., a neutron star or stellar black hole, in which the compact object is accreting material
from the star. The latter is therefore also referred to as the donor star of the system. This
forms an accretion disk, which efficiently converts the gravitational energy released by
the inspiraling material to highly energetic radiation, resulting in significant emissions
in the X-ray range (e.g. Mineo et al.|2012a; Sec. . More generally speaking, X-ray
binaries — also including intermediate- to low-mass X-ray binaries (LMXB) — are a broader
class of these accreting binary systems, in which the donor can be a less massive star or
even a white dwarf. However, due to the significantly longer lifespans of lower-mass stars,
these systems operate on substantially longer timescales than HMXBs (e.g. [Mineo et al.
2012a)). Consequently, LMXBs only become significant contributors of X-ray radiation at
redshifts z 2 1.5 (Madau & Fragos 2017), i.e., billions of years after the end of reionization
at z ~ 5 — 6 (e.g. Kannan et al.|2022a}; see also Sec. .

Thirdly, AGN are accreting supermassive black holes (SMBHs) at the centers of galaxies.
The most relevant component of AGN in the context of this thesis are their highly luminous
accretion disks, formed as the immense gravitational effects of the SMBH accelerate and
heat surrounding matter. This results in radiative emissions across a broad spectrum of
photon energies (e.g. Shen et al.|[2020; see also Sec. .

Finally, we note that stars — while being the dominant source of H 1-ionizing EUV photons
and photoheating during the EoR (e.g. Madau et al.||1999; Haardt & Madau [2012; |Eide
et al.|2018, 2020) — are negligible sources of X-ray photons due to a steep drop-off in their
luminosity at high photon energies hv 2 54.4€V (e.g. [Haardt & Madau/2012).

2.2  Fluid dynamics

In essence, the term fluid dynamics refers to the theoretical description of the state and
evolution of fluids, i.e., substances which (i) continuously deform under the influence
of stress forces, (ii) adapt to the shape of a container, and (iii) are made up of a large
number of constituent particles flowing freely past one another (e.g. van den Bosch![2020).
Fluids can broadly be classified depending on the interactions between the constituent
particles, such as those arising from gravitational, van der Waals, or Coulomb forces. In
the following, dynamics and examples of collisionless and collisional astrophysical fluids

are discussed.

2.2.1 Collisionless fluid dynamics

In a fully collisionless fluid, the fluid’s constituent particles exclusively interact via the
force of gravity. One of the most crucial astrophysical examples of this is cold dark matter,
i.e., the dominant matter component of the universe within the standard A cold dark
matter (ACDM; for details, see e.g. Baumann|2022) model. Additionally, the collisionless

fluid description also serves as an excellent approximation for the large-scale dynamics of
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stars within a galaxy, as individual stars are spatially separated on O(pc — kpc) scales
and can therefore be interpreted as an extremely dilute fluid of neutral, gravitationally
interacting particles with a near-zero collision cross-section (e.g. van den Bosch|2020)).
In the Newtonian continuum limit, the dynamics of such collisionless systems are described
by the coupling of the collisionless Boltzmann equation (CBE),

df of af ov If

o TV e ok v (2)

to the Poisson equation,

V2P = 4nCy / F(x,v, 1) v (3)

(e.g. Springel et al[2001; [Vogelsberger et al.[2020; Baumann 2022, App. B.1.1, p. 417).
Here, ® and G denote the gravitational potential and Newton’s constant, respectively. The
distribution function f = f(x,v,t) describes the phase-space density of the fluid, defined
as the number density of constituent particles in six-dimensional phase space (x,v) — or,
equivalently, (x,p) — as a function of position x, velocity v or momentum p = mv, and
time t. Eq. therefore expresses the conservation of the local phase-space density, i.e.,
Liouville’s theorem (e.g. Nolting 2007, Ch. 1.2.3, pp. 21-23).

2.2.2 Collisional fluid dynamics and the Euler equations

Freely flowing, subsonic astrophysical gases can be described to good approximation as
incompressible fluids, which further typically have low viscosity v, i.e., resistance to shear
forces, and low conductivity k, i.e., capacity to conduct heat through microscopic collisions
(e.g. van den Bosch|2020).

A highly useful and common theoretical description of astrophysical gas dynamics is
therefore achieved by treating the gas as an ideal fluid, v = k = 0, obeying the Fuler
equatz’omﬂ (e.g. van den Bosch [2020; [Vogelsberger et al.[|2020). The latter describe the
fluid in a macroscopic continuum approach, which neglects the discreteness of individual
constituent particles and instead approximates the fluid as consisting of smooth fluid
elements (FEs), also referred to as fluid packets. These FEs are essentially volumes of fluid
that are required to be small compared to the characteristic scale of the hydrodynamical
problem of interest, yet large compared to the mean free path of the constituent particlesﬂ
Further, each FE is required to consist of a large number of individual particles in order for
the continuum description to hold, as well as to allow the definition of the hydrodynamical
properties density p, fluid velocity v, pressure P, and specific energy e (i.e., energy per

unit mass) in each FE (see e.g. van den Bosch![2020)).

!The Euler equations are equivalent to the Navier-Stokes hydrodynamical equations in the special case
of an ideal fluid; for more details, see e.g. [van den Bosch| (2020]).

2Consequently, this fluid description is not applicable to the collisionless fluids discussed in Sec.
as these have an infinite mean free path by definition.
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The Euler equations can be equivalently expressed in both the so-called Fulerian and
Lagrangian formulations.

The former approaches the description of ideal fluid dynamics within a ‘fixed’ frame of
reference, i.e., the equations explicitly describe the fluid flow with respect to a spatially

static observer:

gi—i—v-(pv)zo (4)
a(gtv)—l—V-(pv@v—irPI)—O (5)
8(;:) +V. ((pe—i—P)v) =0. (6)

Here, the operator ® denotes the outer tensor product, while I is the 3 x 3 unity matrix.
Further, p = p(x), v = v(x), P = P(x), and e = e(x) represent a field description of the

hydrodynamical variables, specifying them at (fixed) positions x.

Alternatively, the Lagrangian formulation of the Euler equations approaches their solution
in a ‘comoving’ manner: rather than solving the equations with respect to a spatially fixed
frame of reference through which the FEs flow, the FEs themselves serve as the frame of

reference in this case:

Dp

ﬁ*—PV‘V (7)
Dv 1
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o,V (8)
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Here, the Lagrangian derivative D/Dt, also referred to as the convective or material
derivative, describes the change of a quantity from the point of view of an observer flowing
along with the fluid,

—=_—+Vv-V. (10)

We note that Eq. shows the equivalence of the Eulerian and Lagrangian formulations
given by Egs. —@ and Egs. —@D, respectively.

The first of the hydrodynamical equations in either formulation (Eq. or (7)) is also
referred to as the hydrodynamical continuity equation, expressing the conservation of the
mass density p with time.

Further, the set of three equations given equivalently by either Eq. or Eq. (8) are the
momentum equations, describing how a gradient in the pressure P results in a change to

the fluid velocity v or momentum density pv in the absence of external forces. Essentially,
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this describes the force on FEs exerted by pressure gradients analogously to the Newtonian
equation of motion F = ma = p; the formal similarity to a = F/m is particularly clear
in the Lagrangian formulation, Eq. . We note that the momentum equations are also
occasionally referred to as the Euler equations in a stricter definition of the latter term
(e.g. van den Bosch! [2020; for counter-examples, see e.g. |Springel 2010b; |Vogelsberger et al.
2020).

Finally, the energy equation (Eq. (6)) or Eq. (9)) describes the change in the total specific
energy e of a FE caused by adiabatic compression or expansion, expressed explicitly as a

non-zero velocity field divergence V - v # 0 (see e.g. van den Bosch/2020).

Either formulation consists of a set of five equations for six variables (p, P, e, and the three
components of v), which therefore require an additional constraint to close the system of
equations. This necessary closure is typically provided by an Equation of State (EoS) of
the form (e.g. Springel/2010b))

P=P(pu)=(y—1)pu. (11)

Here, v denotes the adiabatic index and u the internal specific energy, which is related to
the total specific energy as e = u + "72

Astrophysical gases are typically sufficiently dilute to be well-approximated as ideal gases,
for which the adiabatic index depends only on the number of internal degrees of freedom ¢

and is given by
_q+5

, 12
qg+3 ( )

g

resulting in the constant v = % in the case of a monatomic (¢ = 0) ideal gas (e.g. van
den Bosch 2020). Therefore, a commonly used approximate EoS (cf. e.g. Vogelsberger

et al.|2020)) is given by
2
P(p,u) = gpu. (13)
Further, in an astrophysical context, the effects of gravity need to be considered in addition
to the pure fluid dynamics discussed above. Specifically, to include gravitational forces
F.., = —V® acting on a fluid, the force vectors are added to the hydrodynamical

momentum equations, i.e.,

0
§+V-(pv®v+PI):—V(I>, (14)
or D )
v
Y _UP-VO 1
D pV \Y (15)

in the Eulerian or Lagrangian formulations, respectively (e.g. van den Bosch [2020).

In particular, a self-gravitating fluid is described by coupling the fluid equations discussed

10
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above to Poisson’s equation,
V20(x) = 4nGp(x) , (16)

cf. Sec. We note that the density p used in the macroscopic continuum description

is related to the phase-space density f(x,v,t) of constituent particles as

p(x, 1) = / Fx,v,t) dv . (17)

In the fluid description, the form of Poisson’s equation given in Eq. is therefore
analogous to Eq. .

2.3 Radiation hydrodynamics and the radiative transfer equation

The radiation hydrodynamic equations in the Eulerian formulation (e.g. |[Vogelsberger et al.
2020),

dp
a(gtV)—i-V'(pV@V-i-PI):Fp (19)
agp:)—l—v-<(pe~l—P)v) =T.—A, (20)

formally follow from the Euler equations of pure hydrodynamics (Egs. —@; or, equiva-
lently, Egs. (7)-(9) in the Lagrangian formulation) through the addition of source and sink
terms in the momentum and energy equations.

Specifically, including radiation introduces a new source term I', into the momentum
equations (Eq. , which captures the transfer of momentum from photons to the gas.
In the energy equation (Eq. , I'. and A similarly describe the energy transferred into
and out of the gas through its coupling to the radiation field; here, the sink term A is
also referred to as the cooling function or gas cooling rate (e.g. Vogelsberger et al.[2020;
Kannan et al[2019).

In practice (e.g., in the context of numerical RHD simulations; see also Sec. , these
source and sink terms are computed through detailed thermochemistry models, describing
the mechanisms through which photons of specific energies couple to specific chemical
species such as H1, Hii, He1, He1r, and He1ir (for details, see e.g. Kannan et al.[[2019,
2022a).

Crucially, an accurate treatment of RHD requires an accurate theoretical description of
the dynamics of the radiation field itself, i.e., radiative transfer (RT). In the following,
we therefore present a brief derivation of the most general RT equation in an expanding

space-time.

11
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First, the total differential of the photon distribution function f, = f,(x,p,t) in comoving

coordinates, characterizing the phase-space number density of photons, is given by

0 0 0
df, = f”dt+z f"d +Z f”d (21)
i= 1 i=1 apz
Here, t denotes the time, while x is the position in comoving coordinates, related to the
physical position Xphys as X = Xphys/@, where a = a(t) is the cosmological scale factor.
Similarly, p denotes the comoving photon momentum, given by

hv
p:apphys:(I?n’ (22>

where pphys is the physical momentum, h is Planck’s constant, v is the photon frequency,
c is the speed of light, and n is the unit vector parallel to p, i.e., the unit vector in the
direction of photon propagation.

In comoving phase space (x, p), the distribution function f, of photons is relativistically
invariant (Mihalas & Weibel-Mihalas [1984] pp. 152ff.; 311f.), i.e., only changes with time
in the presence of photon sources and sinks (absorbers). Consequently, the following
continuity equation (e.g. |(Gnedin & Ostriker||1997; Petkova & Springel |2009) holds for f.:

_ 04
ot

Afy 0% 5n, 8f~y+z 2 _ O,

dt ot = "oz, op; Ot (23)

sources sinks

While Eq. describes the evolution of the radiation field from a microscopic point of view,
i.e. in terms of the distribution function f, of individual photons, a complete macroscopic
description can be provided by instead expressing it in terms of the radiative specific
intensity I, (e.g. Mihalas & Weibel-Mihalas|[1984), p. 311). Specifically, I,, = I,,(x,t,n,v)
describes the specific intensity of photons with frequencies in the infinitesimal range

[v, v + dv] propagating in direction n at space-time coordinates (x,t). By definition,
dE, = I,(x,t,n,v) (n-dA)dtdvdQ (24)

then describes the rate of radiative energy from these photons flowing per area dA, in
the time dt, into the solid angle df2 centered around n (e.g. Mihalas & Weibel-Mihalas
1984] p. 311; |[Kannan et al.[2019). Consequently, the dimensions of I, in cgs units are
[I,] = ergem 2s ' Hz ler!

This macroscopic, or continuum, view in terms of I, can be translated to the microscopic
view, and vice versa, using the relation (Mihalas & Weibel-Mihalas|[1984, p. 312)

h*3
I,(x,t,n,v) = e fy(x,t,p=p(n,v)). (25)

12
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Therefore, by inserting f., = f; =% from Eq. into Eq. and substituting p = p(n, v)
according to Eq. , we obtain

df, _9f +Z3: afv afv

dat ot = " ov

101, S . 101, 1 01,
_h4L38t+;;Z Vo SRIEEY 3auﬂ
2 oI 3 . L, U o1, o1,
4B l@t +iz_:1xzﬁxi+u(_381/ +V8V>‘|

62 a[,j 3 . 8[,, [V
T iR [875 +Zzlxi6‘i_H<y v _31””

RE ¢’ (afV _9f ) (26)
sinks

C RMA N\ ot ot
In the second to last step, the photon frequency’s scaling with cosmological expansion,

sources

Vxa
2= 2-_§H, (27)
14 a

where H denotes the Hubble parameter, has been inserted (e.g. Mo et al.[2010, p. 108).
Following conventional notation (see e.g. |Petkova & Springel [2009; Kannan et al.[2019),

we define
1 01,
jz/ = - (28)
¢ sources
as the emission coefficient, and
1 9f.
opol, == =2 29
: p ¢ at sources ( )

as the absorption term proportional to I, where k, is the absorption coefficient and p the
gas density.

Further, we note that
3

. aly . o cn

for a photon traveling with speed ¢ in the direction of the unit vector n in comoving

coordinates.

By inserting Egs. — into Eq. , the general radiative transfer equation (cf. e.g.
Gnedin & Ostriker||1997; [Petkova & Springel |2009) follows:

10I, n H( oI, -
E ot + VL, - — (V By 1/) =Jv— ’L{‘:VPIV : (31)
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The terms contained in Eq. describe (i) source and sink terms of radiation, (ii) radiation
transport, and (iii) cosmological effects on radiation.

Firstly, the source and sink terms — i.e., photon emission and absorption terms — are given
by the right-hand side of Eq. , specified by the coefficients j, and k, as described
above.

Secondly, the first two terms on the left hand side of Eq. describe pure photon
transport, i.e., the evolution of the ‘isolated’ radiation field in the absence of photon
emission and absorption, or cosmological effects. This is commonly expressed explicitly in

the photon transport equation (e.g. Kannan et al.|2019)),

oL, . 9l
6t N xzc‘?xi ’

(32)

Thirdly, the cosmological terms of the RT equation are the terms proportional to the

Hubble parameter H in Eq. (31). They themselves consist of (a) the ‘photon dilution

ol,
v

reduction of the photon number density N caused by the expansion of space, scaling as

term’ o 31, and (b) the cosmological redshifting term oc v

. The former captures the

N o a=3 due to all spatial volumes V expanding as V' o a®. The latter describes the
decrease in energy each photon experiences through cosmological redshifting, in addition
to the overall reduction in photon number density. In the context of the continuum RT
description, this is essentially captured by ‘shifting’ the spectrum I,(v) towards lower

frequencies v in an expanding Universe (H > 0), consequently modifying the specific

oly

intensity [, at each fixed v according to the local spectral slope .

We note that in practice, Eq. is frequently simplified by discarding the redshifting term
due to its complex dependence on the radiation field’s spectrum, particularly in the context
of cosmological simulation codes including numerical radiative transfer (discussed further
in Sec. [3.2] see e.g. [Gnedin & Ostriker|[1997}; [Gnedin & Abel 2001} [Petkova & Springel
2009; [Kannan et al.2019). The limitations of this approximation, as well as numerical

methods addressing cosmological redshifting, are discussed in detail below (Secs. and
55).
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3 Numerical methods and implementations

The following subsections describe the numerical methods utilized and developed in the
context of this thesis. First, the relevant established methods of simulating galaxy and
large-scale structure formation, as well as radiation fields and reionization, are summarized,
focusing primarily on the specific methods and code used in this thesis. Subsequently,
the newly implemented methods modeling high-redshift X-ray sources and cosmological

redshifting, as well as further relevant code changes, are described in detail.

3.1 Cosmological simulations of structure formation and evolu-
tion

Cosmological simulations have been an indispensable tool in modern astrophysics research
over the past decades, in particular to investigate the formation and evolution of galaxies
and large-scale structures in the Universe (for recent reviews, see e.g. Naab & Ostriker
2017}, [Vogelsberger et al.||2020)). Specifically, they are uniquely capable of modeling the
non-linear evolution of structure in the universe — for which no generally applicable analytic
models exist — while capturing physical processes on a wide range of time and length
scales.

Modern simulations typically start out from high-redshift initial conditions (ICs) con-
strained by observations (e.g., Planck Collaboration et al.|[2016, 2020a; see Sec. .
These ICs are subsequently evolved by modeling the dynamics and interactions of dark
matter (Sec. and baryonic matter (Sec. in an expanding Universe.
Particularly in the early days of the field, as well as in modern simulations capturing
extremely large volumes (O(cGpc?) scales) of the Universe (e.g. Garrison et al. [2018;
Maksimova et al.| 2021} Hernandez-Aguayo et al.|2023)), dark matter-only simulations
(so-called N-body simulations, see Sec. with no baryonic component have been
employed to save substantial amounts of computing resources (e.g. Springel et al.||[2005a;
Boylan-Kolchin et al.|2009; |Angulo et al.[[2012).

On the other hand, hydrodynamical simulations additionally model baryonic matter
and the wealth of physical processes associated with this component. In cosmological
simulations of structure formation, this is encompassed in a typically code-specific galaxy
formation model (GFM), numerically capturing key processes such as gas cooling, star
formation, or stellar and AGN feedback (see Sec. for further details).

While incorporating the baryonic component and a wide range of physics models allows for
substantially more accurate and detailed predictions, it also represents the most challenging
and computationally expensive part of galaxy formation simulations due to the inherent
multiphysics nature, large dynamical range, and frequently supersonic gas velocities in the

processes involved (e.g. [Vogelsberger et al.[2020).
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However, rapid progress in the field has been driven by a number of factors, such as
(i) the advancement of numerical methods and algorithms either applicable to, or even
explicitly tailored for, galaxy formation simulations, (ii) continuous improvements in
our understanding and models of an enormous range of physical processes at the heart
of galaxy formation, such as those captured in specific GFMs, and (iii) technological
advancements, particularly the substantial performance increases of high-performance

computing (HPC) architectures in recent years (such as exascale supercomputers and

powerful GPU accelerators; see e.g. Zier et al.|2024).

Leveraging these factors, modern simulations have been highly successful in reproducing a
wide range of individual galaxy and galaxy population properties inferred from observations
(see Sec. [3.1.3)).

By using different theoretical models as inputs and comparing simulation results to the
wealth of observational data provided by modern surveys, simulations can further serve
as a powerful probe of theoretical models. In this way, they have played a crucial role
in e.g. (i) constraining dark matter models, such as self-interacting dark matter (e.g.
'Vogelsberger et al.|2012; Rocha et al.|2013; Peter et al.[2013), atomic dark matter (e.g.
Roy et al.|2025)), or fuzzy dark matter (e.g. Nori & Baldi/2018); (ii) probing the nature
of dark energy (e.g.|Garrison et al.|2018; Maksimova et al.[2021} |Grove et al|2022; |Ding
et al.2022; [Yuan et al.[2022; |Shen et al.|2024)); and (iii) testing different hypotheses for
alternative cosmological models, such as early dark energy (e.g. Shen et al.2024) or cosmic
string models (e.g. [Jiao et al.[2024; Koehler et al.2024).

Consequently, cosmological galaxy formation simulations have been established as key

tools for providing both theoretical insights and interpretations of observational data.

3.1.1 Initial conditions

Serving as the starting point for numerical simulations, initial conditions (ICs) specify the
distribution of dark matter and baryons at a high initial redshift (typically ziitia ~ 100,
e.g. Vogelsberger et al. 2014a; [Hopkins et al. 2018; Naiman et al. 2018} Vogelsberger et al.
2020; |Springel et al.[2021; Maksimova et al.[2021)).

Broadly speaking, two key types of ICs are usually employed in the context of cosmological

simulations: (i) ICs sampling a larger spatial volume uniformly and with periodic boundary
conditions — capturing the large-scale homogeneity and isotropy of the Universe based on
the cosmological principle — and (ii) so-called zoom ICs sampling a central high-resolution
region (e.g., a single galaxy or dark matter halo) embedded in a lower-resolution background
capturing surrounding density and temperature fields.

The former are particularly well-suited to modern large-volume (O(cMpc?®) — O(cGpc?))

simulations studying large-scale structure formation and galaxy and dark matter halo

population statistics (e.g. |Springel et al.|2005a; [Boylan-Kolchin et al.|2009; Angulo et al.
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2012} [Vogelsberger et al.|[2014a); [Springel et al.|2018}; [Hadzhiyska et al.|[2021} [Kannan et al.|
2023), as well as cosmological models (e.g. [Rocha et al|[2013; Maksimova et al.|[2021))
and cosmological-scale physical processes such as reionization (e.g. Kannan et al.| |2022a|,|§|;
Smith et al.|2022; Garaldi et al.|2024]).

Conversely, simulations based on zoom ICs can leverage the typically substantially smaller

volume of the region of interest to numerically resolve it in significantly more detail (e.g.

Springel et al.|[2008; [Hopkins et al.|[2014], 2018], 2023; [Kannan et al.|[2025} Zier et al.|2025b;
Shen et al.|[2025)). Notably, this allows highly accurate simulations of individual dark

matter halos and galaxies, capturing their (sub-) structure through fine spatial and mass
resolutions and frequently incorporating more detailed smaller-scale physics models, such
as a multi-phase ISM (e.g. Kim & Ostriker|[2017; [Hopkins et al.|2018; [Kannan et al.|2025)
and more sophisticated AGN models (e.g. Bourne & Sijacki 2017; Fiacconi et al.|[2018;
Talbot et al.|2021], 2024)).

ICs based on the concordance cosmological model, i.e., a ACDM cosmology with an
inflationary phase after the Big Bang, are typically determined by superimposing Gaussian
density fluctuations on a homogenous background described by a spatially flat (£2;=0)
Friedmann-Lemaitre-Robertson-Walker (FLRW) metric (see e.g. Baumann| 2022/ for details).

The initially homogenous distribution of the simulation’s dark matter and gas particles

is practically achieved by initializing particle positions uniformly on a Cartesian lattice
or by a so-called gravitational glass initialization. The latter is realized by setting up
particle positions randomly and subsequently displacing them by simulating the effects of
a repellent, effectively opposite gravitational force between particles until equilibrium is
achieved, i.e., until each particle ‘freezes’ in comoving coordinates (White|[1996).

The specific makeup of this homogenous background, described by the ratios between dark
matter, dark energy, and baryonic matter, is generally set by observational constraints
on the energy and matter content of the universe, i.e., the cosmological parameters €2,,,
Qa, and €, (see e.g. Planck Collaboration et al. 2016} [2020b for further details). Similarly,

the relative amplitudes and distribution of the Gaussian density fluctuations, described

fully by the matter power spectrum P(k) as a function of the wavenumber k, are typically

constrained by precision observations of CMB anisotropies (e.g. [Planck Collaboration et al.|

20204)).

The gravitational effect of the resulting overdensities on the simulation’s matter particles

are captured by a corresponding shift in the initial particle positions and velocities. Specif-

ically, these displacements are commonly calculated using the Zel’dovich approximation

(Zel’dovich |1970; see also Klypin & Shandarin|1983al) or second-order Lagrangian pertur-
bation theory (2LPT; see Scoccimarro||[1998]).

All simulations presented in this work are based on large-volume, uniform (non-zoom)
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ICs sampling cubic boxes with periodic boundary conditions. To generate these ICs, the
NGEN-IC code within GADGET-4 (Springel et al.|2021)), a recent update to the GADGET
cosmological simulation code base (Springel et al.|2001}; Springel|2005), is employed. We
further use a gravitational glass initialization for the larger-scale, more computationally
expensive X-ray test runs presented in Sec. and a simple uniform Cartesian lattice
initialization for smaller test runs (Secs. and . Additionally, all runs employ 2LPT
to determine the initial particle positions and velocities. Finally, all ICs utilized in this
thesis are based on the Planck Collaboration et al.| (2016]) or [Planck Collaboration et al.
(2020b) initial matter power spectrum and cosmological parameters, as specified in the

context of each test run setup in Sec. [4]

3.1.2 Modeling dark matter

Analytically, the dynamics of collisionless dark matter are described in the continuum limit
by the collisionless Boltzmann equation (CBE; Eq. ) coupled to the Poisson equation
(Eq. ), cf. Sec. However, solving the CBE numerically has presented a considerable
challenge in the past, as its high dimensionality in the dark matter distribution function,
f = f(x,v,t), prevents a straightforward application of typical numerical discretization
techniques aiming to solve partial differential equations (PDEs; e.g. Springel et al.||2001}
Vogelsberger et al.2020)). Consequently, alternative methods have been developed in order
to accurately model dark matter dynamics; of these, the most widely used example is the
N-body method, consequently serving as the namesake of ‘N-body’, i.e. dark matter-only,

simulations.

This method samples the continuous dark matter distribution function f by a discrete
set of N tracer particles with masses m; at phase-space coordinates (x;,v;), i =1,..., N.
The conservation of the local dark matter phase-space density expressed by the CBE
(Sec. is realized by conserving each of the tracer particle masses m; along their
respective trajectories.

Thereby, the N-body approach uses a method of characteristics technique to solve the
CBE, i.e., the equation is solved along curves on which the original PDE (Eq. ) reduces
to an ordinary differential equation (ODE; e.g. Vogelsberger et al.|2020).

Further, the N-body method essentially represents a Monte Carlo approach to solv-
ing the CBE, as the ensemble of discrete tracer particles sample the phase-space den-
sity N times and can therefore be interpreted as a coarse-grained phase-space density,
(fy = >;m; f(xi(t),vi(t)). As such, a sufficiently large number of particles IV is essential
to reduce Poisson noise and obtain an accurate simulation of dark matter dynamics
(Springel et al.|2001}; [Vogelsberger et al.|2020).

At small separations, a simple discretization of the originally smooth dark matter distri-
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bution function can give rise to unphysical large-angle two-body scatterings between the
individual sampling particles. To avoid this numerical artifact, a gravitational softening
term is typically introduced, smoothing the particles’ gravitational potential on small
scales. This is commonly implemented numerically through kernel-based methods (for
further details, see e.g. [Hernquist & Katz |[1989; Springel| 2005; [Price & Monaghan|2007;
Springel 2010b).

The spatial scale of this smoothing is characterized by the gravitational softening length,
which, in practice, is typically set as a code parameter (e.g. |Springel [2010b; Springel et al.
2021)) depending on the average particle density in the simulation volume (e.g. Springel
et al.|2001). The latter is also commonly referred to as a simulation’s effective resolution,
describing the number of resolution elements — i.e., dark matter particles in the context of
N-body simulations — per unit volume.

Due to the ‘blurring’ of the gravitational potential, larger gravitational softening lengths
inherently reduce the spatial resolution of the calculated gravitational forces. To mitigate
this effect, adaptive softening schemes have been introduced, which reduce the softening

length in high-density regions within the simulation volume (Price & Monaghan 2007)).

The computational problem at the heart of N-body simulations is calculating the grav-
itational forces exerted by and acting on each of the simulation particles, in order to
determine their dynamical evolution through each time step of the simulation. Standard
numerical methods addressing this problem can typically be classified as aiming to solve
either the integral or differential form of the Poisson equation, or alternatively, as employing
a combination of the latter two methods in a hybrid approach.

The first group of methods approaches the gravitational force calulation by solving the

integral form of Poisson’s equation,

p(x’
d(x) = —G/ d3x’|x (_ })(,| . (33)
Here, ®(x) and p(x) denote the gravitational potential and dark matter density at position
x, respectively, and G denotes Newton’s constant. The particle-particle scheme solves
Eq. directly for the N tracer particles of the dark matter density, effectively resulting
in a direct summation problem with computational complexity O(N?) (e.g. [Vogelsberger
et al.|2020)). This numerically expensive ‘brute-force’ approach of early N-body simulations
(e.g. Peebles [1970; [Press & Schechter||1974; White| 1976; see also [Holmberg| /1941 for one
of the earliest ‘analog’ uses of this method) can be substantially accelerated through the
use of tree algorithms (Appel [1981], 1985 Barnes & Hut|[1986]). Rather than computing
and summing up the gravitational force exerted by every individual particle to obtain
the net force at a given point, this approach approximates the gravitational effects of

more distant particles by treating them as a group. Specifially, particles are grouped in
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a tree-like hierarchical structure, typically in a so-called octree. The latter structure is
achieved by evenly dividing a cubic simulation volume — simultaneously serving as the
root node of the tree — into eight cubic child cells of equal volume, and in turn iteratively
subdividing each of the child cells into another eight cubic cells. This pattern is usually
repeated until exactly one or zero simulation particles are left in the finest subdivision,
i.e., the leaves of the tree; this is illustrated schematically in two dimensions in Fig. [4]
The above-mentioned particle groups are then defined as all simulation particles within a
specific node of the resulting tree. Leveraging this structure, the computational speed-up
is achieved by approximating the gravitational forces of distant particle groups on a
given particle by using multipole expansions at a coarser level of the tree, resulting in an
O(N log N) complexity (Appel [1985; |Barnes & Hut||1986; Springel |2010b)).

Figure 4: Schematic visualization of the Barnes & Hut/ (1986) octree subdivision of space,
represented in two dimensions. The root node enclosing all particles, shown on the left, is
iteratively subdivided until the final child nodes only contain exactly one particle each, as
shown on the right. Empty nodes containing no particles are discarded and not further
subdivided in the process. This figure was obtained from [Springel et al. (2001)).

Serving as a fundamentally different approach, the second group of methods to compute
the gravitational forces in N-body simulations instead aims to solve the differential form
of Poisson’s equation (Eq. (L6])).

Typically, this is achieved through the use of mesh-based methods. In the simplest case, the
mesh is essentially a Cartesian grid, i.e., a lattice-like structure discretizing the simulated
spatial domain into cubes of equal volume. In the particle-mesh method (Hockney &
Eastwood |1981; [Klypin & Shandarinl/[1983b)), the gravitational potential acting on each of
the simulation particles is then determined by solving Eq. in Fourier space,

k2®(k) = —4nGp(k) . (34)

Here, k is the wavevector and k = |k| the wavenumber, while ® and j denote the

Fourier-transformed gravitational potential and Fourier-transformed density, respectively.
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Notably, a Cartesian mesh allows a numerically highly efficient solution of Eq. (34), as it
enables the use of fast Fourier transform (FFT) algorithms. Provided this structure, the
approach leads to a computational complexity of O(N log N) of the particle-mesh method,
where N represents the number of cells defined by the mesh (e.g. [Vogelsberger et al.|2020).
As an alternative to the FFT approach using a Cartesian grid, so-called multi-grid or adap-
tive mesh refinement (AMR; Kravtsov et al.|[1997) schemes are also commonly employed
(e.g.|O’Shea et al[2004; Bryan et al|2014)) in the context of the particle-mesh method. In
this case, the mesh is constructed to have an octree-like structure, allowing a finer mesh
spacing (i.e., increased numerical resolution) in key areas of interest, such as high-density

regions within the simulation volume (e.g. [Vogelsberger et al.|[2020)).

Finally, hybrid gravity solvers combine aspects of both the methods solving the integral
form of Poisson’s equation and those solving its differential form, i.e., mesh-based methods.
Essentially, these hybrid approaches aim to strike an optimal balance between compu-
tational efficiency and accuracy of the force calculation by employing direct summation
techniques (e.g., particle-particle schemes and tree-based algorithms) to model short-range
gravitational interactions, while using mesh-based methods (e.g., FFT-based particle-mesh
method) to model long-range interactions (Efstathiou et al.|[1985)).

One of the most widely used (see e.g. [Bode & Ostriker|2003; [Springel |2005; [Hopkins| 2015,
2017; Springel et al|2021]) hybrid methods is the tree particle-mesh ( Tree PM; Xu|/1995;
Baglal[2002) approach, which combines the tree and particle-mesh methods described above
to compute short- and long-range gravitational forces, respectively. Notably, this is the
approach taken by the AREPO code (Springel 2010b; Pakmor et al. 2016 for cosmological
simulations and hence, the approach utilized to numerically model dark matter dynamics
throughout this thesis.

3.1.3 Modeling baryonic matter

One of the key baryonic components of cosmological simulations is astrophysical gas, typi-
cally modeled as an ideal fluid governed by the Euler equations discussed in Sec. [2.2.2) - In
light of the two different formulations of these equations (see Egs. @ and Egs. @

numerical schemes modeling astrophysical gas can also typlcally be classified as elther
FEulerian or Lagrangian approaches; additionally, so-called arbitrary Lagrangian-FEulerian

numerical methods combine the latter two approaches.

As is the case for the analytical description, numerical Eulerian methods utilize a spatially
fixed frame of reference to solve the Euler equations. In practice, this results in grid-based
codes, which solve these hyperbolic PDEs on a Cartesian fixed or adaptive mesh (for a
recent review, see Teyssier|2015)). In the latter case, the resolution of the mesh can be

refined in specific regions based on a set refinement criterion, such as the density of the
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gas. This approach is therefore an example of an AMR scheme (Berger & Oliger| 1984;
Berger & Colellal|1989), which — aside from its uses in the context of N-body simulations
(see Sec. — is commonly employed in Eulerian hydrodynamical codes to accurately
capture the large dynamical range of cosmological simulations (e.g. Bryan & Norman| 1997}
Teyssier|[2002}; [O’Shea et al.2004; Bryan et al.|2014; Moseley et al|[2023; |Andalman et al.
2024).

Conversely, numerical Lagrangian methods take the point of view of an observer ‘comoving’
with the fluid, again analogously to their analytical counterpart, i.e., the Lagrangian
formulation of the Euler equations. To solve the latter, the typical method of choice is
smoothed particle hydrodynamics (SPH; Lucy||1977; Gingold & Monaghan|/1977; see also
e.g. Hernquist & Katz|[1989; [Springel et al.|[2001; |Springel|2010a). This method models
the fluid through discrete sampling particles obeying Eqs. —@. The hydrodynamical
properties, such as the fluid density at a given position x, are computed by smoothing
over nearby particles (e.g. van den Bosch|2020)), resulting in a mesh-free, particle-based
approximate fluid description.

In this scheme, the number density of sampling particles therefore automatically follows
the flow and clumping of gas mass throughout the simulation volume, effectively increasing
the numerical resolution in areas of high density without the need for explicit refinement
schemes. This represents a substantial advantage of Lagrangian methods for capturing
large density contrasts, which commonly occur in the context of cosmological simulations
(e.g. Springel|2010al).

Finally, an arbitrary Lagrangian-Eulerian method has been developed for astrophysical
applications in the AREPO code used throughout this thesis (Springel 2010b). Rather
than employing a static Cartesian mesh, as commonly used in Eulerian codes, or the
mesh-free ‘comoving’ approach of SPH codes, AREPO solves the hydrodynamic equations
on a mowving mesh made up of unstructured cells defined by a Voronoi tessellation, each
enclosing a finite volume of space. Formally, AREPO is therefore classified as a moving-mesh
finite-volume (MMFYV) code (Vogelsberger et al.|2020).

A Voronoi tessellation is a unique subdivision of space into convex, non-overlapping cells
based on a specified set of mesh-generating points. Each Voronoi cell is constructed around
a specific mesh-generating point, and defined as all points in space which are closer to this
mesh-generating point than to any of the other mesh-generating points. The set of all cells
defined by the Voronoi tessellation then form a generally unstructered, irregularly shaped
mesh. An example of such a Voronoi tessellation in two dimensions is shown in Fig. [5]
The mesh-generating points are allowed to move freely in AREPO, and the Voronoi mesh
is reconstructed according to their new positions in each hydrodynamical timestep of a

simulation.
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Figure 5: The two-dimensional Voronoi tessellation for an example set of N = 64 mesh-
generating points (shown as red points), assuming periodic boundary conditions. This
figure was obtained from Springel (2010b).

Formulated with respect to this arbitrarily moving mesh made up of finite-volume cells,

the Euler equations then take the following form for each cell:

d

&/‘/pd\/:—/sp(v—w)-ndS (35)
d
E/vadvz—/Spv(v—w).ndS—/SPnds (36)
d

E/Vpedvf—/Spe(v—w)-ndS—/st-ndS. (37)

Here, V' is the volume of the cell, S the area of the surface enclosing the volume V', n the

normal vector on the surface S, and w the local velocity of the mesh.

The approach described above shares conceptual similarities with both Eulerian and
Lagrangian codes, and can in fact be constrained to run in both Eulerian and Lagrangian
modes.

Firstly, analogously to Eulerian codes, AREPO takes a finite-volume discretization ap-
proach, i.e., it numerically solves the Euler equations by discretizing space into cells, each
with a finite volume and well-defined hydrodynamical properties averaged over the cell.
Specifically, it utilizes a second-order unsplit Godunov scheme (Godunov|1959)) and an
exact Riemann solver (see e.g. Springel [2010b; [Teyssier| 2015| for further details) to solve

the Euler equations — a widely used approach in Eulerian schemes. Notably, this implies
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that for the special case of fixed (w = 0) mesh-generating points regularly spaced on
a Cartesian grid, the MMFV approach is equivalent to a typical Eulerian finite-volume
method on a static grid.

However, a Lagrangian mode of operation can also be achieved by allowing the mesh-
generating points to move along with the fluid, i.e., by setting their velocity equal to the
fluid velocity in each cell (w = v) in the simplest case (Springel/2010b). Similarly to the
ordinary Lagrangian SPH approach, this essentially results in discrete points carrying
the hydrodynamic and thermodynamic information of the fluid along with its flow. In
turn, it inherits the crucial advantage of SPH schemes to automatically increase numerical
resolution in regions of converging flows and therefore, ultimately, in higher-density regions.
This is because, by definition, the Voronoi tessellation of space will result in a smaller cell
size (i.e., higher resolution) in regions with a higher number density of mesh-generating

points, as illustrated in Fig. [6]
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Figure 6: A two-dimensional, regularized Voronoi mesh for N = 750 particles distributed
as an exponential disc centered on spatial coordinates © = y = 0 with scale radius ry = 1.0.
The shown mesh structure illustrates the refinement of numerical resolution in regions
with a high density of mesh-generating points in the moving-mesh finite-volume method
of AREPO. This figure was obtained from |Springel (2010b)).
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Besides sharing these numerical methods and advantages with both standard Eulerian and
Lagrangian codes, the flexibility of the arbitrary Lagrangian-Eulerian MMFV approach
allows the AREPO code to avoid well-known disadvantages of these standard methods. For
instance, the MMF'V approach is better equipped to capture hydrodynamic shocks and
fluid instabilities, such as the Rayleigh-Taylor instability, than the Lagrangian, mesh-free
SPH codes (see e.g. Agertz et al.|[2007; Springel 2010b| for further details).

Crucially, it also avoids Eulerian methods’ lack of Galilean invariance, which introduces
numerical uncertainties in the presence of large bulk velocities (e.g. Tasker et al. 2008}
Wadsley et al.|[2008). For example, in cosmological simulations of galaxy formation, it is
common for galaxies to move with relative speeds which far exceed the sound speed of
dense gas within each galaxy. This bulk velocity of a galaxy as a whole — with respect
to the static Eulerian grid — can then introduce difficulties in resolving the fluid flow of
gas within the galaxy, particularly if the latter are several orders of magnitude smaller
than the former. These adverse effects of large bulk velocities can largely be eliminated by
allowing the mesh-generating points and hence, the moving mesh itself, to follow the local

fluid flow as described above (see also Springel [2010b).

Besides the hydrodynamical treatment of astrophysical gas, the GFM of a simulation
crucially determines the numerical modeling of its baryonic component. It encompasses
models of a broad range of physical processes relevant to the formation and evolution of
galaxies, such as star formation and stellar feedback prescriptions, cooling processes of the
astrophysical gas, SMBH seeding and growth, and AGN feedback, among many others (see
e.g. |Vogelsberger et al.|2020). In cosmological simulations encompassing large volumes of
space (e.g., O(Mpc?)), the majority of these processes physically occur on scales far below
the resolution limit and therefore have to be approximated by effective models, referred to
as subresolution or subgrid models. These empirically calibrated models are typically one
of the greatest sources of uncertainty in modern cosmological simulations, and in turn one
of the most significant points in which approaches and results diverge when comparing

different simulation projects or codes (e.g. [Vogelsberger et al.|2020).

Throughout this thesis, we use the lllustrisTNG (Illustris ‘The Next Generation’; e.g.
Springel et al. [2018; |[Nelson et al. [2019) GFM as a common basis for all runsﬁ As a
state-of-the-art update to the previous Illustris model (Vogelsberger et al.|[2013], 2014bla;
Torrey et al.2014), the IllustrisTNG model has been extensively tested and successfully
employed to reproduce numerous detailed properties of the observed galaxy population
(e.g. Nelson et al.|2018, 2021} Springel et al.[2018; [Marinacci et al.[[2018; Naiman et al.

3We note, however, that we also include substantial extensions building on this core model, primarily
through the inclusion of radiation hydrodynamics (see [Kannan et al[2019, |2022a)), as well as through the
code extensions developed in the context of this thesis. These modifications are discussed in detail in the
sections below.
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2018). For instance, it has been shown to produce galaxy sizes (Genel et al.|2018) and
stellar mass functions (Pillepich et al. |2018) in excellent agreement with low-redshift
observations, as well as a realisitic galactic color bimodality (Nelson et al. |2018) and
accurate star-formation histories (Donnari et al.|[2019)). Some of its key numerical models

are outlined in the following.

Firstly, the ISM is treated using a subresolution model describing a two-phase gas, which
consists of a cold phase containing the majority of the ISM’s gas mass in dense clumps,
and a smooth, volume-filling hot phase made up of supernova-heated gas. In practice,
the cold and dense phase is modeled through an effective, polytropic Equation of State
(EoS) of the form T" o p7, i.e., its temperature T is set by the gas density p and adiabatic
index 7 through the EoS (Springel & Hernquist|2003)). This effective model is employed
to overcome the technical challenge of modeling the cold gas directly, as its high density
would otherwise require extremely small time steps to reliably capture its dynamics (e.g.
Vogelsberger et al.[2020).

Further, star formation is treated through the stochastic conversion of cold ISM gas to
stellar particles, constrained by the requirement that this cold gas meets or exceeds a
set density threshold (e.g. |[Nelson et al|[2019). The resulting stellar particles are then
treated as a collisionless fluid (cf. Sec. and evolved dynamically through the use of a
TreePM N-body approach (e.g. Springel 2010b; see also Sec. .

In turn, these stars also provide back-reactions to the surrounding gas, i.e., stellar feedback.
In particular, the IlustrisTNG model includes the effects of supernovae and stellar winds,
which are expected to inject both kinetic and thermal energy into the gas. Additionally,
supernovae at the end of stars’ life-cycles contribute to metal enrichment of the simulated
gas (e.g. [Nelson et al.|2019).

Specifically, the production and evolution of nine different chemical species (H, He, C, N,
O, Ne, Mg, Si, and Fe) including seven metals, as well as the total metallicity of each gas
cell, is tracked in the model. Metal line cooling through these heavier elements, as well as
a range of other density-, temperature-, and redshift-dependent cooling mechanisms, are
modeled accordingly (see e.g. [Kannan et al.|[2022a)).

Finally, SMBHs at the centers of galaxies are also a key component of the GFM, as
they can have a substantial impact on their host galaxy’s properties and evolution —
for instance, by playing a crucial role in regulating star formation in massive galaxies
(e.g. |Sijacki & Springel 2006; [Hopkins et al.|2006; Madau & Dickinson|[2014; Harrison
et al.[[2018). Due to their extremely compact nature, which is not feasible to spatially
resolve directly in cosmological simulations, their effects are also included through effective
subresolution models. Specifically, SMBH formation is modeled through a simple seeding
prescription, which numerically creates a SMBH of a set black hole seed mass at the

center of a halo, once the latter crosses a certain mass threshold. Subsequently, SMBH
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growth is modeled through an idealized Bondi-Hoyle accretion model capped by the
theoretical Eddington limit (see Weinberger et al.|2018). AGN feedback, i.e., injections
of energy and momentum into the gas surrounding an accreting SMBH, is implemented
through a subresolution model operating in either a quasar mode for AGN with a high
mass accretion rate (Springel et al.[2005b), or in a radio mode for AGN with a low
mass accretion rate (Weinberger et al.[2017)). For a more detailed discussion of SMBH
modeling and AGN feedback in the IllustrisTNG GFM, we refer to|Weinberger et al.| (2018)).

To summarize, two key numerical tools underlying the cosmological simulations presented
in this work are the MMFV code AREPO and the IllustrisTNG GFM. Both dark matter
and stellar particles are treated as collisionless fluids and dynamically evolved using the
TreePM approach to the N-body problem. Astrophysical gas is modeled as an ideal fluid
and the Euler equations describing its dynamics are solved on a moving, unstructured
Voronoi mesh in an Arbitrary Lagrangian-Fulerian approach. The GFM accounts for a
wide range of physical processes relevant to galaxy formation and evolution, which are

mostly implemented through the use of subresolution models.

3.2 Numerical radiative transfer and radiation hydrodynamic

simulations

As mentioned in the previous section, the combination of the AREPO code and IllustrisTNG
GFM as numerical ingredients has been extensively tested and successfully used in sim-
ulation projects such as the IllustrisTNG project and the more recent MillenniumTNG
simulations (Kannan et al.[2023; Hernandez-Aguayo et al.|2023; Pakmor et al.|2023).

However, reliable investigations of key high-redshift epochs — in particular, the reionization
of the Universe driven by high-energy radiation — require us to take these numerical models
a step further. This next step, in the form of numerically treating radiation hydrodynamics,

is described in detail in the following.

In the most general case, the dynamics of a radiation field embedded in an expanding
space-time are theoretically described by the general RT equation (Eq. ) as discussed
in Sec. [2.3] However, even the more straightforward classical RT equation,

13]1,
c Ot

+n-VI, =7, —k,pl,, (38)

obtained by neglecting the cosmological terms proportional to the Hubble parameter H
and setting a = 1 in Eq. (31]), is quite challenging to solve numerically. This is in large
part due to the problem’s high dimensionality, requiring a discretization of not only the

four space-time variables (x,t), but also the frequency variable v and the two directional
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angles specifying the unit vector n in the direction of photon propagation (e.g. Petkova &
Springel [2009; Kannan et al.|2019; [Zier et al./[2024)).

Nevertheless, a number of numerical approaches to RT have been established. Firstly,
long characteristic ray-tracing schemes (e.g. |Abel et al.|[1999; Abel & Wandelt| [2002)
cast and propagate rays from each source into the simulation volume, discretizing the
radiation field in individual directions and solving the RT equation along each ray. For high
angular resolutions, this method is remarkably accurate, but computationally expensive
and challenging to parallelize efficiently (e.g. Kannan et al.|2019) in the context of HPC
environments equipped with a large number of CPU cores.

Aiming to reduce this high computational demand by simplifying the problem and improv-
ing its numerical scalability, short characteristic methods (e.g. Whalen & Norman![2006;
Petkova & Springel 2011} |Jaura et al.|2020) have been developed. These schemes also use
the ray-tracing approach described above; however, they only solve the RT equations along
rays connecting nearby cells, rather than along rays cast through the entire simulation

domain.

Serving as an alternative approach, Monte Carlo methods (e.g. |Ciardi et al.[2001; Maselli
et al.|[2003; Semelin et al.|2007; Maselli et al.|2009) emit and propagate so-called photon
packets, which are each representative of a large set of individual photons approximated to
be traveling in the same direction (e.g. Dullemond 2017)), and which sample the continuous
radiation field. The evolution of each photon packet is determined by stochastically probing
the photons’ interaction lengths and scattering angles based on underlying probability
density functions (Kannan et al.[2019). Similarly to the long characteristic ray-tracing
approach, these methods tend to be highly accurate — provided a sufficient number N,
of photon packets — on one hand, but numerically demanding on the other hand. In
particular, numerical uncertainty is caused by the characteristic Poisson noise of Monte
Carlo schemes, leading the signal-to-noise ratio to merely improve in proportion to \/E
This drives the need for a large NN, to obtain an accurate statistical description of the
radiation field at the cost of a high computational demand.

As a consequence, Monte Carlo methods are frequently only applied in RT post-processing
(Vogelsberger et al.|2020), i.e., in RT calculations based on previously existing hydrody-
namic simulations, rather than in on-the-fly RT. In the context of cosmological simulations,
the latter refers to full RHD simulations that numerically account for both radiation
and gas dynamics in each hydrodynamical time step, thereby capturing the co-evolution

and coupling of the radiation fields with the gas according to the RHD equations (see

Egs. (18)-(20)) self-consistently.

Both ray-tracing and Monte Carlo schemes typically scale linearly with the number of
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sources (e.g. Jaura et al.|2018 [Vogelsberger et al.|2020)), resulting in a prohibitively high

computational cost of cosmological-scale RHD simulations with on-the-fly RT.

To still facilitate such simulations — which are crucial to e.g. accurately capture radiation

fields and their co-evolution with galaxies during the EoR (e.g. Kannan et al.[2022a) —

a third approach, moment-based RT, has been commonly employed in recent years (e.g.
\Gonzalez et al|2007]; Petkova & Springel [2009; [Rosdahl et al.|2013} [Rosdahl & Teyssier|
2015; Kannan et al.[2019} 2022al, [2025).

This class of methods solves only the first two angular moments of Eq. , ie.,

0F,

T +V-F, =S5, —k,pE,, (39)
OF,

5 + VP, =—k,pF, . (40)

These RT moment equations are obtained by reducing the specific intensity I, to its first
angular moments: specifically, the radiative energy density E, (zeroth angular moment) is
defined as (e.g. Kannan et al.[2019)

ckE, = 1,dQ (41)

4

the flur F, (first angular moment) as
FyzlgnLdQ, (42)
and the radiation pressure tensor P, (second angular moment) as
&g:AJn®mL@Q. (43)

Here, 2 denotes the solid angle; [, df2 therefore represents an integration over all di-
rections n. Further, Eqgs. and introduce the angular moments of the emission

coefficient j,, where the zeroth moment defines the source function S, as
S, = [ j,dQ, (44)
4

and the first moment vanishes for the assumption of an isotropic emission term (e.g.
Gnedin & Abel 2001)):

/Im@Q:ﬁ/IMon. (45)
4 47

The RT moment equations represent a fluid description of the radiation field (see Egs.
and in comparison to e.g. the hydrodynamical continuity and momentum equations,
Eqgs. @) and ) Similarly to the Euler equations, they form an under-determined set of

hyperbolic conservation equations, requiring an additional constraint to close the system
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of equations (cf. the EoS in the hydrodynamical case; Sec. [2.2.2]).

Providing this additional closure relation, the Eddington tensor formalism is a widely used

approach in numerical RT (e.g. [Vogelsberger et al.|[2020)). Here, the Eddington tensor D is

defined as a proportionality tensor relating the energy density E, to the radiation pressure

tensor P, as (e.g. Kannan et al.[2019)

P,=E,D. (46)

A wide range of methods to estimate D has been developed. For instance, the fluz-limited
diffusion (e.g. Alme & Wilson||1973; Krumbholz et al.|[2007) and optically thin variable
Eddington tensor (OTVET; Gnedin & Abel |2001) approaches compute D by assuming
that the material in between radiation sources and sinks is either completely optically
thick (flux-limited diffusion) or thin (OTVET).

However, since large-volume RHD simulations aiming to realistically model the universe

on cosmological scales are required to capture large gas density contrasts and, in turn,

both optically thick and thin material, these approximations are commonly discarded in

favor of the M1 closure relation (Levermore |1984; see also e.g. |Aubert & Teyssier [2008;
Rosdahl et al.|2013; Rosdahl & Teyssier|2015; Kannan et al.|2019, 2022a). This approach
defines the Eddington tensor according to only local properties of the radiation field (E,

and F,) within each gas cell, setting

1— 1
D= 1" Xp, X

Here,
F,
F|

describes the unit vector in the direction of the local flux F,. The parameter y is defined

as

B 3+4f2 (19)
X5 o/a 32’
where 7|
f=ck (50)

is the reduced flux f, i.e., the magnitude of the flux vector relative to its maximum
magnitude given by the product of the signal speed ¢ and local energy density F,
2019). We note that f is therefore required to obey the condition

0<f<1 (51)

by definition.
Further, to illustrate how the definition of the Eddington tensor given by Egs. @—
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encodes the direction of photon propagation, we note the special cases of (i) an isotropic

radiation field with zero net flux of photons,

f=0
1 2/3 1
2

= X=73 = ]D:—]I+0:§]I,

and (ii) a fully directional radiation field, with all net flux propagating in a single direction 2,

‘N>

ng = :27f:1

= x=1=D=0+np@np =202 .

~

Crucially, the computational cost of moment-based RT with the M1 closure is independent
of the number and distribution of radiative sources, as the Eddington tensor only depends
on local quantities as mentioned above. This makes the approach particularly well-suited
to simulate galaxy- or even cosmological-scale volumes enclosing a large number of sources
(e.g. Rosdahl & Teyssier|2015; Costa et al.|[2018; Kannan et al.|2022a, 2025)).

Therefore, this is the approach taken by the RHD code AREPO-RT (Kannan et al.[|2019; Zier
et al|[2024), the moment-based RT solver extending the MMFV code AREPO (Sec. [3.1.3)),
which forms the basis of the implementations developed in the context of this thesis.
AREPO-RT solves the RT equation using an operator split approach, i.e., it separately solves
the components of Eq. describing (i) source and sink terms and (ii) terms pertaining
to pure radiation transport. The former are captured by the thermochemistry equations,
determining the coupling of the radiation field to the gas of different chemical species as
mentioned in Sec. 2.3} Crucially, this accounts for the processes of photoionization and
photoheating, discussed in further detail in Sec. [3.3.6]

The latter are expressed by the moments of the photon transport equation (Eq. ),

OE,
5 TV F.=0, (52)
OF,
5 +2VP, =0, (53)

which are solved using a finite-volume approach on AREPO’s moving Voronoi mesh (Kannan
et al.2019; see also Sec. and Springel/2010b)).

Specifically, the operator splitting approach taken by AREPO-RT is a Strang split scheme
(Strang[1968)). Here, each RT timestep Atgr first updates the primitive RT variables, £,
and F,, in a half-timestep (Atgr/2) update according to the radiative source and sink
terms (the thermochemistry equations), then performs a full-timestep update based on the
photon transport equations (Egs. and ), followed by another half-timestep update
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based on the source and sink terms. This scheme achieves second-order convergence of the

numerical solution to the RT equation (Kannan et al.|[2019)).

The extremely large speed of light ¢ presents a fundamental challenge to numerical RT
solvers. In particular, since ¢ far exceeds the typical sound speeds of astrophysical gas, the
transition from pure hydrodynamic to radiation hydrodynamic simulations increases the
computational cost dramatically (e.g. [Zier et al.|[2024) due to the smaller RT timesteps
required, Atgr < Atyydro. In order to maximize the efficiency of the code and facilitate
large-volume simulations despite this challenge, AREPO-RT employs (i) RT subcycling and
(ii) the reduced speed of light approzimation (RSLA).

Firstly, RT subcycling (Commercgon et al.[|2014) refers to performing Ny, RT timesteps per
hydrodynamic timestep, where Ng,, > 1. Thereby, the RT timestep Atgr=Athydro/Neub
is set to be smaller than the hydrodynamic timestep Atpyaro. The advantage of this
approach is that it allows a simulation to capture the relevant radiative processes on the
comparatively short timescales involved, i.e. O(Atgr), while reducing the frequency with
which the numerical routines associated with gravitational and hydrodynamic calculations
are called. In particular, it avoids highly time-consuming frequent reconstructions of the
Voronoi mesh in the case of AREPO-RT, substantially decreasing the total computing time
(see [Kannan et al.[2019, App. A). In this work, we employ a typical choice for the number
of RT subcycles, Ny, = 64, providing a good balance between numerical efficiency and
accuracy (Kannan et al.[2022a; Zier et al.|[2024]).

Secondly, the RSLA replaces the physical speed of light ¢ with an effective signal speed
¢ < cin the RT equations, aiming to essentially artificially increase the size of the timestep
Atgr. This approximation is well-justified for problems in which the characteristic velocity
of the system is sufficiently small, v, < ¢ (Kannan et al.2019). Unfortunately, the
latter does not always hold in cosmological-scale RHD simulations of reionization, in
which the speed of ionization fronts in the dilute IGM can approach the physical speed
of light, O(vepar) ~ O(c) > ¢ (e.g. |Rosdahl et al.[2013; Bauer et al. 2015). Nevertheless,
it is frequently necessary to make use of the approximation in reionization simulations —
though we note that in this case, it represents a compromise in physical accuracy — due to
computational constraints. The simulations presented in this work therefore employ the
RSLA by setting ¢ = 0.2 ¢ (following Kannan et al.[2022al).

The use of moment-based RT with the local M1 closure relation — as well as the application
of the aforementioned methods to increase numerical efficiency — has facilitated large-
volume RHD simulations of the EoR over recent years (e.g. (Gnedin/ 2014} Ocvirk et al.
2016, [2020; [Kannan et al. 2022a; |Garaldi et al. 2024]).

Notably, the THESAN simulations (Kannan et al.|2022a; Smith et al.|2022; |Garaldi et al.
2022)) use AREPO-RT in combination with the IllustrisTNG GFM (Sec. to numerically
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model reionization in a large-volume simulation box (length of the cubic box on each
side: Lpox = 95.5cMpc). THESAN further includes an additional dust model, following the
production and destruction of cosmic dust based on empirical relations as described in
McKinnon et al.[ (2016} 2017). This combination of numerical models, which we collectively
refer to as the ‘THESAN model’ in the following, has been shown to successfully match
a wide range of observational data at high redshifts (Kannan et al.|2022a; |Garaldi et al.
2024]; though see also [Kannan et al.|2023; Koehler et al. |[2024] for caveats regarding a
similar numerical model in the context of recent JWST observations).

Crucially, the THESAN model forms the basis upon which the code extensions developed in
this thesis build f

Finally, we note that to further increase the efficiency of the code, AREPO-RT has been
adapted and optimized for GPU-centric HPC architectures by |Zier et al. (2024). For a more
comprehensive description of the AREPO-RT code and THESAN model than summarized
herein, we refer to |[Kannan et al[ (2019, 2022a) for the original CPU-based implementation
and to Zier et al.| (2024)) for the GPU-based acceleration.

Further details of the code and model, which are specifically relevant to one or more of
the code extensions developed in this thesis, are additionally described in the following

sections.

3.3 Implementation of X-ray sources

As mentioned in Sec. [I} high-redshift X-ray sources are crucial for obtaining accurate
predictions of the thermal history of the early Universe. In particular, the most relevant
contributors of soft X-ray photons (photon energy range [0.5keV,2.0keV]) in this context
are AGN, HMXBs, and the hot, diffuse ISM heated primarily by supernovae and stellar
winds (Pacucci et al|[2014} see also Sec. [2.1)).

We note that the contribution of stars is implemented in AREPO-RT using spectra generated
with the Binary Population and Spectral Synthesis code (BPASS; [Eldridge et al.|[2017) as
previously described in Kannan et al. (2022a)). Although stellar sources are not particularly
significant contributors of X-ray radiation (e.g. Haardt & Madau/[2012; see Sec. , their
simulated radiative output is also extended into the X-ray range according to the same
BPASS tables.

In the following, we present the implementation of the X-ray sources mentioned above
into the AREPO-RT code base.

We first describe the extension of the tracked range of photon energies into the soft X-ray
band (Sec. . We then present an overview of how the X-ray sources’ radiative energy

4Strictly speaking, we use an updated version of the core THESAN model, developed in the context of
the THESAN-XL project (Zier et al.|[2025a)).
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is injected into the simulated gas (Sec. [3.3.2)), before describing the underlying spectral
energy distributions (SEDs) and luminosities of each of the modeled sources in detail
(Secs. 3.3.5). Finally, we discuss the computation of photoionization cross-sections,

photoheating rates, and mean photon energies based on the different source spectra

(Sec. B39).

In practice, including the new X-ray implementation is controlled by adding the compile-
time flag #define MRT_XRAY to the configuration file (Config.sh) of the AREPO code.
Additional related configuration options were also defined and implemented in this context.
Firstly, we added the option to run with a total of five, rather than six, energy bins (see
Sec. by using the configuration flag MRT_XRAY FIVE BINS.

Secondly, using the flags MRT _XRAY NO HMXB and MRT_XRAY NO_ISM causes the compiler
to exclude the implementations associated with HMXBs and the hot ISM, respectively;
thereby, we added the option of running the code with a custom set of included X-ray
sources.

The source code and header files RT_xray. ccE| and RT_xray.h, which contain the core
parts of the X-ray implementation and source spectra, were added to the code base.
Further, modifications specific to the X-ray models were made to the following existing
files:

(i) RT_init.cc, containing the initialization routine called once at the beginning of each
AREPO-RT run. It defines the energy bin edges in eV (see Sec. and computes
e.g. the photoionization cross-sections, photoheating rates, and mean photon energies
(Sec. in these energy bins based on the spectra of the included sources.

(ii) RT.cc, containing, among others, the function used to inject the radiative energies
from all included sources (see Sec. [3.3.2)) in each RT timestep of a run.

(iii) RT_spectra.cc, which defines the SEDs of the modeled radiative sources (Secs.
3.3.5).

(iv) RT_proto.h, a header file declaring functions used by the moment-based RT solver.

(v) src/allvars.cc and src/allvars.h, declaring (and, partially, defining) variables

accessible to all other files of the code.

Additional modifications were made to the Makefiles controlling the compilation of the
code, specifically to makefiles/modules.make to integrate the new files of the X-ray

implementation into the larger code base, as well as to makefiles/systypes.make and

5Path in the AREPO code base directory: /arepo/src/MRT/RT_xray.cc. The files mentioned in the
following share this base path, unless specified otherwise.
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Template-Makefile.systype to add code compatibility with the GPU partition of the

Narval supercomputerﬂ

3.3.1 Extension of the photon energy range tracked in AREPO-RT

Photon frequencies v — or, equivalently, photon energies e = hr — are tracked in a set of
discrete bins in AREPO-RT.E Using the energy density as an example, Fig. [7| shows an
illustration of the way the primitive RT variables — the radiative energy density £ and
flux F — are therefore stored and processed in AREPO-RT, i.e., in a piecewise-constant

description tracking only the total of each quantity in each bin.

— Binned energy density,
example spectrum (arbitrary units)

Specific energy density

L L PR A L L L1l
10" HI  Hel  Hell107 10°
Photon energy e[eV]

Figure 7: Schematic example spectrum in arbitrary units, illustrating how the radiative
energy density as a function of the photon energy e is tracked within discrete energy bins in
AREPO-RT. The radiative flux is handled analogously. The energy bin edges of AREPO-RT
in the extreme UV range, as well as the ionization thresholds of neutral hydrogen HI,
neutral helium He1, and singly ionized helium He 11, are shown by the gray dotted vertical
lines. Additionally, the edges of the newly added X-ray bins are indicated by the green
dotted vertical lines.

Here, the binned primitive variables E; and F; in frequency bin ¢ with edges [v;, ;1] are

obtained from the monochromatic primitive variables F, and F, (Sec. by integrating

Shttps://docs.alliancecan.ca/wiki/Narval/en; see also the |Acknowledgements| for further details.
"We note that we refer to these bins as ‘frequency bins’ and ‘energy bins’ interchangeably in accordance
with typical convention, as the definitions only differ by a constant factor, i.e., the Planck constant h.
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over the specified frequency range, i.e.,

Vit1
Ei = Eu dV s (54)

Vi

Vit1
F, = / F,dv. (55)

The RT moment equations for these binned quantities are then given by (cf. Egs.

and (40)

E

%t—IrV-F:S—mEpE (56)
F
aatJchV]P’:—meF. (57)

Here, kg and kg refer to the mean absorption coefficient x, in the range [v;, v;41| weighted
by E, and F,, respectively. Further, the source function S, is binned analogously to the

energy density and flux, i.e.,

S, = / e dv (58)

Finally, as previously described for the monochromatic case (Eq. ), the binned radi-
ation pressure tensor P; is defined via the Eddington tensor D as P; = E; D, where D is
computed using the M1 closure relation (Eq. (47)).

A typical choice for the energy bin edges in the EUV range is defining them based on the
photoionization thresholds of H1, He1, and He11 at the photon energies 13.6 eV, 24.59 ¢V,
and 54.42 eV, respectively (e.g. [Verner et al.|1996]).

This choice is adopted in the original THESAN reionization simulations, which considered
UV photons up to a cutoff energy of 100V, therefore resulting in the following three

energy bins:

Bin 0: [13.6€V,24.59¢€V] |
Bin 1: [24.59¢eV,54.42¢V]
Bin 2: [54.42¢V,100eV] .

To cover the relevant photon energy range up to the soft X-ray band (Sec. , we

introduce the three additional bins

Bin 3: [100eV,200eV] ,
Bin 4: [200 eV, 500 eV] ,
Bin 5: [500 eV, 2000 eV] .
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This definition of the photon energy bin edges is implemented in RT_init.cc in the AREPO-
RT code and illustrated in Fig. [7] We note that while we refer to the newly added bins as
the ‘X-ray bins’ in the following to differentiate them from the existing UV-range bins
of the THESAN model, the standard definition of the soft X-ray band is [500 eV, 2000 eV]
(e.g. Mineo et al.|2012a,bj [Pacucci et al.[2014; Madau & Fragos [2017)); strictly speaking,
only the highest-energy bin (bin 5) therefore covers this range. Additionally, we note that
we implemented the configuration flag MRT_XRAY FIVE_BINS mentioned above to combine
bins 3 and 4 into a single bin covering the energy range [100eV, 500 eV].

The edges of the newly implemented bins were chosen to (i) cover the relevant photon
energy range up to 2keV (Pacucci et al.[2014), (ii) ensure that all bins are approximately
logarithmically evenly spaced with respect to the photon energy (see e.g. Fig.|7)), (iii) reflect
substantial breaks in the X-ray source spectra (at e ~ 200eV for the hot ISM, HMXB,
and AGN, and at e ~ 500eV for HMXB; cf. Sec. Fig. ), and (iv) ensure that the

new bins each contribute a comparable amount of photon energy from the X-ray sources

throughout a simulation (see Sec. [1.1.5] Fig. [22).

3.3.2 Injection of radiative energy from X-ray sources

For all considered sources, the injection of radiative energy into each of the frequency bins
is determined by (i) the shape of the respective source SED ‘(%, illustrated in Fig. 8, and
(ii) the total luminosity output L!3-672900¢V expected from the source type in the complete
energy range considered in AREPO-RT, i.e., [13.6¢eV,2000¢eV].

Specifically, in the context of the code’s RT initialization (RT_init.cc) at the start of a
run, each source SED is numerically integrated with respect to the photon energy within
each of the intervals specified by the energy bins. Dividing the resulting value for bin ¢ by
the integral of the SED over the entire energy range of [13.6 eV, 2000 ¢eV]| then determines
the fraction z.; of this source’s radiative energy output injected into bin i (presented in
Table [1] for each of the source types and energy bins).

Consequently, the luminosity in bin ¢ is given by
Li = Tey L13.6—2000€V ’ (59)

i.e., scaled by the appropriate energy fraction based on the shape of the SED.
During an RT time step Atgr, this finally results in the following radiative energy injected
into bin i:

By = z,; L136-2000V Agp (60)

In practice, this injection of energies is carried out during an AREPO-RT run by calling the

function add_xray_fluxes() (defined in RT_xray.cc) in RT.cc.
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Figure 8: Spectral energy distributions of key high-redshift X-ray sources as a function
of the photon energy e. This figure shows the spectral shapes in arbitrary units; the
final normalizations are set by the luminosities of the corresponding sources (see text for
details). The spectrum of the hot interstellar medium (ISM, purple curve) is modeled by
a thermal bremsstrahlung profile with characteristic energy kgTism = 240eV (Mineo et al.
2012b; |Pacucci et al.|[2014). For high-mass X-ray binaries (HMXB, red curve), we use the
intrinsic z ~ 10 spectral energy distribution from [Fragos et al. (2013bl 2016). Finally, we
use the spectral energy distribution given in |Shen et al. (2020) to model radiation from
active galactic nuclei (AGN, orange curve).

Vertical dotted lines indicate the energy binning used in this work, cf. Sec. [3.3.1] as noted
in the caption of Fig. [7]

The specifics of the underlying SEDs and luminosities for each of the X-ray source types

are described in the following.

3.3.3 Hot interstellar medium

The emissions of the diffuse, hot interstellar medium, heated by supernovae and stellar
winds, are modeled using a thermal bremsstrahlung SED (Pacucci et al.|[2014; see also
Eide et al.|2018) of the shape

dLISM(G) B 1 , € < kBTISMa
3., -3
de (L> , e > kpTism -

kpTism

(61)
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Table 1: Fraction z.; of the total radiative energy of each of the X-ray sources injected
into each of the energy bins.

Energy bin Zei, ISM - 2z ;, HMXB  z.,;, AGN

[eV] (%] (%] (%]
13.6 — 2459  3.19 0.07 36.96
24.59 —54.42  8.66 0.23 35.21
54.42 —100.0  13.23 0.44 15.72
100.0 —200.0  29.02 1.24 6.89
200.0 — 500.0  38.38 23.24 2.06
500.0 — 2000.0  7.52 74.79 3.15

Specifically, we assume a flat spectrum (i.e., spectral index aw = 0) for the hot ISM’s SED at
lower photon energies, describing the approximate spectral shape of thermal bremsstrahlung
emissions below the characteristic thermal energy threshold kg7 (e.g. Rybicki & Lightman
1979)), where kp denotes the Boltzmann constant. Above the characteristic thermal energy,
we assume a drop-off of the SED with spectral index o = 3, resulting in the relatively soft
X-ray spectrum (Mineo et al.|2012b; |[Pacucci et al2014) illustrated in Fig. .

This thermal bremsstrahlung profile, which we implemented in RT_spectra.cc in AREPO-
RT, has been shown to be a well-suited effective model for the SED of the hot ISM (e.g.
Pacucci et al.|[2014). Further, the latter’s mean thermal energy for a typical galaxy —
serving as the characteristic thermal energy threshold in Eq. — has been determined as
(kgT) = 240 eV by Mineo et al|(2012b) using Chandra (Weisskopf et al.[[2000]) observations

of nearby galaxies’ diffuse X-ray emissions.

The normalization of this spectrum, described in relative units in Eq. , is set by an
empirical estimate for the intrinsic luminosity of the hot ISM per star formation rate
(SFR). In the photon energy band [0.3keV, 10keV], [Mineo et al. (2012b) estimate this

scaling of the intrinsic luminosity with the SFR as
LI 0% Y [ergs™!] = (7.3 £ 1.3) x 10 - SFR [Myyr '] . (62)

This value has been corrected for both Galactic and intrinsic absorptions, i.e., absorptions
of the hot ISM’s radiation within both the Milky Way and the respective observed galaxy
itself (see Mineo et al.[2012b| for further details).

We rescale this value to the photon energy band [13.6eV, 2keV] using the thermal
bremsstrahlung SED given by Eq. . Specifically, we integrate the SED with respect
to e in the energy ranges [0.3keV, 10keV] and [13.6eV, 2keV] to obtain Ly} 13" and
L%gﬁ;gf)ooev, respectively, in the relative units of Eq. . We then compute the factor

converting the luminosity from the former energy range to the latter, based on the thermal
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bremsstrahlung SED, as
7,13.6-20006V

ISM,rel
7,03 10keV =4.4919. (63)

ISM,rel
As a cross-check, we performed this SED integration both numerically and analytically,
verifying the value of the conversion factor given in Eq. .
Rescaling the mean value cited in Eq. by this factor, we obtain the following scaling

for the intrinsic ISM luminosity in our energy range:
L1820V erg 571 = 3.3 x 10" - SFR [Mg yr ] . (64)

Finally, the radiative energy input from the hot ISM in each bin, injected during the RT
time step Atgr, is determined by Eq. for each active cell, using Eq. and the cell’s
current SFR as tracked by the code.

3.3.4 High-mass X-ray binaries

We employ the tabulated values from Fragos et al.| (2013b) (erratum: |Fragos et al.|[2016])
for the intrinsic HMXB SED ‘%‘%1‘407?:)@, which are based on a large-scale population
synthesis simulation (Fragos et al.[2013a) modeling the evolution of X-ray binaries using
the StarTrack code (Belczynski et al.| 2002, 2008). Specifically, we use the z ~ 10
intrinsic SED from [Fragos et al. (2016)@, as the shape of the SED is approximately
redshift-independent (Fragos et al.|2013b)). We linearly interpolate the tabulated values
for d%%;“;’)@ to obtain the spectrum as a function of energy. In case the photon energy for
which we require the spectrum exceeds the energy range of the tabulated values, we use the
minimum and maximum value, respectively, for energies below and above the given range.
We note that in our implementation, this only affects the small range [13.6 eV, 14.22 eV],

as 14.22 ¢V is the minimum photon energy tabulated in Fragos et al| (2016).

dLuvxs(e) to dLpnvxs(e)
d(loge) de

spectral shape is plotted in Fig. [§

Subsequently, we convert from using d(loge) o< de/e. The resulting

Similarly to the hot ISM, the luminosity contributions from HMXBs are scaled linearly
with the SFR; however, this scaling is additionally dependent on the metallicity Z of newly
formed stars (Fragos et al.|2013b; Madau & Fragos|[2017). We employ the Madau & Fragos
(2017) parametrization for this metallicity dependence (see Fig. E[), which estimates the
logarithm of the HMXB luminosity Lyyvxs per SFR by an eighth-order polynomial in 7,

8
IOg(LHMXB/SFR) = Z 51 Zi s (65)
i=0

8The corresponding tabulated values were obtained from the machine-readable table available at https :
//content.cld.iop.org/journals/2041-8205/827/1/L21/revisionl/apjlaa2elbtl_mrt.txt.
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with the polynomial coefficients (3, ..., s for the intrinsic luminosity Lijien" in the
energy range [2keV, 10keV] given in Table 1 of Madau & Fragos| (2017).

To be representative of the metallicity of newly formed stars in this context, we use the
gas metallicity, tracked as a property of each cell, rather than the stellar metallicity to
evaluate Linivn” /SFR.

Further, in order to save computing time — since this calculation of Liyivr"/SFR is
required for each active, star-forming cell in each RT time step — the computation of
the eighth-order polynomial is replaced by an interpolation of log(Lpyyxs/SFR) from 100
precomputed evaluations of Eq. covering metallicities within the range 0 < Z < 0.025.
For metallicities exceeding this range (Z > 0.025; see [Fragos et al. 2013b), we set

1041
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Figure 9: The high-mass X-ray binary (HMXB) luminosity per star formation rate (SFR)
as a function of the metallicity Z of newly formed stars, based on the parametrization given
in Madau & Fragos| (2017) and rescaled to the energy range [13.6 eV, 2keV| of AREPO-RT.

The result is then rescaled to the energy range of AREPO-RT, analogously to the case of the

hot ISM described above. Here, we numerically integrate the |[Fragos et al. (2013b, [2016)

SED with respect to log e to compute L%{l\/}g]ﬁe’\r@l and L%ﬁfgé?fe(f V. The resulting luminosity

rescaling factor, converting from the [2keV, 10 keV] energy range to our [13.6eV, 2keV]
range, is given by

7,13:6-2000eV

e — = 1.7369 . (66)

L2—10 keV
HMXB,rel
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We verify the accuracy of our numerical d(log e) integration by additionally integrating
the z ~ 10 Fragos et al.| (2013b) HMXB SED including interstellar absorption over the
energy range [2keV, 10keV] and comparing the result (8.33 x 103 ergs™'Mpc=3) to the
left panel of Fig. 1 of |[Fragos et al.| (2013b).

Using the rescaling factor computed in Eq. to obtain Linoi? /SFR from the
interpolation of Eq. , we calculate the HMXB luminosity in each active cell based on
its respective SFR. The result is then used to compute the corresponding energy input in
each bin during the RT time step Atrr as described by Eq. ; this radiative energy is

subsequently injected into the cell.

3.3.5 Active galactic nuclei

To describe the spectrum of AGN radiation in the EUV range, the original THESAN simu-
lations use the |Lusso et al.| (2015) parametrization, providing an estimate for wavelengths
A > 600 A (photon energies e < 20.66 V).

In order to also reliably obtain the spectral shape in the range of the added X-ray energy
bins, we instead use the AGN SED parametrization given by [Shen et al.| (2020)). We linearly
interpolate their tabulated Valuesﬂ for log(vL, lergs™']), where L, = 9, analogously to
the HMXB SED (Sec. and subsequently convert this to L, [ergs™ Hz™1].
Additionally, the SED is normalized using the condition [;° L, dv =1 by integrating the
SED over the entire tabulated frequency range, [3.16 x 102 Hz, 4.83 x 10?° Hz] (corre-
sponding to an energy range of [0.013eV, 2.00 MeV]). This results in a normalization factor

of 2.2156 x 10 ergs—!, by which we divide the SED values L,.

We note that this procedure differs slightly from the manner in which the SED shape is

set in Secs. |3.3.3| and |3.3.4| —1i.e., as % in relative units — to ensure compatibility with

existing parts of the implementation of AGN radiation in AREPO-RT.

Further, the computation of the bolometric AGN luminosity, which is scaled with the
SMBH mass accretion rate in the THESAN model (Weinberger et al.[2018; Kannan et al.

2022a)), is not modified in the context of the X-ray implementation.

3.3.6 Photoionization and photoheating rates

Modeling the coupling of the energy injected by radiative sources, such as stars and
the X-ray sources discussed above, to the simulated gas is a crucial component of RHD
simulations (Sec. . In particular, photoionization of the chemical species H1, Hel,
and HeIr and the associated photoheating of the gas are key processes in the context of

reionization simulations.

90btained from https://bitbucket.org/ShenXuejian/quasarlf/src/master/data/MySED.dat.
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Table 2: Mean photon energies e in AREPO-RT’s frequency bins based on the different
source spectra of stars, the hot interstellar medium (ISM), high-mass X-ray binaries
(HMXB), and active galactic nuclei (AGN).

Energy bin e, stars e, ISM e, HMXB e, AGN
[eV] [eV] [eV] [eV] [eV]

13.6 — 24.59 18.16  18.56 18.58 17.70
24.59 —54.42  32.04  37.56 38.16 34.68
54.42 —100.0  57.15  74.93 75.64 70.34
100.0 — 200.0 103.05 144.31 146.80 128.49
200.0 — 500.0  203.56 276.46  374.01 294.71
500.0 —2000.0 800.83 714.33  938.95 938.93

In the following, we therefore describe the computation and values of the mean photon
energies e, photoionization cross-sections o, and photoheating rates £ per ionization event
in the AREPO-RT frequency bins. These quantities are computed individually in the
initialization routine RT_init.cc for each of the source types and vary based on the shape

of the underlying source spectrum.

Firstly, the mean photon energy e; emitted by a source in frequency bin i, defined by the

edges [vi, Vi11], is computed as (Kannan et al.|[2019)

Jttdnd, dv

1%
Vi1 4ndy )
I o dy

Vi

where the mean intensity J, characterizes the spectrum of the source and is defined as the
spatial average of the specific intensity I, (e.g. Mihalas & Weibel-Mihalas||[1984, p. 312),

1
J,=— [ I,dQ. (68)
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The mean photon energies computed according to Eq. are presented in Table |2 for all

of the newly implemented X-ray source spectra, as well as for the stellar spectrum.

Further, the mean photoionization cross-section &;; in bin ¢ for chemical species j is

calculated as s
o oy, dy

—~ Vi hv
0ij = ~ i1 4xnJ, (69)
fl’i o ;Tw dV

Here, 0, denotes the photoionization cross-section for species j as a function of the photon
frequency, given by the Verner et al.| (1996]) parametrization in the current version of
AREPO-RT and illustrated in Fig. [3|

The values of 7;; for all source types and chemical species H1, Hel, and HeII are presented
in Table . Additionally, we plot 0;; as a function of the mean photon energies e; for all

sources in Fig. , directly comparing these values to the analytical Verner et al.| (1996)
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Table 3: Comparison between photoionization cross-sections ¢ from the different source
spectra in AREPO-RT’s frequency bins for the chemical species H1, He1, and He1I.

Energy bin o1, stars ou1, ISM ou:;, HMXB our, AGN
[eV] [cm?] [cm?] [cm?] [cm?]
13.6 —24.59 3.32x 107" 3.15x107"® 3.15x107"® 3.55 x 10~
24.59 —54.42  7.00 x 10719 4.88 x 107" 467 x 1079 594 x 10~
54.42 —100.0 1.08 x 1071 5.64 x 1072° 5.48 x 1072°  6.67 x 10720
100.0 —200.0 1.78 x 1072 7.94 x 1072 756 x 1072'  1.07 x 10~
200.0 — 500.0 2.09 x 1072 1.05 x 10721 4.20 x 10722 9.73 x 10722
500.0 —2000.0 4.56 x 1072 549 x 10723 3.39 x 107 3.40 x 10723
Energy bin OHe1, Stars OHer, ISM  oge;, HMXB  oger, AGN
[eV] [cm?] [cm?] [cm?] [cm?]
13.6 — 24.59 0 0 0 0
2459 —54.42 515 x 1071 4.02x 107® 391 x107'® 459 x 108
54.42 —100.0 154 x 107 9.12x 107" 892 x 107 1.04 x 10718
100.0 —200.0 3.65 x 107* 1.76 x 107" 1.68 x 1071 2.31 x 107*°
200.0 — 500.0 5.24 x 1072 2.70 x 1072 1.12x 1072 2,51 x 10720
500.0 —2000.0 1.30 x 1072!  1.56 x 1072  9.68 x 1072 9.71 x 10722
Energy bin OHen, Stars Otierrs ISM 0gen, HMXB  open, AGN
[eV] [cm?] [cm?] [cm?] [cm?]
13.6 — 24.59 0 0 0 0
24.59 — 54.42 0 0 0 0
54.42 —100.0 141 x107'® 7.74x 107" 754x107" 9.04 x 10~
100.0 —200.0 2.73 x 1079 128 x 107 123 x 107" 1.70 x 1071
200.0 — 500.0 3.77x1072° 1.95x 1072% 8.23 x 1072 1.82 x 10720
500.0 —2000.0 1.01 x 1072 1.21 x 102!  7.53 x 10722 7.55 x 1022

photoionization cross-sections used for the underlying computation (Eq. (69)).

To verify the accuracy of the numerical calculations of 7;;, we further perform a test using
extremely narrow frequency bins, each covering a range of A(hv) = 0.1eV and each cen-
tered around the AREPO-RT bin edges (e.g., resulting in the narrow bin [13.55¢eV, 13.65 V]
for the lower edge of bin 0 at 13.6eV). Due to the small range of photon frequencies
covered, the photoionization cross-sections computed in these bins are expected to match
the [Verner et al. (1996) parametrization exactly. We therefore compute ;; according to
Eq. in these narrow bins and plot the results in Fig. accordingly, verifying the

agreement with the Verner et al.| (1996) cross-sections.

As mentioned in Sec. 2.1 the amount of photoheating caused by a photoionization event is
determined by the energy each ionizing photon carries in excess of the species’ ionization
threshold energy hv; ;. Specifically, the total photoheating rate I'; due to species j is

therefore given by

> 4],
F]’ = / T Ojv (h,l/ - hl/t,j) dv .

hv (70)

t,J
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Figure 10: Mean photoionization cross-sections o;; (scatter markers) for all source types
— stars, the hot interstellar medium (ISM), high-mass X-ray binaries (HMXB), and active
galactic nuclei (AGN) — and for chemical species H1, He1, and He1r as a function of the
mean photon energy e; in the AREPO-RT bins. For reference, we also show the analytic
Verner et al.| (1996]) parametrization for these cross-sections o as a function of the photon
energy e (solid, dashed, and dash-dotted curves), as well as the ionization threshold
energies for H1, He1, and Hell (gray dotted vertical lines). Colors indicate the respective
chemical species (H1: purple, Hel: orange, He1l: red), while the marker symbols indicate
the underlying source spectrum (stellar: star markers, ISM: squares, HMXB: diamonds,
AGN: triangles). Further, cross markers in the corresponding colors indicate the results
obtained for ;; in a numerical test using extremely narrow frequency bins (see text for
details).

Within frequency bin 4, the energy &;; injected per photoionization event by the photo-
heating of species j is consequently computed in AREPO-RT as (Kannan et al.[2019)

fl/i+1 MU]'V(}LV - hl/t,j) dv

51" = = hV_ 71
fVVizH %0—]‘” dy ( )

The resulting values for &;; for all source types, and for photoionization events of the
chemical species H1, Hel, and He1l, are presented in Table [d]l We note that, as expected,

this comparison of &;; for the different source types shows one of the key points made
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Table 4: Comparison between the mean photoheating energies £ injected per ionization
event, calculated using the different source spectra in AREPO-RT’s frequency bins for HT,
He1, and HeTr.

Energy bin Euy, stars &y, ISM &y, HMXB  &yy, AGN

[eV] [eV] [eV] [eV] [eV]
13.6 — 24.59 3.24 3.56 3.54 2.87
24.59 — 54.42 15.63 18.89 19.33 17.02
54.42 — 100.0 42.99 54.84 55.48 51.48
100.0 — 200.0 89.21 114.41 116.24 104.38
200.0 — 500.0 189.77 229.35 300.07 230.31
500.0 — 2000.0 601.15 580.22 635.72 635.85
Energy bin EHer, stars  Exer, ISM e, HMXB  Eger, AGN
[eV] [eV] [eV] [eV] [eV]
13.6 — 24.59 0 0 0 0
24.59 — 54.42 5.51 9.54 10.06 7.28
54.42 — 100.0 32.13 45.13 45.79 41.49
100.0 — 200.0 78.25 104.81 106.72 94.25
200.0 — 500.0 178.79 219.33 291.41 220.68
500.0 — 2000.0 591.75 570.36 627.20 627.28
Energy bin EHen, stars  Exen, ISM Exen, HMXB  Exen, AGN
[eV] [eV] [eV] [eV] [eV]
13.6 — 24.59 0 0 0 0
24.59 — 54.42 0 0 0 0
54.42 — 100.0 2.21 14.55 15.20 11.07
100.0 — 200.0 48.41 74.65 76.55 64.18
200.0 — 500.0 148.96 189.90 262.83 191.45
500.0 — 2000.0 564.07 542.01 600.81 600.82

in Sec. regarding X-ray heating: the sources with a harder spectrum, i.e., a larger
relative contribution at high photon energies ([500eV, 2000 ¢eV]), contribute significantly
more heating energy per photoionization event. Specifically, this is evident here for the
harder HMXB and AGN spectra (cf. Fig. [§).

3.4 Piecewise power-law implementation of cosmological red-
shifting

Numerical approaches to RT commonly neglect the effects of cosmological redshifting
(Sec. , described theoretically by a complex, spectrum-dependent term in the general RT
equation (Eq. ); the original THESAN model is no exception to this trend (Kannan et al.
2019, [2022a). The underlying assumption is that all photons only propagate sufficiently
small distances — on the time and length scales considered — for the Universe’s expansion

to be negligible in the time between each photon’s emission and absorption (e.g. |Gnedin
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& Ostriker||[1997). This is typically a fair approximation for EUV-range photons (e.g.,
13.6eV < hr < 100eV in the THESAN model; [Kannan et al.|[2022al) due to their large
ionization cross-sections with the astrophysically abundant H1, He1, and He 11 gases (see
Fig.|3). However, as noted in Sec. , X-ray photons have substantially longer mean free
paths; consequently, this assumption breaks down at higher photon energies. Here, the
effects of cosmological redshifting become more pronounced, motivating the development

of numerical methods capturing this process.

We present two distinct methods addressing this, which have been newly implemented into
AREPO-RT in the context of this thesis. Specifically, the key functions modeling redshifting
are contained in the newly added file RT_redshift.cc, and the inclusion of redshifting in
the code is controlled by the compile-time flag MRT_REDSHIFT in AREPO’s configuration file

Config.sh. Additional modifications were made to the following previously existing files:

(i) RT_init.cc (see Sec. , to compute the average photon frequency in each bin
(Eq. (87)) once in the RT initialization routine.

(ii) RT_run.cc, the main file containing the steps taken in each RT timestep during a run
(e.g., thermochemistry calculations) in the CPU version of AREPO-RT (Kannan et al.
2019). The main redshifting function is called in this file at each hydrodynamical
timestep, provided MRT_REDSHIFT is active. We note that we implement redshifting
on the hydrodynamical timesteps, rather than the RT timesteps, as redshifting only

has a meaningful impact on photon energies on large timescales (> O(Atgr)).

(iii) gpu/RT_gpu_run.cu, written in the CUDA programming language for the GPU-
accelerated version of AREPO-RT (Zier et al|2024); roughly speaking, the GPU
equivalent of RT_run.cc. This file calls the main redshifting function in runs per-
forming the RT calculations on GPUs. We note, however, that the computations
specific to the redshifting implementations are nevertheless carried out on CPUs in
such runs; they are merely integrated into the larger RT GPU implementation in
this file.

(iv) RT.h, a header file modified to include the declaration of the main redshifting function.

(v) src/allvars.cc and src/allvars.h (see Sec. , declaring redshifting variables

to ensure they are accessible across all files of the code.

(vi) src/timer.h, creating a timer (CPU_RT_REDSHIFT) implemented to measure the com-
putational cost of the redshifting methods. This primarily served as a numerical check
confirming that neither redshifting method significantly increases the computational

cost of simulations with AREPO-RT.
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Finally, the Makefiles controlling the compilation of the code were modified to integrate

the new file RT_redshift.cc into the rest of the code base in makefiles/modules.make

(cf. Sec.[3.3).

In this section, we first discuss a numerical redshifting method based on a piecewise
power-law (PPL) approximation of the photon spectrum, as well as our implementation of
the method into AREPO-RT.

This PPL approach is primarily based on an existing method proposed by Finlator et al.
(2009). It has previously been successfully used to capture the redshifting evolution
of an inhomogenous UV background, resolved by 24 frequency bins in the EUV range
[13.6€V, 136 V], in the Technicolor Dawn reionization simulations (Finlator et al.|2018]).
We caution, however, that the typical THESAN setup using AREPO-RT has a substantially

lower frequency resolution, covering a comparable photon energy range in the EUV with

only 3 frequency bins (Sec. [3.3.1]).

3.4.1 Comoving rescaling of the cosmological RT equations

As derived and described in detail in Sec. 2.3 the most general RT equation including
cosmological terms is given by Eq. , where the terms proportional to the Hubble
parameter H are of a cosmological nature: the term proportional to 31, accounts for the

dilution of the number density of photons, while the term proportional to V%Ilj describes

the effect of ongoing cosmological redshifting.
Implementing the latter in numerical radiative transfer is challenging, since it requires
information about the photon spectrum (i.e., the radiative intensity as a function of

frequency), while numerical RT solvers necessarily only track a discretized version of the
spectrum in a finite number of frequency bins (see e.g. Fig. [} Sec. [3.3.1).

The cosmological dilution term, on the other hand, can be implemented more simply by a
rescaling of the specific intensity and emission coefficient (Wu et al.|2019; Kannan et al.
2022a)). By defining the rescaled, or comoving, specific intensity as I, = a3, and the
rescaled emission coefficient as j/, = a®j,, the partial derivative of I, with respect to time

t in Eq. can be rewritten as

ot -

o, 0
ot ot (

a_?’f’) =-3aHI +a

v

(72)

After inserting Eq. into Eq. and expressing the result in terms of the rescaled

quantities, the modified general RT equation follows,

10’ n H oI
el 2 Wl v/ (A v
c@t+a Vi c ”au

= Jy = fwpl, . (73)
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A direct comparison of Egs. and shows that this rescaling automatically accounts
for the cosmological dilution of the specific intensity by substituting I, and j, with the
comoving quantities I/, and j/; only the classical terms and the cosmological redshifting

!

oI
term, now o v ¥, remain in the equation.

Using the definition of the rescaled specific intensity given above and the fact that the
cosmological scale factor a = a(t) is independent of the direction n, it follows that the
rescaled angular moments of I, (see Sec. are simply given by E! = a*E,, F/, = a*F,,
and P/, = a®P,. Similarly, the form of the rescaled source function S/, = @3S, follows from
the definition of the rescaled emission coefficient j/, = a%j,,.

With this, the zeroth and first angular moments of the RT equation with cosmological terms

and comoving rescaling can be computed analogously to the classical case (Egs. —),

OE, 1 OF!

~V-F — Hv e 4
BN + av v By =S, —kypkE, (74)
oF ¢ OF’
v L SO Hy S — g pF

Finally, in the frequency bin convering the range [V, Viy1], the rescaled cosmological RT
moment equations are then given by (cf. Eqs. ) and .

OF 1 OF!

SV F - H/ St dv =5 —kpp B (76)
F/ 2 Vit1 F/
aat C—VIP)’ H/ o0 SEdv = —rppF (77)

where E’, F/, and P’ are defined analogously to their non-rescaled counterparts (Sec. (3.3.1])
and P. Egs. and represent the form of
the equations we aim to numerically solve in AREPO-RT in the context of this redshifting
method.

as the frequency integrals of £/, F’

v

3.4.2 Piecewise power-law spectrum approximation

To compute the redshifting terms in Egs. and given only the values for the total
energy density, flux, and radiation pressure in each bin, an additional assumption about
the intensity spectrum is necessary, as the partial derivative with respect to v cannot be
directly computed from these discrete values alone.

~“ where

For this purpose, we assume a PPL spectrum for the intensity, i.e. [, o v
the spectral index « is computed separately in each frequency bin and at each point in
discretized space-time, i.e. in each cell, at each hydrodynamical timestep. Generally, a
PPL spectrum is expected to be a good approximation for realistic photon spectra for an

appropriate choice of the frequency bin edges at the typical sharp transition regions of the

49



3 NUMERICAL METHODS AND IMPLEMENTATIONS

spectrum for UV photons (e.g. Baumschlager et al.2023), i.e., at the ionization thresholds
of H1, He1, and He1r.

The PPL approximation substantially simplifies the redshifting term (Finlator et al.[2009,
2018). Assuming an isotropic spectral index «, it follows that the spectra of the comoving
energy density and flux are also described by a power law in each frequency bin, E! oc v~
and F!, oc v=. Setting F/, = Cv~*, where C' is an arbitrary proportionality constant, the

redshifting term of Eq. becomes proportional to

/%1 v OF, dv = /%Hl 0 (C’IJ_O‘) dv

ov Yov
Vit1
:/ V- (—aC’z/_a_l) dv
v Vit1
= —« Cv “*dv
y;/z‘+1
= —a E, dv
= —aF. (78)
Using F!, oc v, it follows analogously that
v; F’
/V | " aa; dv = —aF’ . (79)

Therefore, the PPL approximation reduces Egs. and to

OFE" 1

5 +5V-F’:S’—(/<Epc+Hoz)E’ (80)
OF' 2

5 +%VIP":—(/£ch+Ha)F’. (81)

The redshifting term is fully described by the spectral index « in this approximation.
The numerical implementation of Egs. and is straightforward and analogous to
isotropic absorption (note the formal equivalence of the cosmological terms o< H to the

absorption terms o« kg, p).

Specifically, we implemented this approach in the function mrt_redshift_photons_PPL()
in AREPO-RT, defined within the newly added file RT_redshift.cc. To ensure numerical
stability, we employ an implicit scheme (e.g. [Press & Teukolsky| 2007, p. 931f.): we

discretize dE
| =—HoE (82)
redshift
from Eq. as
AE' = £+At — E; = —At- HO‘E£+At ) (83)
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where At denotes the numerical timestep and AE’ the associated update of E’ during
this timestep. The implicit formulation is obtained by evaluating the right hand side of
Eq. in terms of the updated value Ef, 5,. This updated value is therefore computed

numerically as

! a (1+ At Ha) = E|
L

= Eiin = 1+AtHa

(84)
We note that this ensures that Ej ., — 0 for At — oo, rather than approaching unphysical
negative energy densities.

Finally, each component Fj (j = 1,...,3) of the flux F’ is updated analogously,

/
/ Fjjzt

F -t
FHAT L AtHa (85)

resulting in an implementation formally equivalent to isotropic absorption.

The key remaining challenge is therefore to obtain an estimate for the power-law spectral
index « from the discrete, low-resolution spectrum tracked in AREPO-RT (see e.g. the
example spectrum plotted in Fig. [7)).

We approach this for each frequency bin 7 with associated energy density E; by considering
the change towards the energy density E; ; of the next-higher frequency bin 7 + 1.
Specifically, the power-law spectral index «; for bin ¢ is computed as the negative slope in

log-space:
log E{ | —log I

(86)

o; = —— — .
log 71 — log 7;

Here, 7 refers to the average of the frequencies in each bin, i.e. for bin ¢ defined by the
frequency range [v;, V1],

U = VZJF;’“ : (87)
This approach is sketched schematically in Fig.
The reasoning behind considering only the slope towards the next-higher frequency bin,
rather than e.g. the average value of the slopes towards the next-lower and next-higher
frequency bin, is that the impact of redshifting at any given frequency is physically in-
dependent of the spectrum below this frequency, since redshifting exclusively decreases

photon energies.

However, we caution in this context that the above approach to estimating the spectral
index « as the power-law slope between frequency bins does not necessarily capture the
slope of the spectrum within the bins accurately. The latter would be closer to the

canonical meaning of a ‘spectral index’ in the context of a power-law spectrum, but is
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Figure 11: Illustration of the computation of the spectral index « from the piecewise-
constant description of the energy density in AREPO-RT, using the same example spectrum
in arbitrary units as presented in Fig. m

unfortunately fundamentally inaccessible from a piecewise-constant, binned description of

the spectrum; in other words, no spectral information is tracked by the code within the bins.

An exception to the above approach of computing o based on the energy density of the
next-higher bin (Eq. ) is necessarily the highest-energy bin. For this case, we instead
use a modified description that assumes a linear decline in photon energy density from
the low-energy edge of the bin towards zero at the high-energy edge. This approach is
motivated by (i) the implicit assumption that the spectral intensity approaches zero for
photon energies above those tracked within the highest-energy bin, and (ii) the fact that
the latter assumption cannot be described by the above power-law approximation, as
Eli_r}%+ log &' = —oo; the linear decline therefore serves as a simple alternative model of a
gradual decline towards zero. We note that, of course, the validity of the assumption made
in point (i) heavily depends on the modeled sources and frequency range in a practical
numerical setup.

The specific form of this linear description is set by the constraint that the total energy
density in the highest-energy bin, computed by integrating over the linearly declining
spectrum, must be equal to the value for E’ tracked by the code, in combination with the

condition that E/ = 0 at the high-energy end. This again results in the moment equations
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of the same form as Eqs. and , however with a value of ay;, now given by

g = 2200 (88)
Vi, — Vi

Here, j; and js refer to the bin edges of the highest-energy bin j.
We stress that this is only one possible option of handling redshifting in the highest-energy
bin; in a practical application of the PPL redshifting method, other methods may be better-
suited, depending on the spectra and abundances of the sources of radiation considered,
as well as the definition of the frequency bin ranges. Other potential options include, for
instance, (i) simply neglecting redshifting in the highest bin (equivalent to assuming a flat
spectrum in this range), (ii) setting the spectral index equal to that of the second-highest
bin (equivalent to assuming a single power-law spectrum across the second-to-highest and
highest frequency bins), or (iii) determining a based on an approximate spectral index of
the SED of a dominant source at high energies (e.g., inferring a spectral index from the
HMXB SED in the soft X-ray range).

In light of the latter option, we note that it is unfortunately not generally a good
approximation to simply use the spectral slope of source spectra as an estimate for a.
The reason for this is illustrated in Fig. : as EUV radiation passes through (partially)
neutral gas, it typically undergoes significant spectral hardening (e.g. Maselli et al.|2009)
due to the strong energy dependence of the photoionization cross-sections of H1, He1 and
He1r (see Fig. |3), as photons with energies closer to the respective ionization thresholds
get absorbed significantly faster.

This spectral hardening can substantially alter the shape of the SED and, in turn, the
spectral index. For example, it is clear from Fig. [12| that a constant o based on the source
spectrum (top curve) would in this case misrepresent the actual spectral shape within
a distance of only a few cells from the source (see Maselli et al. 2009 for details on the
underlying RT implementation). In fact, this approach would even result in the wrong
sign of a within the first few bins as defined in the THESAN model (Sec. [3.3.1).
However, we note that it may still be a well-justified approximation for bins at higher
photon energies, such as those of the soft X-ray band and beyond, due to the significantly
lower photoionization cross-sections of hydrogen and helium in this range (see Sec.
Table . In the scope of this thesis, we leave a more detailed investigation of this potential
approach to future Work.H

10The primary reasons we did not explore this further in the context of this thesis are unrelated
fundamental limitations of PPL-based redshifting in the THESAN model, which are discussed in detail in

Secs. @ and @
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Figure 12: Evolution of the spectral shape of radiation passing through neutral hydrogen
and helium gas, illustrating spectral hardening near the ionization thresholds of H1 and
He1. Specifically, the curves show the spectral energy distribution of a photon packet (cf.
Sec. [3.2]) passing through gas cells simulated with the CRASH2 code (see
2003, 2009), with the curves ordered from top to bottom in the cell crossing order. This
figure was obtained from Maselli et al.| (2009).

3.4.3 Limitations of the approach and slope limiter for the spectral index

There are several significant numerical challenges and limitations associated with the
PPL approach described in the sections above, most of which fundamentally boil down
to the low frequency resolution of the AREPO-RT code in the THESAN model. We note
that the latter is unfortunately a difficult limitation to resolve in the current setup, as the
computational cost of RHD simulations with AREPO-RT scales approximately linearly with
the number of frequency bins; i.e., it is not possible to significantly improve the frequency

resolution without dramatically increasing the computational cost.

The first limitation of the approach is the lack of information about the spectral index
within each bin, as discussed in more detail above.

Secondly, perhaps the most fundamental drawback is that an attempted reconstruction of
the photon spectrum based on only a few values of the energy density in broad bins, as
illustrated in Fig. [IT] is unlikely to capture the true shape and details of the spectrum

accurately. This necessarily leads to a potentially large uncertainty in the value of «.
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Finally, the power-law approximation for «; breaks down for very low energy densities
in either bin ¢ or the next-higher bin ¢ + 1. This can be made clear from Eq. , as
E! — 0 and/or E/,; — 0 lead to a divergent ;. AREPO-RT does set a lower limit for the
minimum photon energy density, MINDENSPHOT = 10~%° in internal energy density unitg'}
to avoid floating point exceptions caused by energies approaching zero and by numerical
uncertainty in the RT solver. However, this low value does not prevent «; from reaching
high values extremely sporadically (as also observed by |[Finlator et al.2018 in the context
of this method), which are fundamentally associated with a large numerical uncertainty

due to the low energy densities involved.

In an attempt to mitigate the impact of the latter problem, we follow the approach of
Finlator et al.| (2018)) and introduce a slope-limiter for the spectral index by enforcing
la] < 10 in the code[?]

The impact of this slope limiter is investigated and discussed in further detail in the
context of test runs presented in Sec. [4.2]

3.5 Effective energy-rebinning approach to cosmological redshift-
ing

Due to the aforementioned limitations of the PPL method, we explore a fundamentally
different approach to numerical redshifting in the following. This alternative approach is,
to the best of our knowledge, a conceptually new method developed in the context of this
thesis, which we refer to here as ‘effective energy-rebinning’ (‘EER’).

This method has been implemented in the same file as the PPL redshifting approach
in AREPO-RT, i.e., RT_redshift.cc. The integration into the larger code base and the

additional modified files are therefore identical for the two redshifting methods (see the
description provided in Sec. .

The central idea of the method is that the gradual ‘shift’ of the photon spectrum, progressing
towards lower energies due to cosmological redshifting, can equivalently be modeled by
effectively shifting the energy bins towards higher energies. In other words, the approach
is to imagine keeping the photon spectrum — which, physically, would be shifted by the
energy Aey, = —h|Av(v)| — fixed, but shifting the bin edges by the opposite amount,
Aeys pins = h|Anyg(v)|, effectively rebinning the spectrum. We note that we refer to this as
only an ‘effective’ rebinning, since the physical values of the energy bin edges (e.g., 13.6 €V,

24.59 €V, etc.) remain fixed in the implementation.

"The internal energy density units correspond to a physical value of [E] = 6.18 x 10°2 erg ckpe™ in all
test runs discussed below (Sec. .

12We note that this is a slightly more strict condition than employed in [Finlator et al.| (2018)), who set
only the lower limit o > —10.
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Figure 13: Schematic illustration of the effective energy-rebinning approach to numerical
redshifting, showing a binned sample spectrum (orange bars) in arbitrary units for two
adjacent frequency bins, i.e., bin ¢ and bin ¢ + 1 with associated specific photon number
densities NV, ; and N, ;+1. The solid gray vertical lines indicate the bin edges, while the
dashed red vertical lines illustrate the effective ‘rebinning’ for bin ¢, shifting the bin edges
by the photon energies h |Avyg ;| and h |Avyg ;11| (see text for details). Finally, the hatched
red and yellow shaded areas represent the total photon number density redshifted out of
and into bin 7, respectively.

This idea is sketched schematically in Fig. where the gray vertical lines show the
original bin edges, and the red vertical lines represent the imagined ‘shifted’” bins.
Here, the size of the energy shift Ae.s of the bins is simply determined by the size of the
timestep At, since the relative change in photon frequency due to redshifting is equal and
opposite to the relative change in the scale factor a (cf. Eq. ), ie.,

Avyg Aa(At)

R (89)

Noting that Arv < 0 and Aa > 0 in an expanding Universe, it follows that the energy shift
of the bins is given by

A
Aerspins (V) = h | Av(v)| = h === .

(90)
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To estimate the amount of energy that should therefore be transferred into and out of bin
1, we first switch from the previously used description of the radiation field in terms of the
energy density E; to a description in terms of the photon number density N;. This step
is taken in order to account for the fact that redshifting is a photon number-conserving
process, rather than an energy-conserving process.

We obtain the approximate (comoving) photon number density by dividing the comoving
energy density by the mean photon energy e; in bin 1,

j\/’zzg (91)

€
Analytically, N; is given by the integral of the monochromatic photon number density N,
over the bin’s frequency range [v;, v;41] (cf. Eq. (54)), i.e., by the area under the curve of
the spectrum N, = N, (v). However, only N; can be obtained by E!, which is tracked by
AREPO-RT; neither the exact shape of the spectrum, nor the values of N, at the frequency
bin edges (labeled as N,,; and N, ;41 in Fig. , are known during a run.
To still estimate N,,,i and Nu,i+1 for the sake of the redshifting calculation, we therefore
approximate the spectrum as piecewise-constant, as illustrated by the rectangular, orange-
shaded bars of Fig[I3] A is then represented by the areas of these orange-shaded bars,
covering the frequency range [v;, v;11]; consequently, NV, ; (represented by the height of the
bars) is estimated in our implementation as
N, = L . (92)
Vit1 — Vi

With this, we can then compute the amount of photons lost from bin ¢ as the area under
the spectral curve — estimated as N,; = const. — in the frequency interval given by
Vi, vi + |Avsil ], 1ee,

AM,lost = Nl/,'i -h |Ayrs,i| . (93)

This is illustrated by the red hatched rectangle in Fig. [I3]
Further, we set the amount of photons gained by bin ¢ as equal to the amount of photons
lost by bin i + 1 (yellow hatched rectangle in Fig. ,

A-/\[i,gained = AN;*’*l,lOSt = Nv,i+1 -h |Ayrs,i+1| . (94)

Crucially, this ensures that our approach is fundamentally photon number-conserving.
Converting the photon number densities back to energy densities in a final step, the net
effect of redshifting on E! in our implementation can be summarized as follows for a
timestep t — t + At:

A-/\/’i,lost - AM ,gained

€;

£,t+At = Ez{,t - (95>
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We note that we enforce all updated values of E! to remain at or above the set value for the
numerical minimum energy density MINDENSPHOT (Sec. by setting £/ = MINDENSPHOT
if Eq. results in £’ < MINDENSPHOT.

Finally, the comoving flux F in bin ¢ is updated isotropically by the same ratio as the

energy density,

E!
_ Fg’t . i, t+At ' (96)

F;
B

i, t+At
During this step, we ensure that the reduced flux f (Eq. (50)) still obeys the condition
0 < f <1 (Eq. (51); see Sec. for details) in each bin after the update of the flux.
This is done by first computing the value fupdatea that would follow from updating F} as
specified in Eq. ; we then proceed with the flux update if fupdatea < 1. Otherwise, we
instead modify the ratio given in Eq. by dividing by fupdated; i-€-;

!/
Fi,t+At

/
“E T s> 1 on
Similarly to the PPL method, there are different options for handling the highest-energy
bin in this treatment of redshifting. In the test runs presented in Sec. [1.3] we chose to
neglect any radiative energy shifted into the highest bin, instead only modeling its energy
loss to the second-to-highest bin due to redshifting. This is conceptually roughly equivalent
to the approach taken for the PPL method, in the sense that it also neglects all photons
that carry energies exceeding the range of the bins, and that are therefore not tracked by
the code.

One alternative option is to instead assume that an equal amount of energy is shifted into
and out of the highest bin, i.e., effectively assuming a flat spectrum in the corresponding
energy range. This is the most straightforward approach to implement, as it simply results
in no net gain or loss of energy in the highest bin.

More generally, the best way to approach the highest-energy bin depends crucially on
the setup of the simulation or problem under consideration — in particular, on the source
SEDs and modeled frequency range — as also argued for the PPL method in Sec. [3.4.2]
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4 TEST RUN RESULTS

4 Test run results

4.1 Effects of high-redshift X-ray sources

4.1.1 Test run setup

In the following, we present results from RHD simulations of the EoR, testing the X-ray
implementation developed in the context of this thesis and investigating the impact of
high-redshift X-ray sources on the thermal and ionization histories in detail. To this end,

we ran two separate test runs with AREPO-RT up to a final redshift of z = 5.

The baseline run, also referred to as the ‘No X-rays’ run in the following, uses only the
original AREPO-RT code in the THESAN setup with three EUV-range energy bins, covering
photon energies up to 100eV. It only includes stars and AGN as radiative sources, further
using the Lusso et al| (2015) parametrization for the AGN spectrum at lower photon
energies (cf. Sec. . We note that in this EUV range, the latter is very similar to the
Shen et al. (2020) parametrization employed in the run below (see Fig. 1 of [Shen et al.
2020).

The run testing the new X-ray implementation — also referred to as the ‘X-ray run’ or
simply as ‘With X-rays” in figure headers in this section — further uses the methods
described in Sec. 3.3l While it is based on the THESAN model and ran with the AREPO-RT
code like the No X-rays run, it extends the covered spectrum as described in Sec. [3.3.1]
modeling photon energies up to 2keV in six energy bins. In addition to stars and AGN,
it includes the hot, diffuse ISM and HMXBs as X-ray sources as discussed in Secs.
and , respectively. Further, the AGN source SED is updated to the [Shen et al.| (2020))
parametrization (Sec. [3.3.5).

The ICs of both runs are identical and based on the Planck Collaboration et al.| (2020b))
cosmological parameters, set up with GADGET-4 using a gravitational glass initialization
as described in Sec. [3.1.1] The simulation models a cubic volume with periodic boundary
conditions; the box size Ly, describing the length of the cubic volume on a side, is
Lipox = 25cMpc. This is resolved by Npy = 300% = 27000000 dark matter particles,

resulting in a mass resolution of mpy = 1.92 x 107 M.

4.1.2 Global reionization history and temperature evolution

To provide an overview of the progression of reionization, as well as the mean gas tem-
perature in the simulation volume, we first present the ionization and thermal histories
for both the X-rays and No X-rays runs in Fig. Specifically, we show the evolution of
the volume-averaged neutral hydrogen fraction and gas temperature throughout the EoR.

The former shows excellent agreement between both the X-rays and No X-rays runs. The
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Figure 14: Volume-averaged fraction of neutral hydrogen Zy, (left panel) and gas
temperature Ty, (right panel) as a function of redshift for both the X-rays (purple solid
curves) and No X-rays (red dashed curves) simulations.

mean gas temperature shows a tendency towards slightly higher values in the X-rays run
(see also Sec. ; nevertheless, its overall evolution agrees fairly well between both runs.
We note that both of these findings are expected physically, as the global progression of
reionization is dominated by the EUV emissions of stars (e.g. Kannan et al.|2019, [2022a)).
Therefore, the neutral fraction and temperature evolution for both runs shown in Fig.
are broadly in agreement with typical simulated reionization histories (see e.g. Figs. 4 and
6 of Kannan et al|2022a) for the analogous figures based on the original THESAN simulation
suite). These quantities first show a gradual progression towards a lower neutral fraction
and higher temperatures, respectively, with both of these trends accelerating towards lower
redshifts. The steepest drop-off in neutral fraction occurs approximately between redshifts
z ~ 6 and z ~ 5.5. This corresponds to a late reionization scenario (e.g. Kannan et al.
2022a)), i.e., there is still a significant fraction of neutral gas left below redshifts z < 6 in our
simulation volume. Further, during this period, the global amount of photoheating reaches
its peak due to the frequent ionization events (cf. Sec. ; consequently, the maximum
mean gas temperatures of Ty, & 1.45 x 10* K (X-rays run) and Ty &~ 1.4 x 10*K (No
X-rays run) are reached at z ~ 5.6.

Finally, the end of reionization is reached approximately at redshift z ~ 5.5 to z ~ 5,
resulting in a final neutral hydrogen fraction of Zg,fina =~ 3 X 107°. The final mean
temperature shows a mild discrepancy between the X-rays and No X-rays runs, with
Tgas ~ 1.33 x 10*K for the X-rays run and Tgas ~ 1.23 x 10*K for the No X-rays run at

z = 5. This temperature difference and profile is discussed further in the following section.

4.1.3 X-ray heating of the intergalactic medium

A key signature of X-ray sources is a fairly uniform heating of the IGM during the EoR,
due to the ability of X-ray photons to propagate further outside of the ionized bubbles
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Figure 15: X-ray heating of the intergalactic medium throughout the Epoch of Reion-
ization, illustrated by the simulated gas temperature distribution projected onto a slice
through the simulation volume of the X-rays (left panels) and No X-rays (right panels)
runs at redshifts z = 10, 2 = 7, and z = 5.5. Comparing the left and right panels illustrates
qualitatively that our X-ray model successfully captures the characteristic uniform heating
of the intergalactic medium.

61



4 TEST RUN RESULTS

than EUV-range photons, as well as their potential to cause more significant heating per
ionization event (cf. Sec. ; Table . As also noted in Sec. , this characteristic X-ray
heating in particular is predicted to be discernible in the large-scale 21-cm power spectrum
(Mesinger et al.[2013).

We first show qualitatively how our X-ray implementation captures this expected effect in
Fig. [15] showing projections of the gas temperature onto a slice of the simulation volume
of both the X-rays and No X-rays runs. The projections are created with a depth of
14 %, i.e., within a cuboid of the simulated box with side lengths (Az x Ay x Az) =
(Lpox X Lpox X 0.14 Ly ); this slice shows a representative sample of the spatial distribution
of the simulated gas temperature.

It is clear from these temperature distributions that the inclusion of the X-ray sources has
a substantial effect during the EoR. Firstly, at a redshift of approximately z ~ 10, the
comparison to the No X-rays run shows that the simulation volume begins to heat up
uniformly in the X-rays run.

This effect increases as reionization progresses; in particular, the IGM (visible in the
z~ 10 and z ~ 7 No X-rays panels of Fig. as the black and dark purple regions; see
also Fig. is heated to temperatures T~ O(10% — 103 K) in the X-rays run. On the
other hand, significant regions of the IGM stay cold (7" < O(10K)), even until z ~ 7, in
the run not including the X-ray implementation.

Finally, towards the end of reionization at z ~ 5.5, the spatial distribution of heated gas
roughly converges between the X-rays and No X-rays runs again. By this redshift, the

simulation volumes of both runs are heated nearly uniformly to a final mean temperature

T =~ O(10*K) (cf. Sec. [4.1.2).

We present the effects of the X-ray implementation in further quantitative detail in Fig.
At each point, these histograms show the fraction of cells simulated with AREPO-RT
as a function of the associated gas temperature for the X-rays and No X-rays runs.
Consequently, this allows direct insights into the impact of X-rays on cells with specific
temperatures.

At high redshifts, z ~ 12 to z ~ 10, we find a mild, but significant shift of the coldest
gas cells towards higher temperatures. As also illustrated in Fig. [I5] these coldest gas
cells are located within the IGM, far from the major sources of heating (visible as the
orange-yellow regions in e.g. the z ~ 10 panel of Fig. .

Throughout the middle stages of reionization, this heating of the coldest cells increases
substantially, as shown in the z ~ 8 to z ~ 6 panels of Fig. [[6] At the same time,
the expansion of heated bubbles causes more and more cells to shift towards higher

temperatures, independently of the presence of X-ray sources.
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Figure 16: Histograms of the fraction of simulated cells as a function of their gas
temperature for both the X-rays (solid purple curves) and No X-rays (dashed red curves)
runs at redshifts z = 12 to z = 5.5. The implementation of the X-ray sources causes
significant heating of the coldest gas cells throughout the Epoch of Reionization, before
converging towards the end of reionization at z ~ 5.5.

This can be seen clearly by the first two sharp peaks of the No X-rays curves, located
at T ~ O(10K) and T =~ O(10* K) between redshifts z ~ 10 to z ~ 6. As reionization
progresses with decreasing redshift, the initially large fraction of cells around the first peak
gradually shifts towards the second peak.

This compounds with the effect of the more uniform heating of the IGM in the X-rays
run. As a result, the hottest regions of the simulation volume are in good agreement with
the No X-rays run, while the coldest cells progressively heat due to the presence of X-ray

sources as mentioned above. The latter causes a growing discrepancy between the X-rays
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and No X-rays runs between z ~ 12 and z ~ 6.

However, the two runs converge again at z ~ 5.5, as the heated bubbles finally encompass
the whole simulation volume (see also the z ~ 5.5 panels of Fig. . At this point, the high
temperatures (T' 2 O(10*K)) within the heated bubbles fully dominate the temperature
profile.

Finally, we present the phase-space diagrams of the gas in both the X-rays and No X-rays
runs at redshifts z =9, z =7, and z = 5.5 in Fig. [17 They show the distribution of gas
mass in the phase space defined by (7', ny), where T denotes the gas temperature and ny
the number density of hydrogen atoms.

At high temperatures 7' > O(10* K), both runs show a similar phase-space distribution of
the gas at all redshifts, further supporting the observation made above that X-ray heating
is subdominant within the hot expanding bubbles during the EoR. This is the case across
the entire density range. We note in this context that the very narrow distribution of
gas in the phase-space diagrams at high hydrogen number densities, ng > 107t cm ™3,
is a reflection of the [Springel & Hernquist| (2003)) effective EoS model employed in the
simulations (see Sec. for further details).

However, the phase-space diagrams clearly show the effect of the X-ray implementation
on the simulated cold gas at redshifts z = 9 and z = 7. In addition to the difference
in temperature profiles — which reflect the points mentioned in the context of Fig.
well — it is clear from the phase-space diagrams that the X-ray radiation affects the cold,
low-density gas in particular, i.e., the IGM gas. Specifically, at z ~ 7, the dilute gas
(ng < O(1072%cm™?)) is completely heated to temperatures T > 10*° K, while gas of
an intermediate density (1072cm ™3 < ng < 107! em™3) remains nearly unaffected in its
phase-space distribution by the inclusion of X-ray sources. This quantitatively confirms
that the X-ray radiation in our implementation propagates into and heats the cold, dilute

IGM gas specifically — as expected due to the long mean free path of X-ray photons

(Sec. [2.1)).

4.1.4 Impact on the gas ionization state

The expansion of the main ionized bubbles during the EoR is largely independent of the
uniform X-ray heating discussed in Sec. [£.1.3] This is illustrated in Fig. [I8] which shows a
direct comparison of the spatial distributions of the H11 fractions and gas temperatures
at redshift z = 7 for the run including X-rays. The distribution of cells with highly
ionized hydrogen (zp, 2 0.9) is primarily contained within individual bubbles, leaving

the rest of the IGM gas in a low ionization state (zgy; < 0.1), as expected throughout
the middle stages of reionization. On the other hand, the comparison to the temper-
ature distribution clearly shows that a significant amount of heating progresses into

the regions outside of these ionized bubbles. As shown in the previous section (see the
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Figure 17: Phase-space diagrams of the X-rays (left column) and No X-rays (right
column) runs at redshifts z = 9, z = 7, and z = 5.5 (rows; as indicated in the figure).
T and ng denote the gas temperature and hydrogen number density, respectively. The
characteristic X-ray heating of the cold, dilute intergalactic medium gas during the Epoch
of Reionization is clearly reflected in the z = 9 and z = 7 panels, before the phase-space
diagrams with and without X-rays converge towards the end of reionization at z ~ 5.5. We
note that the narrow phase-space distribution of the dense gas (nyg > 107! em™3) is caused
by employing the effective Equation of State approximation of |Springel & Hernquist| (2003))

in our model (cf. Sec. [3.1.3).
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Figure 18: Comparison of the projections of the ionized hydrogen fraction xy (left
panel) and gas temperature T (right panel) distributions in a slice through the simulation
volume of the X-rays run at redshift z = 7. We find that X-ray photons propagate into
regions of the intergalactic medium past the ionized bubbles, visible by the X-ray heating
of these regions (cf. Fig. z = 7 panels).

z = 7 panels of Fig. , this more uniform heating occurs only when including X-rays,
i.e., it is indicative of characteristic X-ray heating of the IGM. Consequently, Fig.
illustrates clearly that X-ray photons are able to propagate past the ionization fronts —

i.e., the edges of the highly ionized bubbles — in our implementation, as expected physically.

A more detailed look into the ionization state of hydrogen during the EoR in our simulations
is presented in Fig. [I9] in which we show the fractions of cells throughout the simulation
volume as a function of their respective ionized hydrogen fraction xyy for both the X-rays
and No X-rays runs in a redshift range of z = 12 to z = 5.5.

The resulting xy,; distributions progress in a similar manner to the temperature profile’s
evolution presented in Fig. [I6] Firstly, the cells most strongly affected by X-rays at
redshifts z ~ 12 to z ~ 6 are those in the lowest ionization state, i.e., those with the lowest
H11 fraction (zgy &~ 107% in the No X-rays run). This is analogous to the coldest cells
being most substantially affected in the temperature profiles; in fact, the latter are largely
the same cells as those in a low ionization state. Both are located within the IGM, far
away from sources of ionizing and heating radiation (cf. e.g. Fig. .

Further, the impact of the X-ray implementation on these cells grows progressively larger
until z ~ 6, at which point the lowest H 11 fractions reached are increased to approximately
Ty ~ 10738 in the X-rays run. Nevertheless, the X-rays and No X-rays runs converge
towards the end of reionization at z ~ 5.5 — again similarly to the evolution of the
temperature distributions — due to the ionized bubbles having expanded throughout the

entire simulated volume.
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Figure 19: Histograms of the distribution of simulated cells’ ionized hydrogen fractions
Ty, shown for both the X-rays (solid purple curves) and No X-rays (dashed red curves)
runs at redshifts z = 12 to z = 5.5. Including X-ray sources causes a substantial shift
towards a higher ionization state in the cells with the lowest H1I fractions throughout the
Epoch of Reionization, before the H1I fractions approximately converge for the X-rays
and No X-rays runs at z ~ 5.5.

At this stage, the fraction of ionized hydrogen is consistently above zy; = 10~ and

nears rygy ~ 1 for the majority of cells, marking the end of the EoR by definition.

We additionally show the effect of our implementation of X-ray sources on the fraction of
doubly ionized helium He1 in Figs. 20/ and 21} Due to the higher ionization threshold of
He1r compared to H1 or Hel, and the resulting larger ionization cross-sections at higher
photon energies, the fraction of Helll is expected to be more significantly impacted by the

modeling of high-energy X-ray photons (see Fig. |3)).
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Figure 20: Volume-averaged fraction of doubly ionized helium Zy.; as a function of
redshift in the X-rays (solid purple curve) and No X-rays (dashed red curve) runs. Including
X-rays results in a globally higher fraction of Helil in the later stages of reionization
(2 2 7), a trend that persists beyond the end of the Epoch of Reionization at z ~ 5.5.

Indeed, we find this to be the case in our test runs. Firstly, Fig. 20] shows the evolution of
the global, volume-averaged He 11l fraction Zye; from redshifts z = 8 to z = 5. We find
that in the X-rays run, Tyey; is significantly higher throughout the later stages of the EoR
(z 2 7) than in the No X-rays run. This discrepancy increases until the end of reionization

at z ~ 5.5, before remaining approximately stable until z = 5.

Providing more detailed insights into the full ionization of helium in our simulations,
Fig. shows the distribution of individual cells’ HeIII fractions zge;; between redshifts
z =12 and z = 5.5. Here, it is clear that the X-ray sources already begin to mildly affect
a significant number of cells at z ~ 12, before this subsequently becomes visible in the
global volume-averaged HeIll fraction discussed above. Besides shifting the minimum
He 111 fraction in cells from approximately Zgem ~ 1072 to Zgem ~ 1077 at high redshifts
z ~ 10 — 12, the X-ray implementation further causes a second, flatter peak at higher
He1r fractions (centered around xper; ~ 107% at z = 10) in the Tpey; distributions.
This spread-out peak indicates the presence of a larger number of cells with a broadly
‘intermediate’ HeIll fraction between the sharper peaks of the distribution at the very
low (e.g., THem ~ 1077 at z = 10) and high (e.g., THem &~ 107! at 2 = 10) ends; i.e., it
indicates that the X-ray photons in our implementation are able to partially ionize He 11

in additional cells.
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Figure 21: Histograms of the distribution of cells’ fractions of doubly ionized helium zye
for the X-rays (solid purple curves) and No X-rays (dashed red curves) runs at redshifts
z = 12 to z = 5.5. The implementation of X-ray sources results in a significant shift
towards higher HeIir fractions; this trend gradually increases until the end of reionization
at z ~ 5.5.

Further, this partial ionization appears to be an ongoing process in the period between
z =12 and z = 6 in the X-rays run, as the intermediate, spread-out peak gradually shifts
towards higher He 111 fractions throughout, ending at Zgem ~ 1073 at 2z = 6. At the same
time, the peak at the minimal He 11 fractions of cells continues to increase to e ~ 1076
at z = 6 in the X-rays run, while remaining approximately constant in the No X-rays run.
This indicates that as time progresses, all cells in the simulation volume are impacted to
some degree by the inclusion of X-ray sources. We note that this is consistent with the
long mean free path of X-ray photons theoretically expected (Sec. and practically
observed in our test runs (Sec. [4.1.3).

69



4 TEST RUN RESULTS

Finally, unlike the distributions of cells with respect to the temperature or H11 fraction —
which both converge to excellent agreement between the X-rays and No X-rays runs by
z ~ 5.5 (Figs. |16/ and — the distribution of HeIII fractions remains substantially altered
by the X-ray implementation past the end of reionization. At z = 5.5, the inclusion of
X-ray sources has shifted the majority of cells towards the partially ionized, intermediate
He 111 fractions of the broader peak described above (zgey; ~ 107%9), with only few cells
remaining at the fraction of the previous minimum peak of the X-rays run at rpem ~ 1075,
and none at the minimum peak of the No X-rays run at xpey; ~ 1072, This shows that
the X-ray sources have a significant impact on the HeIiI fraction even within the ionized,
heated bubbles encompassing the entire domain by z ~ 5.5, whereas the impact on the
temperature and HII fractions is minimal due to the dominant effects of stellar radiation.
Additionally, this is consistent with the discrepancy in the global He1il fraction between
the X-rays and No X-rays runs as discussed in the context of Fig. [20]

4.1.5 Contribution of individual energy bins
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Figure 22: Cumulative photon energy e.unu emitted in the X-rays run by source type —
stars (black curves), the hot interstellar medium (ISM, purple curves), high-mass X-ray
binaries (HMXB, red curves), and active galactic nuclei (AGN, orange curves) — within
each of the six energy bins (panels, as labeled) as a function of redshift. The bins
are defined by the photon energy ranges [13.6 eV, 24.59eV] (Bin 0), [24.59¢eV, 54.42¢V]
(Bin 1), [54.42eV,100eV] (Bin 2), [100eV,200¢eV] (Bin 3), [200eV,500eV] (Bin 4), and
[500€V,2000¢V] (Bin 5); see also Sec. [3.3.1}
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The contribution of each of the energy bins used in our X-ray implementation (see Sec.
to the total photon output is presented in Fig.[22] Specifically, we show the total cumulative
photon energy emitted by each of the source types — i.e., stars and the three X-ray source
types (hot ISM, HMXB, and AGN) — within each of the six energy bins as a function of
redshift.

Within the first three UV-range bins, chosen to be identical to the bins used in the
original THESAN model and covering the photon energy range [13.6 eV, 100 eV], stars are
the dominant contributors to the total radiative energy output throughout the entire
redshift range as expected (e.g. |Kannan et al.|2022a). In fact, the cumulative energy
they emit within the first two bins exceeds that emitted by the next-highest contributing
source — i.e., the hot ISM for z 2 8 — 8.5 and AGN for z < 8 — 8.5 — by several orders of
magnitude. However, the relative contribution of the hot ISM increases from bin 0 to bin
4, leading it to exceed the strongly decreasing stellar emissions within bins 3 to 5.

The energy emitted by HMXBs, on the other hand, remains steadily below the ISM
emissions from bins 0 to 3, before the two become approximately equal in bin 4. As the
HMXB energy contributions increase significantly at high energies (see also the SEDs
presented in Fig. , HMXBs eventually dominate over the hot ISM with its softer X-ray
spectrum — as well as over all other sources — in the highest-energy bin.

Finally, while AGN only begin to contribute radiative energy at lower redshifts z < 8
in our numerical seeding model (cf. Sec. , they rapidly become not only significant
sources of radiation, but even the second-to-most dominant sources within bins 0 to 3
by z ~ 6 — 8.5. Specifically, only stars (bins 0 to 2) and the hot ISM (bin 3) exceed
their contributions in this range by the final simulated redshift, = = 5. However, in the
highest-energy bins, they remain outshone by both the hot ISM and HMXBEs, i.e., the

newly implemented X-ray sources in the context of this thesis.

4.2 Impact of the piecewise power-law approach to redshifting
4.2.1 Test run setup

We test our implementation of PPL-based numerical redshifting and investigate its effects
in RHD simulations of the EoR in the following. Specifically, we run three simulations using
AREPO-RT in its original configuration with three UV-range frequency bins (i.e., using the
original THESAN model) up to the final redshift z = 5. The first test run, referred to as the
‘No redshifting’ run in the following, does not include the new implementation of numerical
redshifting and provides a baseline for comparison. The second and third test runs (‘With
redshifting’ runs) both include the PPL redshifting implementation; additionally, the third
test run employs the slope-limiter |a| < 10 (Sec. .

All test runs share the same initial conditions, which were initialized uniformly on a
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Cartesian lattice (Sec. [3.1.1)), and are based on the |[Planck Collaboration et al.| (2016)
cosmological parameters. The box size of the simulations is Ly = 23.3 cMpc, which is
resolved by a total of Npy = 1282 = 2097 152 dark matter particles. This sets the mass

resolution of the test runs to mpy = 2.0 x 108 M.

4.2.2 Reionization history and impact of the slope limiter
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Figure 23: Volume-weighted neutral hydrogen (left panel) and neutral helium (right
panel) fractions as a function of redshift from test runs without numerical redshifting
(purple curve), with piecewise power-law-based redshifting (red dashed curve), and with
slope-limited (]| < 10) piecewise power-law-based redshifting (orange dash-dotted curve).
The discrepancy between the latter two curves shows an unphysical impact of the numerical
slope limiter for our frequency resolution.

We present the global, volume-averaged fractions of neutral hydrogen H1 and neutral
helium HeT in Fig. [23] comparing the reionization histories of the three test runs described
above. The evolution of both neutral fractions show that the inclusion of the numerical
PPL-based redshifting method significantly delays the progression of reionization. This is
particularly true for the run not employing the slope-limiter |a| < 10; here, the steepest
drop in the neutral fractions is visibly delayed from a redshift of approximately z ~ 6 to
z ~ 5.7. On the other hand, the differences between the run without redshifting and the
run with slope-limited PPL redshifting are less pronounced, with the latter showing only
a mild effect on the global reionization history of both H1 and Herl.

Additionally, we find that both runs with PPL redshifting end with a slightly higher
neutral fraction of hydrogen and helium in the simulation volume in the final stages of
reionization (z ~ 5). Again, this difference is more pronounced when no slope-limiter is
employed, raising the final volume-averaged H1 and Hel fractions from Zg; fina = 5 X 107°

to jHI,ﬁnal ~ 8 x 107° and from j:HeI,ﬁnal ~ 107° to jHeI,ﬁnal ~ 3.5 X 1075, respectively.
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Physically, both the delay in the reionization history and the final higher neutral fractions
are caused by an overall reduction in radiative energy due to the redshifting implementation.
We note that in reionization simulations, the ‘overionization’ of hydrogen gas — i.e., the
simulations’ tendency towards a lower neutral hydrogen fraction throughout the later stages
of reionization than inferred from observations — presents a well-known potential problem,
particularly when not employing the RSLA (Ocvirk et al.2019). In this context, the
slightly higher final H1 fraction in the redshifting run seemingly suggests that numerically
accounting for the effects of redshifting may help reduce this problem. However, we caution
that the discrepancy between the slope-limited and non-slope-limited redshifting runs calls

the reliability of this interpretation into question.

More generally, the discrepancy between the reionization histories inferred from the latter
two runs indicates a serious issue of the PPL redshifting method as used in our numerical
setup based on the THESAN model. It is clear from Fig. 23| that the slope limiter || < 10,
introduced as a purely numerical parameter (Sec. , has a significant impact on the
physical results of our simulations.

There are several issues associated with this. Firstly, the choice |«| < 10 is not physically
motivated, but rather only introduced to limit numerical noise; as such, any impact of the
parameter on the ionization state of the simulated gas is unphysical by nature.

Secondly, simply setting a global slope limiter does not distinguish between cases in which
the spectral index a happened to be exceptionally high due to physical reasons — i.e., the
actual photon spectrum — and cases in which this is due to numerical uncertainty, in line
with the original intention of the slope limiter.

Finally, further testing of the implementation, in which we computed statistics of the
values of « at each timestep, revealed that the calculated spectral index’ typical spread is

frequently beyond the range o € [—10, 10].

This is illustrated in Fig. showing the percentage of cells with each value for o at
redshifts z ~ 6.7 and z ~ 5.0 for bins 0 and 1 with energy ranges of [13.6 eV, 24.59 eV] and
[24.59 eV, 54.42 V], respectively. Specifically, we show this for (i) all cells, (ii) only the
cells with a minimum energy density of E; cn > 1072 in internal units (see Sec. ,
and (iii) only the cells with E; . > 107! in internal units. We compute and show these
cases separately to differentiate between cells with a higher energy density — i.e., Ej; cen well
above the numerical minimum value MINDENSPHOT = 10~2% in internal units — and those
with a lower energy density, which are likely to be affected by relatively higher numerical
erTors.

Indeed, we find a significantly smaller spread of o values when limiting the statistics to
cells with higher energy densities. This holds for both bin 0 and 1 and provides evidence

that the sporadic high values of the spectral index are, in fact, primarily due to the cells
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Figure 24: Distribution of values for the piecewise power-law spectral index « in the
UV-range energy bins 0 ([13.6 eV, 24.59 eV]; upper panels) and 1 ([24.59 eV, 54.42 eV]; lower
panels) of AREPO-RT in the THESAN setup (cf. Sec. , shown at redshifts z ~ 6.7
(left panels) and z &~ 5.0 (right panels). The blue and red bars show the fractions of
cells with each a value for bins 0 and 1, respectively. Values of |a| > 40, if and when
they occurred, were counted into the highest (o > 40) or lowest (o < —40) shown bins.
The light and dark gray shaded bars show this same fraction for only the cells with a
minimum energy density of E; con > 1072 and E; cen > 1071, respectively; here, E; cen
in bins ¢ = 0,1 are specified in internal energy density units, corresponding to physical
units of [E] = 6.18 x 10°2 erg ckpc™>. Setting these lower limits is intended to exclude the
values of o that may be disproportionately affected by numerical uncertainty due to their
low values in internal units. We find that particularly in bin 1, the spread of the spectral
index frequently far exceeds the range [—10, 10] enforced by the slope limiter (see text for
details), even for cells with a comparatively high energy density.

74



4 TEST RUN RESULTS

with lower energy densities. Further, the spread of spectral indices is substantially higher
within bin 1 than bin 0, likely for a similar reason: as stars are the dominant sources of
radiation in the simulation volume, but only emit a small fraction of their luminosity at
energies hv 2 54.4eV (e.g. Haardt & Madau|2012; see also Sec. , the energy density
in bin 2 ([54.42eV, 100 eV]) is expected to be particularly low in the setup considered here.
This is likely to introduce numerical uncertainty in the computation of the spectral in-
dex a; in bin 1, which is based on the energy densities within both bin 1 and bin 2 (Eq. (86G)).

Most crucially, Fig. 24| shows that it is far from uncommon for the spectral index to exceed
the range [—10, 10], if these limits are not enforced by a slope limiter. In frequency bin 1,
this is frequently the case even for cells with a relatively high energy density.

This finding is consistent with the observation made above that enforcing a non-physical
cutoff |a| < 10 can significantly change the physical effects of the redshifting implementa-
tion. It further suggests that even a slightly different choice of slope limiter, e.g. || < 15,
would affect the amount of energy lost or gained by PPL-based redshifting in a substantial

number of cells, potentially arbitrarily impacting simulation results.

As mentioned in Sec. we expect that the low frequency resolution employed in our
numerical setup is at the core of the limitations we find for the PPL method of redshifting.
In particular, a higher resolution — such as frequently employed in the context of RT
postprocessing works — is likely to significantly reduce errors in the method caused by a
poor reconstruction of the radiation spectrum (see e.g. Fig. . However, given that the
methods described here are implemented in light of their intended use in large-volume,
on-the-fly RHD simulations, substantially increasing the frequency resolution is unfor-
tunately not feasible at present (Sec. . We therefore chose to additionally develop
and pursue the alternative EER approach to redshifting, discussed further in Sec. below.

Nevertheless, we present a brief outlook on potential future work on PPL redshifting in
the following.

The first and most straightforward way to potentially improve on the method presented
above may be restricting the use of the slope limiter to bins with low energy densities, i.e.,
with E! below a certain threshold set in internal code units. In this case, the slope would
no longer be artificially limited in cells and bins where the energy densities are high enough
for numerical uncertainties to play a negligible role. It can be reasonably expected that
this would reduce the (unphysical) impact of the choice of the slope limiter on simulation
results, particularly since cells with high energy densities represent, by definition, more
dominant parts of the radiation field.

As a more involved, but likely preferable alternative, we suggest using the maximum

spectral index of the input source SEDs as a physically motivated slope limiter. Since
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the bin edges for EUV photons are chosen at the ionization thresholds of H1, HeTl and
He11, interactions with gas are expected to harden the spectrum in each of these bins (as
illustrated in Fig. , decreasing «; with respect to the original source spectrum. Further,
gas ionization becomes increasingly inefficient for higher-energy photons (Fig. [3) — such
as those modeled in the X-ray implementation discussed in Sec. — causing this same
trend to weaken, but persist across the entire modeled photon energy spectrum.

Therefore, we conjecture that this approach may provide a reasonable choice for an upper
limit to a;. An additional potential advantage is the ability to separately define the slope
limiter within each bin, potentially helping to capture the spectrum more accurately than

a fixed global maximum value such as |a| < 10.

Finally, we note that a numerical RT approach designed to accurately track the radiation
spectrum using a PPL approximation — albeit in a different context than the redshifting
method discussed above — has been developed by Baumschlager et al.| (2023]). This method
defines two very narrow frequency bins around each of the edges of the typically used bins
(see Sec. and infers the photon spectrum in between the narrow bins by using a PPL
approximation, in lieu of tracking the spectrum in broad frequency bins.

Although this also requires implementing more bins than used in the original THESAN
model, thereby driving up the computational cost (Sec. , it may be a promising
approach to use in conjunction with the PPL-based redshifting method. This is because it
appears to effectively avoid the most uncertain and frequency resolution-dependent step
of the redshifting method — i.e., estimating the spectral index from a coarse, piecewise-
constant description of the radiation spectrum — by instead tracking the spectral index in

each bin directly by design. We plan to investigate this possibility further in future work.

4.3 Impact and convergence of the effective energy-rebinning

approach to redshifting
4.3.1 AREPO-RT test run: setup and reionization history

To test the EER method of numerical redshifting and its implementation within the larger
code base, we first present results from a set of test runs with AREPO-RT using the updated
THESAN model including X-ray sources and six energy bins (Sec. .

These test simulations were run in a box of the size Ly = 11.6cMpc, resolved by
Npum = 1283 = 2097 152 dark matter particles, resulting in a mass resolution of mpy =
3.0 x 10" Mg. Further, they are each based on the same initial conditions, are initialized
uniformly on a Cartesian lattice (see Sec. [3.1.1)), and use the [Planck Collaboration et al.
(2016)) values for the cosmological parameters.

Specifically, we ran two test simulations with this setup: similarly to the approach in previ-

ous sections, we first ran a baseline simulation that does not include numerical redshifting
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Figure 25: Volume-weighted fractions of neutral hydrogen H1 and neutral helium HeT as
a function of redshift from test runs with (red dashed curve) and without (purple solid
curve) numerical redshifting based on the effective energy-rebinning approach. We find no
significant impact of the redshifting implementation on the global reionization history.

(‘No redshifting’ run). The second test run (‘With redshifting’ run) includes numerical
redshifting based on the AREPO-RT implementation of the EER method described in

Sec. 3.5

In Fig. [25] we present the evolution of the neutral hydrogen and neutral helium fractions
from redshift z = 8 to z = 5 in these test simulations with AREPO-RT. As is clear from the
figure, the With redshifting and No redshifting test runs are in excellent agreement with
each other; including the EER redshifting method does not significantly impact either the
hydrogen or helium reionization history.

Fig. [25|therefore indicates a lack of the unexpected numerical ‘runaway’ effects we observed
and discussed in the context of the PPL-based redshifting method (see Sec. ; Fig.
when using the EER redshifting implementation. Rather, it appears to correctly capture
the fact that redshifting is expected to have a negligible effect on the reionization history:
we stress again in this context that the ionization state of the gas during the EoR is
primarily driven by the EUV photons emitted by stars (e.g. Kannan et al.|[2022a)), which
have a comparatively short mean free path during this epoch (Sec. ; see also e.g. Eide
et al.[2020, App. A). Consequently, the dominant portion of ionizing photons gets absorbed
quickly after being emitted, compared to the timescale on which redshifting has a significant
effect — in fact, this is the core argument justifying neglecting redshifting in simulations
(e.g. |Gnedin & Abel/2001; Kannan et al.|2022a)). This is therefore well-reflected in our
implementation of EER redshifting by its lack of impact on the ionization states of H1

and HeT gas.
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4.3.2 Accuracy of the method and convergence with the number of energy

bins

In the following, we present results from a numerical test evaluating the accuracy of the
EER redshifting method with respect to the analytically expected redshifting of a set of
source spectra, as well as the method’s performance based on the number of energy bins
used to discretize the radiation spectrum. We perform this test in a separate code from
AREPO-RT, which essentially isolates the redshifting implementation from the rest of the
code base and applies it to a well-defined, single-source spectrum.

Specifically, we first initialize one of two analytically well-defined source spectra@ in this
separate code, i.e., either the thermal bremsstrahlung spectrum of the hot ISM — given by
Eq. in relative units — or a thermal blackbody spectrum, described by the SED

dLgg(e) 2¢? 1
= . (98)
de (he)? exp (kaFeH — 1)

Here, h, ¢, and kg denote Planck’s constant, the speed of light, and Boltzmann’s constant,
respectively. T.g is the effective temperature of the blackbody spectrum, set to Tog = 10° K
in the following tests to obtain significant emissions in both the EUV and soft X-ray range
covered by the AREPO-RT bins (total range [13.6 eV, 2000 eV]; note that kpTes = 86 €V for
T = 10°K).

To test our redshifting implementation, we then use the EER method to numerically
redshift this initialized spectrum in N}, bins covering the energy range [13.6 eV, 2000 eV],
using a total of N, = 10° timesteps of the size A(loga) = 107%. For an initial redshift
Zimit = 10, this results in a final redshift of z5, ~ 3.7. Additionally, we compute the
analytically expected redshifted spectrum at zg, and bin this in the same N}, energy bins,
serving as the ‘ideal’ result; in other words, this represents the expected result, if the
numerical redshifting method were perfectly accurate.

Subsequently, we estimate the error of the redshifting implementation as the sum of the
absolute values of the difference between the numerically and analytically redshifted final
energy density in each bin. Additionally, we compute the error resulting from neglecting
redshifting in the same way, in this case by considering the differences between the initial
(non-redshifted) spectrum and the analytically redshifted spectrum.

We perform both of these caluculations for a range of different numbers of bins Ny; the
results are presented in Fig. 26| for both the ISM and blackbody spectra.

13We note that we limited this test to spectra available in functional form to ensure that the analytical
redshifted spectrum can be computed accurately. This excludes e.g. the HMXB and AGN spectra discussed
in Secs. [3:3.4] and [3.3.5] as these are given in tabulated form and numerically interpolated to obtain the
spectrum at intermediate values of the photon energy e in AREPO-RT.
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Figure 26: Accuracy of the effective energy-rebinning redshifting method and its conver-
gence with respect to the number of energy bins used. This test (see text for details) was
performed based on the spectral energy distribution of the hot interstellar medium (left
panel; see Sec. and based on a blackbody spectrum with an effective temperature of
Tur = 105K (right panel). We initialized each spectrum at z = 10 and redshifted it both
analytically and numerically to z ~ 3.7. Curves show the relative error of the final binned
spectrum, obtained by either using the effective energy-rebinning redshifting method (red
dashed curves) or by neglecting redshifting (purple solid curves), as a function of the
number of bins used in the computation. The absolute error is calculated with respect to
the analytically redshifted spectrum; this is subsequently normalized by the maximum
error obtained either with or without redshifting. Star markers indicate the error computed
using the energy discretization of AREPO-RT (six bins; see Sec. .

We note that these errors are computed in relative units, as the underlying SEDs are
inevitably in relative units to begin with (cf. Sec. : the energy output in absolute units,
i.e. the normalization of the SED, is only set by the luminosity). Therefore, we normalize
these errors for each source spectrum by dividing by the maximum error obtained for any
of the tested N}, values, either with or without using redshifting, to obtain the relative
errors shown in Fig.

Further, the energy bins employed in this test are specified by dividing the total en-
ergy range of AREPO-RT into N, intervals that are logarithmically evenly spaced. The
only exception to this is N, = 6 (highlighted by the star markers in Fig. , which in-
stead uses the same energy discretization as the X-ray version of AREPO-RT (see Sec. .

For both the computations based on the hot ISM spectrum and those based on the
blackbody spectrum, we find that the numerical EER redshifting method becomes less
accurate for a lower number of bins and more accurate for a larger number of bins as
expected. We note that the method’s error does not appear to approach zero even for very
large numbers of energy bins (N, = 200 — 500), instead showing a tendency towards a

leftover error of approximately 20 % of the maximum error for both spectra. One factor
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affecting this may be the method’s rather approximate handling of the highest-energy
bin (see Sec. ; even for a large value of Ny, for which each single bin is comparatively
very narrow, this potential error in the highest-energy bin may progressively propagate to
lower-energy bins due to the nature of the method.

Nevertheless, crucially, the error made in the final spectrum is consistently lower when
using the EER-based redshifting method than when neglecting redshifting — which is the
current standard approach of typical on-the-fly RHD solvers (cf. Secs. and — even
for a number of bins as low as N, = 3, or AREPO-RT’s NV}, = 6.

Specifically, the error is reduced by approximately 40 % by EER redshifting in the latter
case; this is an imperfect, but significant improvement that further adds only negligible
computational expense in the larger context of an AREPO-RT simulation. The method
additionally does not appear to suffer from unexpected and difficult to predict numerical
issues, as found for the PPL-based redshifting method — despite being applied in the
context of the same low energy resolution. Consequently, we believe this method has the
potential to serve as a viable approximate treatment of numerical redshifting in future

large-volume RHD simulation projects.

4.3.3 Convergence of the method with the number of timesteps

Finally, we investigate the convergence of the EER redshifting method with the number
of timesteps used over a constant total period of time. For this, we use the same basic
testing setup as described in the previous section to numerically redshift the hot ISM
spectrum from an initial redshift of z,; = 15 to a final redshift of z5, ~ 5.5, using the
standard X-ray setup of the AREPO-RT bins (Sec. .

This redshifting evolution is computed with a varying number of timesteps Ny, ranging
from only N, = 10 to N, = 10°. Each timestep changes the logarithm of the scale factor a
by a constant amount (A(loga) = const., equivalent to Aa/a = const.). This definition
is chosen so that running e.g. N; = 10! timesteps with A(loga) = 107!, or N; = 102
timesteps with A(loga) = 1072, and so on, all result in the same total period of time

covered, i.e., the same final redshift.

We record the final energy density in each of the six bins after the initial spectrum has
been redshifted in this manner; the result is presented in Fig. [27| for each NV;. Similarly to
the previous test, this final energy density is again given in relative, or arbitrary, units
(see Sec. [4.3.2)).

With the exception of N, = 10' — an extremely low number of timesteps to cover the
redshift evolution from z;,;; = 15 to 25, &~ 5.5 — we find generally good agreement between
the final energy densities. In fact, the discrepancy between the results using N, > 103
timesteps and those only using N, = 10? timesteps is very mild; in Fig. , it can only be

discerned by ‘zooming into’ the overall curves (inset panel).
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For a moderate number of timesteps and above, N, > 103, we find no significant difference
between the final energy densities; rather, we find excellent convergence of the EER-based
redshifting method.
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Figure 27: Convergence of the effective energy-rebinning redshifting method with respect
to the number of timesteps. Curves show the final energy density in relative units, obtained
by numerically redshifting the source spectrum of the hot interstellar medium from redshift
Zinit = 15 t0 2, &~ 5.5 in 10 (yellow curve), 10 (orange curve), 10° (red curve), 10
(magenta-purple curve), 105 (dark purple curve), and 10° (dark blue curve) timesteps. The
size of the timesteps is determined by imposing the condition that A(loga) = const. for
each timestep. The inset panel shows a zoomed-in region of the curves to highlight the
small difference between the runs using N, = 10? and N; > 10® timesteps. Beyond this,
we find excellent convergence of the redshifting method for N, > 10? timesteps covering
the redshift evolution specified above.
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5 Summary and conclusion

In this thesis, we numerically explored the Epoch of Reionization, a particularly compelling
field of study in light of the wide range of remaining open questions and the extensive
observational efforts currently dedicated to investigating them (cf. Sec. .

We described in detail how numerical RHD simulations leverage state-of-the-art algorithms
and HPC environments to provide complementary theoretical predictions. Specifically,
large-volume reionization simulations such as the THESAN suite are capable of providing
predictions for numerous cosmological-scale, reionization-era observables, including the
global 21-cm line signal. These predictions can not only serve as comparisons to observa-
tional data — such as those gathered by current and next-generation radio interferometers —
but also facilitate theoretical interpretations of these data and provide insights into the

underlying physical processes at play.

However, to achieve this, accurately modeling X-ray sources at high redshifts —i.e., the
hot ISM, HMXBs, and AGN — is essential. The soft X-ray photons these sources emit are
capable of propagating far into the IGM, causing a characteristic, relatively uniform X-ray
heating, which is expected to be reflected in the large-scale 21-cm power spectrum.

In this work, we have demonstrated that our new implementation of these X-ray sources
into the moment-based RT solver AREPO-RT successfully captures this characteristic X-ray
heating of the IGM, along with other key physical signatures. We showed directly that
the simulated X-ray radiation is capable of propagating past the ionization fronts of the
heated, ionized bubbles during the EoR, reflecting the expected long mean free path of
X-ray photons. Additionally, we investigated the latter’s effects on the fraction of doubly
ionized helium, finding a significantly higher mean He 111 fraction that persists past the

end of reionization at z ~ 5.5.

Motivated by X-ray photons’ long mean free path, we additionally explored two different
methods of implementing cosmological redshifting into AREPO-RT. In particular, we pre-
sented the challenges associated with a piecewise power-law-based approach to redshifting
in the context of the low energy resolution that is typical of numerically demanding on-
the-fly RHD simulations. We consequently developed a new method of handling numerical
redshifting, referred to as ‘effective energy-rebinning’ in this thesis.

We verified that this EER approach does not suffer from the numerical artifacts observed
for the PPL method in the context of the reionization histories, despite employing the
same energy discretization of the radiation field. Further, we demonstrated that the use of
this method consistently improves agreement with analytically redshifted spectra, both for
the AREPO-RT energy binning and for alternative discretizations using a total of N, = 3

to Np = 500 energy bins. Finally, we tested the approach using a varying number of

82
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timesteps to evolve a spectrum over a set period of time and found excellent convergence
of the method in this context.

The THESAN reionization simulation suite exclusively considered the impact of photons
with energies up to 100eV, focusing on UV photons as the dominant contributors to
reionization. However, as the THESAN-XL project is poised to numerically investigate the
periods of cosmic dawn and reionization in even larger spatial volumes, it sets the stage
for more detailed, accurate predictions for the global 21-cm line signal. For the reasons
discussed throughout this thesis, the extensions to the physical model described here are

expected to form an important building block towards this objective.
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