
Conceiving the cosmic choruses
–

Constraints on f(R) gravity from
gravitational radiation emitted

by pulsar systems

Masterarbeit
zur Erlangung des akademischen Grades
Master of Science (M.Sc.) in Physik

am Institut für Theoretische Physik (ITP)
der Goethe-Universität Frankfurt am Main

vorgelegt von Yannik Schaper

Matrikelnr.: 6345947

Erstgutachterin: Prof. Dr. Laura Sagunski

Zweitgutachter: Prof. Dr. Jürgen Scha�ner-Bielich

eingereicht am 23. Jul. 2024





III

Ehrenwörtliche Erklärung
nach §39 (15) Prüfungsordnung 2020 für den BAMA-Studiengang Physik

Hiermit erkläre ich, dass ich die Arbeit selbstständig und ohne Benutzung anderer als der an-
gegebenen Quellen und Hilfsmittel verfasst habe. Alle Stellen der Arbeit, die wörtlich oder
sinngemäß aus Verö�entlichungen oder aus anderen fremden Texten entnommen wurden,
sind von mir als solche kenntlich gemacht worden. Ferner erkläre ich, dass die Arbeit nicht
– auch nicht auszugsweise – für eine andere Prüfung verwendet wurde.

Eppstein, den 23. Jul. 2024

Yannik Schaper



IV

Zusammenfassung

Die Beobachtungen von Pulsaren markierten den Beginn der Messung von Gravitationswellen. Sie
sind in jüngster Zeit durch die Verö�entlichungen von Pulsar-Timing-Array-Organisationen wieder
in den Fokus gerückt. Nicht nur die Transmission von Gravitationswellen, sondern insbesondere
auch ihre Emission kann mit diesen Systemen untersucht werden. Mit der wachsenden Zahl sehr
präziser Beobachtungen von Pulsaren in Doppelsternsystemen wurde es möglich, ihre Massen sowie
die Änderung der Umlaufzeiten mit hoher Genauigkeit zu messen. Dies macht sie zu idealen astro-
physikalischen Laboratorien, um die allgemeine Relativitätstheorie sowie mögliche Modi�kationen
dieser über die Summe der Strahlungsleistung zu überprüfen.

Dabei ist die f (R)-Gravitation, bei der der Ricci-Skalar durch eine beliebige Funktion dieses ersetzt
wird, eine gute Möglichkeit, um nach einem breiten Spektrum von Korrekturen der allgemeinen
Relativitätstheorie bei hohen Krümmungen zu suchen. Über die dynamische Äquivalenz zu der All-
gemeinen Relativitätstheorie plus einem massiven Skalarfeld ermöglicht sie auch die Suche nach
Dunkler Materie in Form einer großen Gruppe von Modellen leichter Skalarteilchen. Die Beob-
achtung der Summe der tensorartigen Gravitationswellen, welche schon in der Allgemeinen Rela-
tivitätstheorie anwesend sind, und der skalaren Strahlung, welche von diesen Modellen eingeführt
wird, ermöglicht es, diese auf vielen Größenordnungen der enthaltenen Teilchenmasse einzuschrän-
ken. Die Analysetechnik stellt eine wichtige Ergänzung zu anderen Methoden dar, insbesondere am
unteren Ende des möglichen Massenbereichs.

Abstract

Pulsar observations marked the beginning of gravitational wave measurements. Recently they got
into the focus again with the publications from pulsar timing array organisations. Not only the trans-
mission of gravitational waves, but especially their emission can be investigated using these systems.
With the growing number of very precise observations of pulsars in binary systems, it became pos-
sible to measure their masses as well as the change of the orbital periods to high accuracy. This makes
them prefect astrophysical laboratories to test general relativity as well as its possible modi�cations
by studying the total radiated power.

Considering f (R) gravity, which replaces the Ricci scalar with an arbitrary function of it, for this is a
practical way to look for a broad range of high curvature corrections to general relativity. Due to the
dynamical equivalence to general relativity with an additional massive scalar �eld, it also enables the
search for dark matter in form of a large family of models of light scalar particles. The observations
determining the sum of tensor radiation, also present in general relativity, and scalar radiation intro-
duced by these extensions enables constraining them on many orders of magnitude for their masses
with competitive results especially at the lower end of feasible mass interval.
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Acronyms & Abbreviations

ALP axion-like particle
CompOSE CompStar Online Supernovae EoS
DM dark matter
EoS equation of state
FBS fermion-boson star
GR general relativity
GS golden search
GW gravitational wave
MSP millisecond pulsar
NS neutron star
pulsar pulsating source of radio emission
PTA pulsar timing array
ToA time of arrival
TOV Tolmann-Volkho�-Oppenheimer
TT transverse-traceless
QFT quantum �eld theory
VEV vacuum expectation value
WD white dwarf



VI

Contents

Page

1 Introduction 1

2 Pulsars 4
2.1 Compact objects as pulsar constituents . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.1 White Dwarfs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Neutron Stars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Pulsar timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Timing of binary systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Measurements of pulsar masses and orbital periods . . . . . . . . . . . . . . . . 13

3 Gravitational waves 14
3.1 Gravitational waves in the theory of general relativity . . . . . . . . . . . . . . . . 14
3.2 Creation of gravitational waves in compact binaries . . . . . . . . . . . . . . . . . 15
3.3 Modi�cations induced by f(R) gravity . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 The linearised action for f(R) gravity . . . . . . . . . . . . . . . . . . . . . 18
3.3.2 Modi�cations to the pulsar system . . . . . . . . . . . . . . . . . . . . . . 19

3.4 Constraints on the deviation from general relativity . . . . . . . . . . . . . . . . . 21

4 Numerical implementation 22
4.1 Bounds on the neutron star compactnesses . . . . . . . . . . . . . . . . . . . . . 22
4.2 f0(R) constraints for the mass and compactness space . . . . . . . . . . . . . . . 26

4.2.1 Calculation of the term S(mq) . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.2.2 Solving of the inequality with a Newton algorithm . . . . . . . . . . . . . . 32
4.2.3 Treatment of di�erent cases for most conservative bounds . . . . . . . . 34

4.3 f0(R) constraints using the bounded compactness range . . . . . . . . . . . . . . 37
4.3.1 Generalising cases for intervals of Newton constants . . . . . . . . . . . . 37
4.3.2 The creation of the two sets of plots . . . . . . . . . . . . . . . . . . . . . 40
4.3.3 Including the uncertainties of the measurements . . . . . . . . . . . . . . 41

5 Calculated Constraints 43
5.1 Compactness dependency of the constraints . . . . . . . . . . . . . . . . . . . . 43
5.2 Constraints using the calculated compactness ranges . . . . . . . . . . . . . . . . 44
5.3 Constraints including the uncertainties of measurements . . . . . . . . . . . . . 47
5.4 Conclusion and possible further steps . . . . . . . . . . . . . . . . . . . . . . . . 48



1

1 Introduction

Pulsar: a dying star spinning under its own exploding anarchic energy, like a lighthouse on speed. A
star the size of a city, a city the size of a star, whirling round and round, its death-song caught by a
radio receiver, light years later, like a recorded message nobody heard, back-played now into in�nity
across time. Love and loss.

Jeanette Winterson, The Stone Gods [1]

In this work the investigated objects are pulsars. These are strange phenomena; they are not live-
bringing like a well behaved main sequence star, but the aftermath of the violent death of a star
radiating its tragic story far in the universe. But on another level, they also become relatable; their
stability and regularity is fascinating, it creates structure in the vast landscapes of our galaxy, which
brings about a feeling of orientation. Having this inmind it is no wonder that JeanetteWinterson uses
them in her post-apocalyptic love story “The Stone Gods” to describe the relation of the protagonists.

In a more pragmatic way they are also used to guide contingent intergalactic travellers the passage to
earth. On the Voyager golden records this was designed in form of a map of several bright pulsars by
Sagan et al. [2]. Their regular, time dependent, signal is very close to how we as humans construct
our world with calendars, music etc. So it seems reasonable that, together with the decoding of the
actual record, an alien species will decipher this information and recognise them as lighthouses in
the night sky, too.

If one goes back in time to the early ages of radio astronomy, it is also no surprise that Jocelyn
Bell-Burnell became exited when she noticed the very small but regular patterns appearing during
observations in 1968. There appeared periodic spikes in the radio signal returning in a time span of
the order of 1 s. This led to the name of this phenomena: Pulsating source of radio emission (pulsar).
The pattern becomes even more impressive, when it is seen in the optical range as it became possible
with the latest generation of telescopes [3]. The aerial resolution leads to a locatable source in the
sky showing its distinct pattern like it can be seen in a time sequence in �gure 1.1.

Figure 1.1: Time sequence of the Crab Pulsar and a close by non-variable star observed at the VLT
(data from the release [4]).
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When studying these objects further, they do not become less impressive. It was found that they
consist of neutron stars, that are rapidly spinning. These are producing a lot of radiation along two
light-cones due to their strong and spiralised magnetic �eld. This uses the energy that is left over
from one of the most violent events in the universe: A supernova at the end of the lifetime of a star.

For example is the depicted object on the last page linked to the Crab Nebula. This was formed from
the outer shells of a star that appeared on the sky during the Supernova event in 1054, when it could
be observed with the naked eye by astronomers in China and Japan. It was captured in its form today
by the James Webb Space Telescope, which is shown in �gure 1.2a together with an x-ray image of
the contained pulsar in �gure 1.2b.

(a) The Crab Nebula (Messier 1) as depicted
by JWST (reprinted from [5]).

(b) The x-ray image constructed fromChandra data
of PSR J0534+2200 (reprinted from [6]).

Figure 1.2: Pictures of the Crab Nebula and its associated pulsar in di�erent electromagnetic bands.

The possibility of precise measurements of the signal, especially the times of arrival of the pulses
and the interesting environment with very high energy densities makes pulsars perfect astrophysical
laboratories. Here one key observable is the emission gravitational waves, that is enabled due to the
heavy masses and dynamic system. Together with systems containing solar mass black holes, binary
neutron stars are the only ones for which their gravitational wave emission has been directly detected
by the LIGO observatories [7].

But even before the last stages of an inspiral that can be observed with these, gravitational waves are
radiated away in a relatively high intensity. They are too weak to be detected directly. However, they
can be traced due to the energy they carry away from the system. The �rst indirect proof for the
existence of gravitational wave was achieved using radio observations of a pulsar. Only seven years
after the �rst pulsar detections, Hulse and Taylor [8] were measuring the change of the orbit of a
binary pulsar, which imprinted its signature in the delay of the times of arrival of the pulses.
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If one studies the e�ect in these high curvature systems, where also other relativistic e�ects like the
periastron shift are very distinct, it is likely that a deviation in the behaviour of gravity from the theory
of general relativity will be noticeable. This is why pulsars are very interesting objects to study, if one
is interested in theories of modi�ed gravity, for which many di�erent models are feasible. One
common approach is to extend the in�uence of the spacetime curvature being described with the
Ricci scalar R by using a function f (R) instead. This function can in principle be arbitrary. But
because it has to describe all the systems and phenomena as well as the very precise and veri�ed
predictions of general relativity, only small deviations at higher orders in R are possible.

They are still interesting, because for example they could capture quantum gravity e�ects in form
of an e�ective theory.Exhibiting an equivalence to models of dark matter brings these theories in
the focus of the community which is studying possible dark matter accumulations around neutron
stars, too. In these particular models the candidates are scalar particles that dynamically in�uence
the ordinary matter in the equivalent way to a correction of general relativity a high curvature. To
study these neutron stars are especially interesting, since they are very compact and, in contradiction
to black holes, can carry a scalar charge induced by the contained dark matter.

This enables a secondary interaction between two neutron stars, which introduces a new form of
radiation in addition to gravitational waves. The deviation in the waveform for the so-called scalar-
tensor theories can be seen in detail in [9]. But the important point for the pulsar observations is that
more energy can be radiated away, if these theories are correct. This would be a smoking gun for
the existence of dark matter halos around neutron stars or a necessary new theory of gravity at high
curvatures.

In the search for suitable candidates, a good way is to compare the predictions of the modi�cation
to the increasing number of very precise pulsar measurements, that have been made in recent years
[10]. This way one can constrain the allowed range of parameters in the function f (R). Because
of the above described two kinds of radiation, their dependency on the selected model respectively
mass range is not trivial.

What also comes into play here, is that for the scalar radiation the compactness of the neutron star
becomes important. To calculate this, one has to consider its inner microphysics, that is described by
a for neutron stars yet unknown equation of state. The calculation of the constraints that emerge from
these dependencies has to be done numerically, which is the goal of this work and the corresponding
created code bases.
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2 Pulsars

Looking at the reoccurring spikes in the radio signal with a very regular period about 1.337 s in
�gure 2.1, the name of the class of objects �rst found in observations by Hewisch et al. [11] becomes
very clear. The so called pulsating sources of radio emission (pulsars) as phenomena of radio observations
were thought of as too rapid to be linked to oscillations of regular variable stars. That lead to neutron
stars (NSs) or white dwarfs (WDs) being preferred as a possible explanation. Calculations showed
that they can oscillate with high frequencies of up to the order of 10ms [12]. The width of the peaks
is often even smaller than 10ms corresponding to a causally connected area over the emission time
with a diameter of below 3000 km. This matter of fact is also pointing towards these compact objects.

Figure 2.1: Pulsar signal from the observations at the Mullard Radio Astronomy Observatory with
the 4m-band interferometer by Hewish and Bell-Burnell (modi�ed reprint from [11]).

Already in the same year, the identi�cation with rapidly rotating NSs became clear due to works from
Gold [13] and Pacini [14]: Taking a compact object with the mass M and radius R, the maximum
angular velocity ⌦max is determined by the centrifugal force at the equator. This has to be balanced
by gravity resulting in

⌦2max R = G
M
R2

. (2.1)

Assuming a constant density d := M/R3 the minimal rotational period Pmin is then described by

Pmin =
2c
⌦max

=

s
2c
G d

. (2.2)

This result is leading to a density, which has to be grater than 1011 kg/m3 [15] and because an actual
physical object will become oblate in response to the rotation, the true minimal density will even
exceed this estimate.
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In order to generate a pulsed signal, these systems have to emit a beam of radiation which is swept
across the observer. Measurements of the polarisation of the radio waves in the following year by
Radhakrishnan and Cooke [16] supported that kind of behaviour similar to a lighthouse. They suggest
that the emission comes from a co-rotating magnetosphere leading to magnetic dipole radiation,
which is forming the beam of radio waves.

In addition to that, it causes a reduction of the rotational energy. Together with the large angular
momentum this gives a good explanation for the very stable period that is slowly becoming larger.
This is the reason why only young pulsars like PSR B0531+21 (formed in 1054 at the supernova
event that also formed the Crab Nebula) [17] can have short periods around 100ms and will spin
down during their lifetime until the radio emission ends at a period up to 10 s [18].

Contradicting this idea, PSR B1937+21 detected by Backer et al. [19] in 1982 has only a period of
1.56ms. The value is still above the limit derived in equation (2.2) for NSs, but it it much higher
than expected from having only the angular momentum after the core-collapse process. Hence, this
pulsar has been the �rst detection of the class of millisecond pulsars (MSPs).

Figure 2.2: Evolution pathways of a binary system containing a MSP (reprint from [20]).

The fact that these MSPs are almost always found in close binary systems gives an important hint on
where the additional angular momentum comes from: If the companion object is a star at the end of
its lifetime, the expansion of the outer atmosphere will lead to an accretion onto the pulsar. In this
process a part of the angular momentum is transferred onto the pulsar resulting in a rapid spin-up
of it [21]. An overview of the possible development paths for these systems is depicted in �gure 2.2.
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2.1 Compact objects as pulsar constituents

Before the pulsar signal to be observed as well as its analysis is discussed further explaining their usage
as astrophysical laboratories for gravity, the compact objects contained in them are in the focus of
the following sections. The central part for this will be the derivation of their equation of state (EoS)
determining the e�ect of their composition on the mass distribution.

2.1.1 White Dwarfs

The �rst kind of compact objects, white dwarfs (WDs) play an important role as companions of pulsars
and by this become relevant for this work. Despite recent foundings where they can also act as
emitters of radio waves resulting in an object very similar to regular pulsar only with periods around
1min [22], here only the case will be discussed where WDs are present as companion objects.

They were the �rst compact objects to be described theoretical as well as being observed. Being the
remnant of stars, which is left after its outer shells have been ejected when the energy production
from nuclear fusion has ended, they can not be stabilised by the radiation pressure from the resulting
radiation like regular stars. The only outward force comes from the degeneracy pressure of the
densely packed electron gas in the plasma.

It is determined by the so called Fermi energy nF , which describes the thermal energy electrons have
to obtain to occupy a higher state than the lowest possible due to the Pauli exclusion principle. This
can be calculated via their de Broglie wavelength like shown in [23] with the electron mass me and
their number density ne as

nF =
~2

2me

⇣
3c2 ne

⌘2/3
. (2.3)

Assuming full ionisation, this is the same as the proton number, which can be expressed by the nuclear
number density nc := d/mh and the fraction of protons in the nucleus described by the factor of the
ordinal and mass number of ` := Z/A . From this the equation can be rewritten as

nF =
~2

2me

✓
3c2

` d

mh

◆2/3
. (2.4)

As long as the electrons are non-relativistic and their speed is given by v = p/me the corresponding
momentum p is

p = ~
⇣
3c2 ne

⌘1/3
= ~

✓
3c2

` d

mh

◆1/3
, (2.5)

resulting in a pressure P generated by the degeneracy of

P =
1
3
ne p v =

�
3c2

�2/3
5

~2

2me

✓
` d

mh

◆5/3
. (2.6)

This is a simpli�ed version of the EoS of a WD, in which all electrons would have the same mo-
mentum. It has the polytropic form of P / d5/3 and if one inserts this into the Tolmann-Volkho�-
Oppenheimer (TOV) equation [24], which describes the equilibrium of the pressure in a spherical sym-
metric star, one obtains a solution for a stable object.
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Because pressure and temperature will increase with the central density, there exists a point at which
the electrons will become relativistic and their velocity will instead be described by v ⇡ c resulting in
a modi�ed EoS:

P =

�
3c2

�1/3
4

~ c
✓
` d

mh

◆4/3
. (2.7)

Compared to equation (2.6) there is a reduction of the polytropic index to 4/3 resulting in lower
central pressures and by this instability. The dynamic caused here is a collapse of the core leading
to a supernova. Knowing this no WDs can exist over a certain mass linked to the central pressure,
which is called the Chandrasekhar limit with the maximal massMCh. Its value can be described by

MCh =

p
3
8c

M3
Pl

✓
`

mH

◆2
1 , (2.8)

which is 1.46M� , if the WD is dominated by 4
2He resulting in ` ⇡ 1/2.

The derivation described up until here was also done by Nauenberg [25], where he used a more
realistic velocity distribution via using the internal energy of an electron gas. Even without additional
corrections this leads to the quite accurate mass-radius relation

R =
0.0225

`
R�

s✓
M
MCh

◆ -2/3
�

✓
M
MCh

◆2/3
⇡ 3450 km ⇤

s
1.65

✓
M
M�

◆ -2/3
�

✓
M
M�

◆2/3
. (2.9)

Here for the approximation on the right-hand side a He-WD is assumed. The resulting curves for
di�erent compositions are depicted in �gure 2.3. For these the e�ects of �-decay inside the WD
and further corrections due to the more complex inner structure depending on the stars history are
being neglected. But WDs in pulsars in almost all cases can not be observed directly and by that the
Helium domination is often the only information over their composition that can be reconstructed.
Hence, it would not be reasonable to use these more complex models.

Figure 2.3: Mass-radius relation of a no-�-decay WD with no electrostatic corrections dominated
by 4

2He,
56
26Fe and for an equal mixture of these.

1MPl :=
q

~ c
4cG is the Planck mass coming from the unit of mass in natural or Planck units.
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2.1.2 Neutron Stars

If a WD obtains a mass above the Chandrasekhar limit discussed in the previous section, the rem-
nant of the resulting supernova is called a neutron star (NS) [26]. Inside its core the matter changes
from a dense plasma of regular matter to a free gas of only very closely packed neutrons [23]. This
uses less phase space as well as physical one compared to regular matter leading to an even more
compact object. Because of the electric neutrality of the neutrons it again can only be stabilised by
the degeneracy pressure resulting in central densities of the order of 1018 kg/m3 similar to an atomic
nucleus.

To describe their intrinsic nature more accurately an EoS is needed relating the composition of the
matter to the energy density at the di�erent distances to the centre of the NS. Even though the
form of this is still unknown, typical features also depicted in �gure 2.4 exists, such as an outer crust
of heavy, neutron-rich nuclei and relativistic electrons, an inner crust, where a super�uid of free
neutrons are present as an additional component, and the interior, where besides the super-�uid of
neutrons only a small number of protons and electrons. There also may be a solid core of other
sub-nuclear particles, but this as well as other details are sensitive to the micro-physics and total mass
of the NS.

Figure 2.4: Model for a typical NS with a mass of 1.4M�(reprinted from [23]).

Another thing which is clear independent of the actual model, is the existence of a maximum mass
where the pressure at the centre will not be enough to stabilise the system and the NS will collapse
into a black hole. The limit will show up in the mass-radius relation as a point, where the mass is not
growing anymore and its derivative with respect to the radius changes its sign.

For the emission of the pulsar signal the detailed structure of the interior does not play an important
role, but what will be important is the mass and the radius of the NS. There are suggestions for
universal relations, which will capture the dependencies very well, at least at the maximum mass
[27]. But for describing NSs at masses down to 1M� as well the EoS is determining the mass-radius
relation [28]. Some examples for these are depicted in �gure 2.5 showing the broad range of possible
radii.

To capture this, several EoSs are used trying to sample the whole range of soft to sti� realistic ones
based on possible EoSs in the analysis of the NS events done by the LIGO collaboration [30], the
later discussed modi�cation of gravity [31] and a general review about realistic EoSs [29]. The ones
selected have to allow for high enough maximum mass like shown in [32] for their consideration in
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Figure 2.5: Mass-radius relation of spherically symmetric NSs for a selection o� EoSs, where the two
horizontal bars indicate the mass measurements of PSR J1614-2230 and J0348+0432
(reprinted from [29]).

describing pulsars.

These are taken from the CompStarOnline Supernovae EoS (CompOSE) service [33, 34] and listed
in table 2.1. Together with the provided code [35] it is possible to generate tables for them containing
the energy density and pressure depending on the number density of neutron. The application of
these as input for the actual calculations will be later described in section 4.1.

Name CompOSE index Category Reference papers

SFH(SFHo) 14 hadronic [36–38]
HS(DD2) 18 hadronic [36–40]
APR(APR) 68 hadronic [41–43]
RG(SLY9) 86 nuclear [44–46]
RG(Skl3) 88 nuclear [44, 45, 47]
GMSR(FSU2H) 213 inner crust-core uni�ed [48–51]
GPPVA(FSU2) 215 inner crust-core uni�ed [48–50, 52]
GPPVA(DD2) 217 inner crust-core uni�ed [40, 48, 49]
GPPVA(DDME2) 218 inner crust-core uni�ed [48, 49, 53]
GPPVA(TW) 219 inner crust-core [48, 49, 54]
GMSR(NL3wrL55) 220 inner crust-core uni�ed [48, 49, 55–57]
GMSR(H4) 231 nucleonic / uni�ed [58]

Table 2.1: EoSs used in the description of NSs taken from the CompOSE service [33].

https://compose.obspm.fr/eos/14
https://compose.obspm.fr/eos/18
https://compose.obspm.fr/eos/68
https://compose.obspm.fr/eos/86
https://compose.obspm.fr/eos/88
https://compose.obspm.fr/eos/213
https://compose.obspm.fr/eos/215
https://compose.obspm.fr/eos/217
https://compose.obspm.fr/eos/218
https://compose.obspm.fr/eos/219
https://compose.obspm.fr/eos/220
https://compose.obspm.fr/eos/231
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2.2 Pulsar timing

For the usage of pulsars as astrophysical laboratories the very consistent pulse periods are an obvious
choice, because their times of arrival (ToAs) are relatively simple to study. For this it is necessary to
isolate the true pulse from in�uences like the movement of the earth or the proper motion of the
pulsar itself, but also gravitational and other e�ects in�uencing the transmission of the signal on its
path through the galaxy.

The �rst one is well studied by observations inside the solar system. From the Jupiter satellite eclipse
observations by Rømer [59] the delay tR is directly given by the speed of light together with the
distance to the sun d� and the angular velocity of the earth l as

tR = c d� cos (l t � _ ) cos V , (2.10)

where _ is the ecliptic longitude and V the latitude of the observed object. This leads to a sinusoidal
variation of the pulse’s ToAs over the year [60]. In analogy to this, a correction due to the rotation
of the Earth and by this observational position of the order of 21ms is necessary.

An e�ect of the theory of general relativity (GR) also leads to a delay, the so called Shapiro delay �S.
It is caused by the passage of the radiation though the solar system with its curved spacetime. Using
the angle pulsar-Sun-Earth \ this can be expressed as

�S =
2GM�
c3

ln (1 + cos \) , (2.11)

which has a maximum when the pulsar appears close to the Sun with around 120ms. There can also
be an increase of this delay by other objects, if they are close to the path of the radiation. The most
prominent is here the delay due to a companion object, if observing along the ecliptic plane of the
system. Because their masses appear in the formula this allows for their measurement, which makes
these binaries very interesting systems to study their dynamics.

In addition, if one compares the the time of a clock on earth tE with the coordinate time at in�nite
distance to the Sun t, there is an e�ect given by

dt
dtE

= 1 + 2GM�
c2

✓
1
r
� 1
4a

◆
. (2.12)

Here the deviation of the distance to earth from the semi-mayor axis a plays a key roll. Assuming
a Keplerian orbit this is a function of the true anomaly f , which is the angle between the Earth at
perihelion and its instantaneous position [61]. Given the eccentricity e, it can be expressed as

�tE = 1.661 45ms ⇤
✓✓
1 � e2

8

◆
sin ( f ) + e

2

2
sin (2 f ) + 3e

2

8
sin (3 f )

◆
. (2.13)

With all the corrections described above the ToAs can be reduced to the ToA observed at a static
position at in�nity in an otherwise empty universe.The only e�ects left are on the emitter side. Here
for example the propermotion of the systemwill lead to a linear growing deviation from the expected
ToAs. Although, this is very small in comparison to the period timescale and will only be detected
in observations over several years.
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Another e�ect and the last one large enough to be mentioned here is the change of the observed
derivative of the period due to a gravitational acceleration of the pulsar caused by its surroundings.
This can often be seen for pulsars in globular clusters, where an acceleration towards the observer for
systems at the far side of the cluster will lead to an arti�cial slowdown of the pulses and vice versa.

Considering all these e�ects, one now canmodel the intrinsic behaviour of the pulsar. This is typically
done by expressing the expected pulse number N as a Taylor series of the pulsation frequency or as
it will be done here angular velocity ⌦ := 2c/P over the observation time tO:

N = ⌦ tO +
§⌦
2
t2O +

•⌦
6
t3O + O

⇣
t4O

⌘
. (2.14)

From this model the evolution of the angular velocity is determined. The most important parameter
that can be derived of it is the braking index n := ⌦ •⌦/ §⌦2 [62], that can also theoretically be computed
from the slow down due to emission of angular momentum. It is described by the time derivative of
the radiated energy §EM as a function of the magnetic �eld strength on the surface B and the angle
between the dipole and the rotational axis U like

§EM = -
2
3c3

⌦4R6 sin2 U
✓
B
`0

◆2
. (2.15)

Using the de�nition for the rotational energy ER := 1/2 I ⌦2 and assuming a constant moment of
inertia I as well as inclination U and strength of the magnetic �eld, there is the relation for the change
of the angular velocity of §⌦ / ⌦3. Di�erentiating this and inserting it into the de�nition of the
braking index the proportionality constant depending on the quantities mentioned above will drop
out leading to the simple result n = 3.

The described model can be used for the actual observations, folding the signal according to the
di�erence of concurrent ToAs to separate the signal of an individual pulsar from other sources and
the detector noise. However, it also allows to look for very small deviations from e�ects not captured
above.

2.2.1 Timing of binary systems

In the previous section one possible deviation from the modelled signal was left out. As mentioned
in the beginning of this chapter a signi�cant amount of pulsars are part of a binary system. For
these additional delays similar to equation (2.10) from the change of emission position and equa-
tion (2.11) from the gravitational e�ect of the companion object are present [63]. This is shown for
three observations near conjunction of the binary in �gure 2.6, where the di�erence of the epochs
comes from the relativistic precession of the orbital ellipse.

Additionally, there is an e�ect called the Einstein delay �E, which comes from relativistic modi�ca-
tions of the orbital phase \ (deviating from Keplers second law) given by

�E =
G
c2
⌦ e
a

`

✓
1 + 2

q

◆
sin \ , (2.16)

where besides the reduced mass ` the mass ratio q := mp/mc2 plays a role as well.
2All quantities with an index p belong to the pulsar and with c to its companion.



12 Pulsars

Figure 2.6: The variation of the Shapiro delay at three epochs, where the time is given as fraction
of the period Pb centred at the pulsar’s superior conjunction time TCon j , for which the
longitude of periastron l is given as well (reprinted from [64]).

From these e�ects the semi-major axis, inclination, eccentricity of the orbit and even theirmasses can
be computed. By knowing these orbit parameters one is able to test GR, for example by observing
the periastron advance in analogy to the central prediction for the Mercury orbit used to verify GR,
which is also shown in �gure 2.7. Even before this observation was done by Weisberg and Huang
[64], the change of the orbital period due to emission of gravitational waves (GWs) was observed for
the Hulse-Taylor-Binary-pulsar [8] as shown in �gure 2.8.

Figure 2.7: Periastron shift for the Hulse-
Taylor pulsar and its GR predic-
tion (reprinted from [64]).

Figure 2.8: Orbit phase shift due to the emission
of GW for the Hulse-Taylor pulsar
(reprinted from [65]).
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2.3 Measurements of pulsar masses and orbital periods

The above described observations have been done for more and more systems in recent years. A list
with the observed pulsar and all computed quantities, methods and references is provided by Freire
[10]. It was used to expand the quite limited sample in the paper by [66] fundamental to this work
to enable the search for dependencies on the companion type, eccentricity and the stage in their
development. All pulsars that are used can be found in table 2.2 and a complete documentation of
their data is given in the section about the implementation in code in table 4.1.

Name Companion MSP Eccentricity High mass Reference

PSR B1534+12 NS high [67]
PSR B1913+16 NS high [64]
PSR J0337+1715 WD ÿ [68]
PSR J0348+0432 WD low ÿ [69]
PSR J0437-4715 WD ÿ low [70]
PSR J0453+1559 NS ÿ high [71]
PSR J0740+6620 WD ÿ low ÿ [72]
PSR J1141-6545 WD high [73]
PSR J1518+4904 NS ÿ high [74]
PSR J1738+0333. WD low [75]
PSR J1756-2251 NS high [76]
PSR J1757-1854 NS high ÿ [77]
PSR J2222-0137 WD ÿ [78]

Table 2.2: All selected pulsars with their a�liations to di�erent subgroups from interesting key char-
acteristics [10].



14

3 Gravitational waves

In the previous chapter GR already appeared in form of e�ects on the orbits and radiation transmis-
sion. All this as well as gravity as a fundamental force with all its phenomena can be derived from its
central part, the Einstein equation for the gravitational �eld:

G`a =
8cG
c4

T`a , (3.1)

which relates the curvature and by this the geometry of the universe to its content represented by the
energy-momentum tensorT`a [79]. This is done via the metric g`a of the spacetime contained in
the Einstein tensor

G`a := R `a = R`a � 1/2 g`a R 1,2 , (3.2)

where the Ricci tensor is a contraction of the Riemann tensor R`a := R d
`da , which again can be

written as a function of only the metric like

R `
a df = - 1/2

⇣
ma md g

`
f + m`mf ga d � ma mf g

`
d � m`md gaf

⌘
. (3.3)

3.1 Gravitational waves in the theory of general relativity

Considering the �eld equations one has a set of second order di�erential equations. But it is not
obvious in this form that a solution for radiation similar to the wave equation in electromagnetism
(É A` = 0) will exist. Looking for wavelike solutions Maggiore [80] suggests considering spacetimes
with small curvature. These are represented by a line element which consists of a �at spacetime [ `a

plus a small deviation h`a having the form

g`a = [ `a + h`a + O

⇣
(h`a )2

⌘
,
��h`a �� ⌧ 1 . (3.4)

Using this in the Einstein tensor all terms higher than linear order in h`a will also vanish in the
derivatives of the metric. By this, it simpli�es to:

G`a = h`a � m` md h
d

a + 1/2 [ `a md mf h
df
. (3.5)

The �rst term can be identi�ed as the searched for d’Alembert operator acting on the trace-free
perturbation h`a . This is also the only non-vanishing term, if we use the gauge freedom inherent in
GR and the so called Lorenz gauge (md h

d
a = 0). The other terms are zero in this scheme and with

the additional condition of h`a being traceless, G`a reduces to the right-hand-side of an ordinary
wave equation.

1The "bar-operator" is used as a shorthand notation for trace-free tensors de�ned as x `a := x`a � 1/2 g`a x
d
d .

2To denote the trace of a tensor in a compact way the indices are left out like x := x `` .



3.2 Creation of gravitational waves in compact binaries 15

As a third condition the energymomentum tensor is also set to zero, which �ts well to our assumption
of a (besides GW contributions) �at spacetime, at least outside the source. The three conditions
together de�ne the so called transverse-traceless (TT) gauge, for which the wave equation has the
clear form

hTT`a = 0 . (3.6)

3.2 Creation of gravitational waves in compact binaries

For the existence of GWs a possibility of their creation is also necessary. An obvious candidate is here
a binary system of compact stars leading to a strong and dynamically changing spacetime curvature.

To describe this system the action for the graviton �eld can be constructed using the Feynman rules
resulting from the treatment of linearised gravity [81]. The starting point for this is the Einstein-
Hilbert action [82] that is also used to derived the �eld equation given in equation (3.1) . Together
with the Lagrangian for the matter content of the universe LM it has the form:

S =
πp

- g d4x
✓
-

c4

16cG
R + LM

⇣
g`a ,  

⌘◆
3. (3.7)

Using these and the universal coupling with matter ^ :=
p
8c G/c4 [83] the Ricci tensor and scalar can

be expressed based on the split in equation (3.4) as:

R`a = 1/2 ^
⇣
md m[ ` h

d
a ] � m` ma h � h`a

⌘
+ O

⇣
h2

⌘
, (3.8)

R = ^
⇣
m` ma h

`a � h
⌘
+ O

⇣
h2

⌘
. (3.9)

From this the e�ective action can be written in analogy to equation (3.7) like

S =
π
d4x 1/2

h
h`a h`a � h h � h`am` md h

d
a + hm` ma h`a + h`am` ma h + ^ h`aT `a

i
, (3.10)

where the interaction term describes the graviton emission from a classical source for which the
Feynman diagram de�ned like in quantum �eld theory (QFT) is depicted in �gure 3.1.

Figure 3.1: Vertex ^ hTT`a T `a for the graviton emission from a classical source (reprinted from [81]).

3For the determinant of the metric here the shorthand notation g := det
⇣
g`a

⌘
is used.
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Using this action, the rate of graviton emission d�h can then be given by a sum containing the polar-
isation tensor n `a

(_ ) to be integrated over the wave number space d
3k [66] as

d�h =
^2

4

2’
_=1

���T `a (k0) n
`a
(_ ) (k)

���2 X (l � l0) c

l

d3k
(2c)3 . (3.11)

Because of the relation for the sum of all polarisation modes [84]

2’
_=1

n (_ )`a (k) n (_ )df (k) = 1/2
⇣
[ `d[af + [ `f[a d � [ `a [ df

⌘
(3.12)

this can be expressed as

d�h =
^2

20c

⇣
Ti j (l0)T ⇤

ji (l0) � 1/3
��T (l0)

��2⌘ X (l � l0) l Xl , (3.13)

which as a last step leads to the energy loss

§Eh = ^2

20c

π ⇣
Ti j (l0)T ⇤

ji (l0) � 1/3
��T (l0)

��2⌘ X (l � l0) l2 dl . (3.14)

For the calculation of the energy-momentum tensor in this equation the binary system is described
as a classical current determined by its dynamics being described by Kepler orbits of the shape

r (\) =
a
�
1 � e2

�
1 + e cos (\) , (3.15)

in which a, e are again part of the orbital elements introduced in section 2.2.1.

From writing the orbit and its velocity ⌦ (given by Kepler’s third law ⌦ =
p
GM/a3 [85]) in a para-

metric form as
x = a (cos \ � e) , y = a

p
1 � e2 sin \ , ⌦ t = \ � e sin \ , (3.16)

the velocity components can be written over their Fourier transforms resulting in

§xn =
⌦
2c

⌦/2cπ
0

exp (i n⌦ t) §x dt = - i a⌦ J 0n (n e) ,

§yn =
⌦
2c

⌦/2cπ
0

exp (i n⌦ t) §y dt = a
p
1 � e2
e

⌦ Jn (n e) ,

(3.17)

containing the Bessel function of �rst kind Jn (x) [86] via their identity

Jn (x) =
1
2c

2cπ
0

exp (i (n \ � x sin \)) d\ . (3.18)
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Using these to construct the energy-momentum tensor, which for a system orbiting in the x-y plane
is simply given by the reduced mass ` and four velocityU` := (1, §x , §y , 0) [87] as

Ti j (l0)T ⇤
ji (l0) � 1/3

��T (l0)
��2 = ` X

�
Æx � Æx0

�
U`Ua , (3.19)

it can be expressed depending on the parameter l := n⌦ in the simple shape of a sum of Bessel
functions with di�erent orders:

T `a (l0) = `2 l4 a4 b(n , e) ,

b(n , e) := 1
8n2

⇣
Jn�2(n e) � 2e Jn�1(n e) + 2/n Jn (n e) + 2e Jn+1(n e) � Jn+2(n e)

⌘2

+
⇣
1 � e2

⌘ ⇣
Jn�2(n e) � 2Jn (n e) + Jn+2(n e)

⌘2
+ 4
3n2

J2n (n e)
�
.

(3.20)

Inserting this into equation (3.14) the energy loss can be expressed as

§Eh = ^

5c

2’
n=1

(n⌦)2 `2 a4 (n⌦)4 b(n , e)

=
32G
5

`2 a4⌦6
⇣
1 � e2

⌘- 7/2 ✓
1 + 73

24
e2 + 37

96
e4

◆
,

(3.21)

which is the so called Peter-Mathews formula [88] extending the quadrupole formula for gravitational
wave emission by Einstein [89] to non-circular orbits.

This energy loss has also an in�uence back on the Kepler orbit assumed above. The increase in
binding energy Eb [85], which itself is given by

Eb = -G
M `

2 a
= - `

✓
2c

GM
Pb

◆2/3
, (3.22)

leads to a decrease in the distance of the objects which also causes an decrease in the orbital period
of the form

§Pb = -6c
s

` a5

(GM)3
§E . (3.23)

3.3 Modi�cations induced by f(R) gravity

There are many possibilities to extend GR. An interesting candidate modifying the behaviour at
very high curvature and big scales is f (R) gravity, in which the Ricci scalar R in the Einstein-Hilbert
action iss being replaced by a function of it. It can be speci�ed as in [90, 91] or used to describe
a dark matter (DM) model like [92] via a dynamical equivalence, or be an e�ective theory for the
corrections by quantum gravity. Because of the large realm of possibilities with models motivated
di�erently well, in this work an agnostic ansatz is chosen, where general constraints for the shape of
f (R) are calculated. These can later be �t to an individual model [93, 94].
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3.3.1 The linearised action for f(R) gravity

To get the linearised action for this modi�ed theory, we take the function f (R) and expand it around
R = 0. Because we have to resemble GR with only a small deviation at higher orders one can set
f (0) = 0 and f 0(0) = 1. [66] By that the function simpli�es to

f (R) = R + UR2 + O

⇣
R3

⌘
, (3.24)

where U := 1/2 f 00(0) is the free parameter of the lowest order deviation from GR. Expanding the
gravitational action with respect to h`a like in section 3.2, we get the action

S =
π
d3x

h
1/2

⇣
h`a h`a � h h � h`am` md h

d
a + hm` ma h`a + h`am` ma h

⌘

+2U
⇣
h 2h + h`am` ma md mf hdf � h`am` ma h � h m` ma h

`a
⌘
+ 1/2 ^ h`aT `a

i
.
(3.25)

An elegant way to deal with the new terms proportional to 2U is to perform a conformal transform-
ation from the Jordan frame, in which the Lagrangian looks like derived above, to the Einstein frame.
For these it can be shown that they are dynamically equivalent [95].

The transformation itself is de�ned by the relation of the metrics over the conformal factor A(q) :=
( f 0(R))- 1/2. By this the Einstein frame metric is g̃`a = A2(q) g`a [96] and the corresponding action
has the form

S =
πp

- g̃ d4x
✓
-
R̃
2^

� 1/2 m` q m`q +V (q) + LM (A2(q) g̃`a ,  )
◆
, (3.26)

which looks like the action for GR plus a scalar �eld q / ln ( f 0(R)) with the potentialV (q) given by

V (q) = R f
0(R) � f (R)

2^ ( f 0(R))2
. (3.27)

This resembles a DM candidate for example axion-like particles (ALPs) and the linearisation for it
can be done analogue to the Jordan frame by expanding each term in the sum individually. The �rst
term will again be the same as in the GR case, while the scalar �eld part is determined by the dynamic
part expressed as p

- g̃ m` q m`q = (1 + 1/2 ^ h)
�
[ `a � ^ h`a

�
m` q m`q (3.28)

and the potential term that can be written like

p
- g̃ V (q) = (1 + 1/2 ^ h)VVEV + 1/p24 ^ dVEV (q � qVEV) + 1/2mq (q � qVEV)2 + O

⇣
q3

⌘
4 , (3.29)

where the density of the cosmological background due to the presence of the scalar �eld dVEV appears
as well as the mass of this �eld mq :=

p
V 00(qVEV).

4The subscript VEV denotes the vacuum expectation value of the scalar �eld q or indicates that this should be used for
quantities depending on this �eld.
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Because in the �rst term in the expansion VVEV acts like an cosmological constant and dVEV is the
cosmological background density, the terms can be neglected, since the timescale of the evolution of
the compact binary orbits is much smaller than of the cosmological evolution and the densities that
are much larger. Neglecting them in the scalar �eld part this simpli�es to

Sq =
π
d4x

⇣
1/2 m` (q � qVEV) m` (q � qVEV) � 1/2m2q (q � qVEV)2

⌘
. (3.30)

The last complication to this transformation is that the matter part e�ectively still depends in the
untransformed metric g`a . To resolve this the transformation of the energy-momentum tensor can
be used, which is

T̃ `a = -
⇣
2m[`a

+ [ `a
⌘
LM = A2VEVT

`a
, (3.31)

leading to the expression of the matter part depending on this

SM =
π
d4xA4VEV

⇣
1/p24 ^ T̃ (q � qVEV) + 1/2 ^ h`a T̃`a

⌘
. (3.32)

3.3.2 Modi�cations to the pulsar system

For the behaviour of the pulsars the �rst important thing is that even though the new scalar �eld
could act as a �fth force altering the orbit, there are very strong constraints from solar system tests
like from the Cassini mission [97]. Because of the higher surface gravity of compact objects the
possible deviations are here even smaller and it is still valid to model the orbits as Keplerian.

For the tensor radiation we get almost the same emission rate like in the GR case. Only the con-
formal factor in the transformed energy momentum tensor in equation (3.31) leads to an additional
dependency on it resulting in

d�h =
^2

4
A8VEV

2’
_=1

���T `a (k0) nTT
`a
(_ ) (k)

���2 X (l � l0) c
l

d3k
(2c)3 . (3.33)

This leads to the same modi�cation of for the energy loss, which expressed with f 0(RVEV) = A-2VEV is

§Eh =
32G
5

f 0(RVEV)-4 `2 a4⌦6
⇣
1 � e2

⌘- 7/2 ✓
1 + 73

24
e2 + 37

96
e4

◆
. (3.34)

Assuming the objects to be of constant mass density for the inner solution of the scalar �eld one can
match an exterior solution [66] given by

q(r) = qVEV �MPl G n
M
R
exp

�
-mq r

�
, (3.35)

where the screened parameter n is introduced. This is given by the Newtonian surface gravitational
potential � = G V containing the compactness V := M/R and the external VEV of the �eld resulting
in

n = MPl
qVEV
�

= -
p
3/2 ln f

0(RVEV)
�

. (3.36)
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From equation (3.35) one can additionally identify the scalar charge of the objects that is given by
the linear dependency on the massQ := 4cMPl G n M and by being in the non-relativistic limit the
energy density is simply d = -T̃ . From this and the relation for the scalar charge ds = MPl/p6 d the
interaction Lagrangian is

LS = 1/2 ^MPl A4VEV (q � qVEV) d , (3.37)

resulting in the scalar part of the radiation emission then of the form

d�s = (1/2 ^MPl)2 A8VEV
π

| ds (l0) |2 X (l � l0) c
l

d3k
(2c)3 . (3.38)

Fourier transforming the scalar density and expanding it regarding the wave number leads to

ds (l0) =
�
Qp +Qc

�
X (l0) + i `

✓
Qp
Mp

+ Qc
Mc

◆ �
kx x(l0) + ky y(l0)

�
+ O

⇣
k2

⌘
, (3.39)

where the density is expressed in terms of the charges of the individual objects that are described as
point particles with ds = Qp X3

�
x � xp

�
+Qc X3 (x � xc). Because the �rst term does not contribute

in the radiation formula one can use the transformed coordinates in equation (3.17) and the angular
average hkii = 1/3⌦2

⇣
n2 � (mq/⌦)2

⌘
[98] to express the scalar density as

| ds |2 = 1/3 `2 a2⌦2
✓
Qp
mp

+ Qc
mc

◆2 1
n2

✓
n2 �

⇣mq

⌦

⌘2◆ ✓
J 0n (n e)2 +

1 � e2
e2

J2n (n e)
◆
. (3.40)

With this and equation (3.38) the energy loss can be described for the scalar part as well like

§Es = 1/6 ^2MPl A8VEV

✓
Qp
mp

+ Qc
mc

◆2
`2 a2⌦4

1’
n=1

1
n

✓
n2 �

⇣mq

⌦

⌘2◆3/2 ✓
J 0n (n e)2 +

1 � e2
e2

J2n (n e)
◆

= 1/3G A8VEV
�
n p + n c

�2
`2 a2⌦4 ⇤ S (mq) ,

(3.41)

where the term of the sum over the radiation written as S (mq) can be investigated further:

S (mq) :=
1’
n=1

n-1
✓
n2 �

⇣mq

⌦

⌘2◆- 3/2 ⇣
J 0n (n e)2 + (e-2 � 1) Jn (n e)2

⌘

=

8>>><
>>>:

�
1 � e2

�- 5/2 �
1 + 1/2 e2

�
, mq ⌧ ⌦

Õ1
n=dmq/~⌦e n

-1
✓
n2 �

⇣
mq

⌦

⌘2◆- 3/2
exp (-2n e) , mq � ⌦ .

(3.42)

This shows that for larger masses the scalar radiation is exponentially suppressed until it reaches a
constant level for very small masses, where the formula becomes independent of it.

From there only the de�nition of the screened parameter n is needed from equation (3.36) to �nd
the simpler expression containing only the derivative of f (R)

§Es = 1/2 f 0(RVEV)-4
✓
ln f 0(RVEV)

�V

◆2
`2 a2⌦4 S (mq) , (3.43)

where for the resulting compactness di�erence of the surface gravity terms the quantity�V is de�ned
in analogy to the reduced mass as

�V :=
���� Vp Vc
Vp � Vc

���� =
���� RpMp

� Rc
Mc

����
-1

. (3.44)
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3.4 Constraints on the deviation from general relativity

To see the e�ect of this modi�cation of GR in the systems described in chapter 2, the power radiated
away can be linked to the orbital period shift as shown in equation (3.23) . If this is done for the
theory with and without the modi�cation, one gets predictions on this quantity that can be compared
to each other and the observed values listed in table 4.1. To do this on the level of one individual
pulsar, the used inequality is

1
!
>
� f (R)
�GR

=

�����
§Pb , f (R) � §Pb ,GR
§Pb ,intr � §Pb ,GR

����� . (3.45)

By this a modi�cation is ruled out if the pair of f 0(R) and mq values result in a larger deviation
from the GR prediction than the measured shift. This may seem counter-intuitive because the
GR prediction serves as the null hypothesis and not the actual measurement. But because here
individual measurements are used, which are random manifestations of the distribution of pos-
sible values due to the uncertainties of the measurement, these cannot function as such. Hence,
§Pb , f (R) 2

� §Pb ,intr , 2 §Pb ,GR � §Pb ,intr
�
is the allowed interval for the modi�ed gravity predictions.

This still does not rule out that a single pulsar, which because of the uncertainty of the measure
accidentally would be observed like predicted byGR, could exclude reasonable parts of the parameter
space. Because of this constraints are always calculated and compared for a group of pulsars. In
addition to this, the broadening of the allowed interval due to the uncertainties of the measurements
are calculated.

For the calculations regarding the solving of the inequality for f 0(R) and mq, that are discussed in
detail in the following chapter, it is useful that one can set an upper bound on the value of f 0(R) from
solar system constraints as well. The timing of the radio communication of the Cassini mission leads
to |n | < 2.3⇥10�5 [99], which together with equation (3.36) will constrain f 0(R). Especially values
which are not of the order of 1 can be excluded a priori.
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4 Numerical implementation

The implementation of the numerical calculations necessary for the constraints on f (R) is the last
part missing for creating these. The code written for this work can be found in the GitHub repositor-
ies from the DMGW-Goethe organisation [100]NSMassRadiusCurves and PulsarConstraints. Besides
the standard C++ and Python libraries, it features the libraries used for this work as well.

The following sections will provide a detailed description of each individual code base. For the latter
only excerpts of the code are listed in this chapter. The complete �les can be found in the repositories
and all objects will be linked to there or an o�cial documentation if possible.

4.1 Bounds on the neutron star compactnesses

As introduced in section 3.3.1, the compactnesses of the objects come into play when scalar radiation
is considered. To set a bound on its possible values for the case of a NS, the FBS-Solver [101] is
used. This code from the DMGWgroup has its origin in solving the TOV equation for fermion-boson
stars (FBSs). But by setting the input parameters for the additional bosonic �eld to zero, mass-radius
curves can also be calculated for regular NSs quite easily. The input used for this calculation is the
CompOSE data listed in table 2.1 together with a range of values for the central density, which then
corresponds to one point on theM-R plane for each value.

The solver is written as a python module, as which it was imported in the code calculating the com-
pactness data provided inNSMassRadiusCurves. This consist of the bash script exeThis.sh for structure,
logging and command line options as well as its central part, the calculation function shown in list-
ing 4.1. This function ensures the build and correct linking of the module with its cython part, in its
own subsidiary function. The path to this together with the list of data �les is handed to the calculating
python �le at the end in line 100.

73 � install fbs solver with make
makeFBS() {

75 local -r goBack��(pwd)
cd �fbsLocP
make clean
make
cd �goBack

80 }

https://github.com/DMGW-Goethe/NSMassRadiusCurves
https://github.com/DMGW-Goethe/PulsarConstraints
https://github.com/DMGW-Goethe/FBS-Solver
https://github.com/DMGW-Goethe/NSMassRadiusCurves
https://github.com/DMGW-Goethe/NSMassRadiusCurves/blob/main/bin/exeThis.sh
https://cython.org
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82 � part that should be loged
calculation() {

echo -e "log of exeThis.sh::calculation()\n�{separator}\n"
85

� stop whole script if error from single command
setError

� ensure compiled fbs
90 local -r buildExe�"�{fbsLocP}/main.out"

[ -f "�buildExe" ] && echo "existing fbs installation" || makeFBS
echo -e "�{separator}\n"

� get comma seperated list of data files and pyFBS location
95 local dataFs�"�{dataLoc}*.ose"

dataFs��(echo �dataFs | sed 'y/ /,/')
local -r pyFBSLoc�"�{fbsLocP}/pyfbs/"

� calculate MR-curves with pyhton interface of fbs-solver
100 python� �pyF �dataFs �pyFBSLoc �resLocP �tmpLocP �plotLocP �massGrid

echo -e "�{separator}\ncalculation finished\n"
}

Listing 4.1: Part of the exeThis.sh script with the calculation function and its subsidiary makeFBS that
builds the cythonmodule. It is executed before the �lemain.py is called by $pyF. The other
variables ending on LocP hold absolute paths to locations in the repository, massGrid the
user de�ned parameters for the mass range on the x-axis and setError is a function that
just sets the -e �ag for error handling and a trap for the error message.

The called central python �le main.py named after the contained main function shown in listing 4.2
has its most important task in opening a process Pool from the multiprocessing module in lines 35
to 45. In this the calcBetaCurves calculations can be performed asynchronous for each EoS. This
parallelisation resulted in a reduction of the computation time with a factor of 6.3 for the number
of 12 used EoSs and 8 used threads, which is quite close to the theoretical maximum taking into
consideration the small ratio of tasks to threads. If more EoSs were used, it would approach the
theoretical limit even closer.

27 � main function for plotting of data in file given as argument
@timer
def main() -� int:

30 � parse input from bash script
argInputs � parseInput()
print("input parsed, start calculations in integrate.py")

� do calculations for each EoS in pool of processes
35 procPool � Pool()

dataList: list[curveData] � []
for dataFile in argInputs.filenames:

� perform "dataList.append(calcBetaCurves(dataFile, pyFBSPath, tablePath, \\
gridParams))" in parallel

procPool.apply_async(
40 calcBetaCurves,

args�(dataFile, argInputs.pyFBSPath, argInputs.tablePath, \\
argInputs.gridParams),

callback�lambda res: dataList.append(res),
)

https://github.com/DMGW-Goethe/NSMassRadiusCurves/blob/main/bin/exeThis.sh
https://cython.org
https://github.com/DMGW-Goethe/NSMassRadiusCurves/blob/main/bin/main.py
https://www.gnu.org/software/bash/manual/html_node/The-Set-Builtin.html
https://github.com/DMGW-Goethe/NSMassRadiusCurves/blob/main/bin/main.py
https://docs.python.org/3/library/multiprocessing.html
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procPool.close()
45 procPool.join()

� get boundary curves from all results
commonData � boundCurves(dataList)

50 � do the actual plotting and save data
saveToFile(dataList, commonData, argInputs.plotPath, argInputs.resultPath)
print("\ncompactness curve calculations done")

return os.EX_OK

Listing 4.2: The main function in main.py handling the partially parallelised computation of the
compactness curves with Pool() included from multiprocessing. It is decorated with
timer, which is a wrapper tracking the execution time of the function and relies on the
parseInput() function to convert the command line arguments to a collections.namedtuple
as well as calcBetaCurves and boundCurves for the calculations itself.

Based on the example code of the included FBS-Solver, the calculation of the V -M curves in integ-
rate.py is implemented. As depicted in listing 4.3 lines 120 �. the functionMRCalc is doing an initial
calculation of one curve based on inputted gridParams for the central density after loading the EoS
data in line 131. The calculation of M-R pairs for a given density is then repeated for a new list
generated by missingRho in lines 82 �. until the mass phase space is explored with at least the same
granularity as the later applied mass grid at all values. At last it is using �lterStablePart to only return
a section cut o� at the maximal stable mass for that particular EoS.

81 � get additionally needed densities
def missingRho(rhoMRSets: ary, massStep: float):

� iterate over points to see, if masses are covered well
missingRhos: list[float] � []

85 for pos in range(�, rhoMRSets.size):
� add intermediate point if mass gap to large
if abs(rhoMRSets[pos]["mass"] - rhoMRSets[pos - �]["mass"]) � massStep:

missingRhos.append((rhoMRSets[pos]["rho"] � rhoMRSets[pos - \\
�]["rho"]) / �)

90 � break if over maximal mass
if rhoMRSets[pos]["mass"] � rhoMRSets[pos - �]["mass"]:

break

� if no maximum mass found, broaden range
95 if pos � � �� rhoMRSets.size:

missingRhos.append(�.� * rhoMRSets[pos]["rho"])

return np.array(missingRhos)

100

� look for the stable part up to the maximal mass
def filterStablePart(rhoMRSets: ary):

� iterate over all positions of curve
M, R � [], []

105 for pos in range(�, rhoMRSets.size):
� break if over maximal mass
if rhoMRSets[pos]["mass"] � rhoMRSets[pos - �]["mass"]:

break

https://github.com/DMGW-Goethe/NSMassRadiusCurves/blob/main/bin/main.py
https://docs.python.org/3/library/multiprocessing.html
https://docs.python.org/3/library/collections.html
https://github.com/DMGW-Goethe/FBS-Solver
https://github.com/DMGW-Goethe/NSMassRadiusCurves/blob/main/bin/integrate.py
https://github.com/DMGW-Goethe/NSMassRadiusCurves/blob/main/bin/integrate.py
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110 � add masses and radii at this position
M.append(rhoMRSets[pos]["mass"])
R.append(rhoMRSets[pos]["radius"])

print("maximal mass � ", M[-�], " at radius ", R[-�])
115 � return curve as two arrays

return QtyGrid(["M", "R"], np.array(M), np.array(R))

� calculate M-r-curve from EoS datafile
120 def MRCalc(EoSData: str, pyFBSPath: str, tableName: str, gridParams: list[str]):

� import from local FBS submodule
try:

sys.path.append(pyFBSPath)
import pyfbs_cython as cyfbs

125 except ImportError:
print("pyfbs package not found at " � pyFBSPath)

else:
print("pyfbs succsesfully imported")

130 � load EoS from Data dir
EoS � cyfbs.PyEoStable(EoSData)

� set parameters of solver for no DM
mu � �.�

135 lam � �.�
phi_c � np.array([�.�])
rho_c � np.geomspace(�e-�, �e-�, int(float(gridParams[�]) / ��))

� define aditional variables
140 rhoMRSets � dictifyResults(rho_c)

tableName �� "Mu" � str(mu) � "Lam" � str(lam) � ".tb"
granularity � (float(gridParams[�]) - float(gridParams[�])) / \\

float(gridParams[�])

� start actual calculations
145 print("start calculation of M-r-curve")

while True:
� calculate M-r-curve
pyMROutput � cyfbs.PyMRcurve.from_rhophi_list(mu, lam, EoS, rho_c, phi_c, \\

tableName)

150 � add to result list in correct positions
rhoMRSets � np.sort(np.concatenate((rhoMRSets, dictifyResults(rho_c, \\

pyMROutput))), order�"rho")

� look which densities are also needed, stop calculation if none
rho_c � missingRho(rhoMRSets, granularity)

155 if rho_c.size �� �:
break

return filterStablePart(rhoMRSets)

Listing 4.3: The part of the call tree of integrate.py containing theMRCalc function for calculating the
mass-radius curves with an algorithm exploring the mass range equally well at all values.
This imports py�s_cython from the FBS-Solver and relies heavily on the rhoMRSets
type, which is a structured array setting dtype�[("rho", float), ("mass", float),
("radius", float)].

https://github.com/DMGW-Goethe/NSMassRadiusCurves/blob/main/bin/integrate.py
https://github.com/DMGW-Goethe/FBS-Solver
https://numpy.org/doc/stable/user/basics.rec.html
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After completing this task, the post processing of the curves in the second part of calcBetaCurves in
integrate.py starts with calculating the compactnesses for eachM-R pair and returning the V -M curve
with calc-Beta. Thereafter, the created V -M curve is moved to a grid with a constant step size, where
the values are interpolated linearly in the gridify function. As a next step the V 0-M curve can be
calculated as well. For this the function di�erentiate calculates the derivative with respect to the mass
using numpy.gradient [102] with a constant spacing �M := Mi �Mi+1 8i and edge_order = 2. This
corresponds to the symmetric 5-point-stencil [103]

dV
dM

(Mi) ⇡
V (Mi � 2�M) � 8V (Mi � �M) + 8V (Mi + �M) � V (Mi + 2�M)

12�M
. (4.1)

Here the gaussian_�lter1d from the scipy.ndimage module is used to reduce numeric artefacts intro-
duced by moving the curve on a �xed grid.

After the calculations for all EoSs are �nished in line 48 of listing 4.2, the calculation of the bounds
from the extreme values at each mass point is initiated with boundCurves. To do this for both curves,
the minimal and maximal compactness at each value is selected and an additional margin of 25% of
the orthogonal di�erence between these two is added. Because only a limited set of EoSs were used,
this is done to ensure not to underestimate the constraints.

The resulting curves are shown in the following two plots in �gure 4.1. With saveToFile de�ned in
plotting.py they are created using label-lines [104] and at the same time stored as HDF5 data [105] to
be used in further calculations.

Figure 4.1: Bounds on the compactness on the left-hand-side and its derivative on the right-hand-
side shaded in grey with the individual V -M curves for all included EoSs.

4.2 f0(R) constraints for the mass and compactness space

For the implementation of the constraints on f(R) gravity itself, an own code base was written. Like
all branches of PulsarConstraints, BetaPlots uses C++ for the majority of the computations, especially
the solving for f 0(R). Only the resulting data is transferred with the included highFive [105, 106]
library to plot the constraints withMatplotlib [107] in plotting.py and supporting �les. This structure
is again de�ned together with the logging and possible user interaction in a �le called exeThis.sh.

https://github.com/DMGW-Goethe/NSMassRadiusCurves/blob/main/bin/integrate.py
https://numpy.org/doc/stable/reference/generated/numpy.gradient.html
https://docs.scipy.org/doc/scipy/reference/ndimage.html
https://github.com/DMGW-Goethe/NSMassRadiusCurves/blob/main/bin/plotting.py
https://pypi.org/project/matplotlib-label-lines/
https://github.com/HDFGroup/hdf5
https://github.com/DMGW-Goethe/PulsarConstraints
https://github.com/DMGW-Goethe/PulsarConstraints/tree/betaPlots
https://github.com/BlueBrain/HighFive
https://matplotlib.org/
https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/bin/plotting.py
https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/bin/exeThis.sh
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The used data from pulsar measurements that can also be found in table 4.1 is stored as csv-data in
ObservationalData.csv. When it is loaded to the C++ code, dataIO::readCSVmakes it possible to �lter
for companion object type and group tags to only use a subset in the calculations. This function is
part of the dataIO namespace handling the HDF5 data transfer and parsing of the command line
inputs as well.

The parsing function dataIO::parseMainInput is also the �rst thing the main function of the central
C++ �le main.cpp is executing after it is called. After this and the loading of the data is done the
calculations here are parallelised, too. This is done by an array of std::threads that executes a lambda
function de�ned in lines 35 to 43 of listing 4.4, which again creates a Pulsar object and triggers the
solving for this. By this, the calculations for as many pulsars as available threads can be done at the
same time.

31 // define vector for constraints and lambdaExpression to calculate these
using dataIO::dTypes::PlotData;
vector�PlotData� constraintData(pulsarData.data.size());
std::mutex coutMutex;

35 auto oneThreadCalc � [&](uint i)
{

// lock cout until thread is destructed
std::lock_guard�std::mutex� coutLock(coutMutex);

40 // create pulsar object and solve for constraints
Pulsar pulsar(pulsarData.data.at(i), pulsarData.csvStructure);
constraintData.at(i) � pulsar.solving(inputs);

};

45 // create vector of threads and let them join again
vector�std::thread� threads;
for (uint i � �; i � constraintData.size(); i��)

threads.push_back(std::thread(oneThreadCalc, i));
for (modRef�std::thread� oneThread : threads)

50 oneThread.join();
cout �� "\nsolving for all pulsars done" �� endl;

Listing 4.4: lambda expression containing Pulsar::solving for each pulsar and returning a vector
of dTypes::PlotData objects de�ned in dataIO.hpp.]Part of main.cpp for the parallel
calculations, that is executing a lambda expression containing Pulsar::solving for each
pulsar and returning a vector of dTypes::PlotData objects de�ned in dataIO.hpp.

The mentioned Pulsar class is de�ned to calculate the orbital elements, reduced masses and similar in
its constructor. In case of a WD companion its compactness from equation (2.9) is calculated here
as well. It has only one public member function Pulsar::solving printed in listing 4.5 which creates an
object from the Solver class and de�nes the solving process with functions from this class.

https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/data/ObservationalData.csv
https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/dataIO.hpp
https://github.com/HDFGroup/hdf5
https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/main.cpp
https://en.cppreference.com/w/cpp/thread/thread
https://en.cppreference.com/w/cpp/language/lambda
https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/dataIO.hpp
https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/main.cpp
https://en.cppreference.com/w/cpp/language/lambda
https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/dataIO.hpp
https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/pulsar.hpp
https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/solver.hpp


28 Numerical implementation

pulsar
com

panion
orbit

nam
e

m
p [M

� ]
type

m
c [M

� ]
e

P
b [d]

��§Pb ��
PSR

B
1534+12

1.3330(2)
N
S

1.3455(2)
0.273

677
40(4)

4.207
372

988
81(2)

5.59(3)
⇥
10

�
14

PSR
J0337+1715

1.44(1)
W
D

0.197(8)
6.98(9)

⇥
10

�
4

1.629
40(6)

4.79(19)⇥
10

�
16

PSR
J0348+0432

2.01(4)
W
D

0.172(3)
2.0(10)

⇥
10

�
6

0.102
424

062
722(7)

2.73(45)⇥
10

�
13

PSR
J0437-4715

1.44(7)
W
D

0.224(7)
1.9180(3)⇥

10
�
5

5.741
045

9(7)
3.728(6)⇥

10
�
12

PSR
J0453+1559

1.44(1)
N
S

1.174(4)
0.112

518
32(4)

4.072
468

588(4)
3.3(8)

⇥
10

�
15

PSR
J0740+6620

2.14(1)
W
D

0.251(5)
5.68(3)

⇥
10

�
6

4.766
944

619
33(8)

1.2(2)
⇥
10

�
12

PSR
J1141-6545

1.27(1)
W
D

1.02(1)
0.171

884(1)
0.197

650
959

3(1)
4.03(25)⇥

10
�
13

PSR
J1518+4904

1.47(4)
N
S

1.248(18)
0.249

484
383(9)

8.634
004

961
160(15)

1.176(5)⇥
10

�
15

PSR
J1756-2251

1.341(70)
N
S

1.230(7)
0.180

569
4(2)

3.196
339

014
3(3)

2.34(9)
⇥
10

�
13

PSR
J1757-1854

1.3412(4)
N
S

1.3917(4)
0.605

817
40(3)

0.183
537

831
626(4)

5.294(5)⇥
10

�
12

PSR
J2222-0137

1.831(10)
W
D

1.319(4)
3.8092(1)⇥

10
�
4

2.445
759

995
469(5)

1.6(8)
⇥
10

�
14

PSR
J2222-0137

1.831(10)
W
D

1.319(4)
3.8092(1)⇥

10
�
4

2.445
759

995
469(5)

1.6(8)
⇥
10

�
14

T
able

4.1:T
he
data

ofallused
pulsars

in
the

input�le
O
bservationalD

ata.csv.

https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/data/ObservationalData.csv


4.2 f0(R) constraints for the mass and compactness space 29

28 // initiate solving process taking range of compactness values to solve for
dataIO::dTypes::PlotData Pulsar::solving(ref�dataIO::dTypes::Input� inputs)

30 {
cout �� "start solving for pulsar " �� name �� endl;

// initialise solver object
Solver solution(orbitParams, orbitParamErrors);

35

// initialise data Structure and copy name of pulsar
dataIO::dTypes::PlotData results;
results.pulsarName � name;

40 // calculate xAxes values and those to solve for
vecDouble solvingRange;
std::tie(results.input, solvingRange) � \\

solution.calcCompactnessAxes(inputs.betaSettings.betaRange, \\
inputs.betaSettings.DelBetaRange, inputs.betaSettings.length, \\
orbitParams.compType, orbitParams.compBeta);

// add calculated const density compactness if requested
45 if (inputs.calcLegacy �� true)

{
cout �� "compactness calculation with uniform density used" �� endl;
solution.addLegacyBeta(results.input.values, solvingRange, \\

orbitParams.compType, orbitParams.legacyPulBeta, \\
orbitParams.legacyCompBeta);

}
50

// create mass term
vecDouble massTerms, solvingMassRange;
std::tie(massTerms, solvingMassRange) � \\

solution.calcMassSum(orbitParams.rotVel, orbitParams.eccent, \\
inputs.fieldMass.range, inputs.fieldMass.length);

55 // create setup for inequality
arr�Double shiftBounds � solution.calcShiftConstraints(observe.intrShift);
// solve non-analytic equation
results.bounds � solution.solveEquation(solvingRange, massTerms, shiftBounds);

60 // solve with values modified by errors, only if selected
if (inputs.calcError �� false)

return results;

// calculate error from mass term
65 const vecDouble massTermErrors � \\

solution.calcMassSumError(orbitParamErrors.rotVel, \\
orbitParamErrors.eccent, orbitParams.rotVel, orbitParams.eccent, \\
results.input.values, massTerms);

// create errors for upper and lower bound and solve for these
const arr�Double constraintBoundErrors � \\

solution.calcConstraintErrors(shiftBounds, observe.intrShiftError, \\
observe.intrShift);

results.errors � solution.solveErrorEquation(massTermErrors, \\
constraintBoundErrors);
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70 return results;
}

Listing 4.5: The public Pulsar::solving function from the Pulsar class taking a dTypes::Input object and
returning one of the form dTypes::PlotData de�ned in dataIO.hpp. It creates a Solver
object and uses its member variable orbitParams to prepare for the solving with the
function solveEquation inherited from the Newton class.

In its constructor the parameters are rearranged such that the equations from section 3.3.1 can be
easily constructed. To do this, the total period shift can be written like

�� §Pb �� = C0
⇣
C1 + C2 ln2 F

⌘
1 , (4.2)

where the three constants Ci are de�ned as

C0 = 6c `M - 3/2 a9/2⌦4 , C2 = 1/2�V -2 S (mq) ,

C1 = 32/5 a2⌦2
⇣
1 � e2

⌘- 7/2 ⇣
1 + 73/24 e2 + 37/96 e4

⌘
.

(4.3)

From these new constants, the GR prediction for the period shift can be calculated in line 56 of
listing 4.5 and from that together with equation (3.45) the allowed interval for F in modi�ed gravity.
Beforehand it is decided depending on the companion type, if V or �V will be the x-axis for the plot
where this pulsar will be placed in. At the same time the �V range for the solving will be calculated
by Solver::calcCompactnessAxes in lines 41 f. Additionally, a potential additional compactness point
from the calculation with a constant density of Narang, Mohanty and Jana [66] can be calculated in
lines 45 �.

4.2.1 Calculation of the term S(mq)

The last part missing to fully calculate C2 is S (mq), the term depending on the mass of the scalar
�eld. When calculating the sum in equation (3.42) , the condition that modes with imaginary wave
numbers do not contribute can lead to very high orders of n even for the leading ones in the Bessel
functions, if mq � ⌦. Since their implementation in the boost library is only reliable up to n = 127
[108], an alternative way for calculating these has to be found.

The form Jn (ne) demands an expansion for both high orders and large arguments [109] in the
Support::Sum class de�ned in solverSupport.hpp. A useful form for this is

Jn (n sech U) = exp (n (tanh U � U)) (2c n tanh U)- 1/2
’
k

(8n)- k Uk (coth U) . (4.4)

1From here on f 0 (RVEV) is abbreviated as F for better comprehensibility.

https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/pulsar.hpp
https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/dataIO.hpp
https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/solver.hpp
https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/newton.cpp
https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/solverSupport.hpp
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In this expressionUk (p) are polynomials of order k3 given by

U0(p) = 1 ,

U1(p) =
p
3

⇣
1 � 5 p2

⌘
,

U2(p) =
p2

18

⇣
81 � 462 p2 + 385 p4

⌘
,

U3(p) =
p3

810

⇣
30375 � 369603 p2 + 765765 p4 � 425425 p6

⌘
,

U4(p) =
p4

9720

⇣
4465125 � 94121676 p2 + 349922430 p4

�446185740 p6 + 185910725 p8
⌘
,

U5(p) =
p5

204 120

⇣
1519035525 � 49286948607 p2 + 284499769554 p4

�614135872350 p6 + 566098157625 p8 � 188699385875 p10
⌘
,

U6(p) =
p6

18 370800

⇣
2757049477875 � 127577298354750 p2 + 1050760774457901 p4

�3369032068261860 p6 + 5104696716244125 p8

�3685299006138750 p10 + 1023694168371875 p12
⌘
. . .

(4.5)

Similarly the derivatives of the Bessel functions J 0n (ne) can be expressed with only some modi�ca-
tions to the expansion [110] as

J 0n (n sech U) = exp (n (tanh U � U)) (2c n sinh U cosh U)- 1/2
’
k

(8n)- k Vk (coth U) , (4.6)

containing the modi�ed polynomialsVk (p) calculated in polynomials.numbers:

V0(p) = 1 ,

V1(p) =
p2

3

⇣
�9 + 7 p2

⌘
,

V2(p) =
p2

18

⇣
�135 + 594 p2 � 455 p4

⌘
,

V3(p) =
p3

810

⇣
�42525 + 451757 p2 � 883575 p4 + 475475 p6

⌘
,

V4(p) =
p4

9720

⇣
�5740875 + 111234708 p2 � 39657875 p4

+493152660 p6 � 202076875 p8
⌘
,

V5(p) =
p5

204 120

⇣
�1856598975 + 56869556085 p2 � 317970330678 p4

+672625003050 p6 � 611386010235 p8 + 201713136625 p10
⌘
,

(4.7)

https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/data/polynomials.numbers
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V6(p) =
p6

18 370800

⇣
�3258331201125 + 144587604802050 p2 � 1161367171769260 p4

+3661991378545500 p6 � 5482822398928870 p8

+3923060232341250 p10 � 1082190977993120 p12
⌘
. . .

By using these two expressions and after some simpli�cations [111, 112], the sum can be written as

S (mq) =
1’

n=dmq/~⌦e

�
n2 � (mq/⌦)2

�- 3/2
2c n2

p
1 � e2

e
⇣
1 +

p
1 � e2

⌘ exp (2n e)

⇤
266664

 1’
k=0

(8n)- k Uk (1/e))
!2

+
 1’
k=0

(8n)- k Vk (1/e))
!2377775

.

(4.8)

Making use of this formula and breaking the series of polynomials at 6th order like written in equa-
tions (4.5, 4.7) only leads to an error of around 2% even at the third order. If the expansion is used
like in the code for n > 100, no deviations down to machine precision are noticeable. It can be used
until the minimal value of the used double datatype is reached for the result. By then the scalar radi-
ation is so much suppressed, that the whole term can be neglected without issues. But it is important
to take this into consideration as an edge case at very high masses.

4.2.2 Solving of the inequality with a Newton algorithm

Now everything is set up for the last step in Pulsar::solving in line 58 of listing 4.5. The function
solveEquation is inherited from the Newton class. It provides everything needed for the numerical
solving of the transcendental equation containing the square of the natural logarithm. For this a
Newton algorithm is used because of its quadratic convergence leading to very good performance
from the moment it starts converging. Due to the simple form of the function, it is very unlikely to
be trapped in a false minimum or loop as long as the starting position is chosen well. Due to this fact,
the immediate starting can be expected.

To enable the use of the aforementioned algorithm, the equation (4.2) must be written in the form

0 = A � B F 4 + ln2 F , (4.9)

where there are only two constants left: A := C1/C2 quantifying the ratio of tensor to scalar radiation
and B := §Pb/C0C2. This can be understood via the ratio B/A that describes the ratio of the bound on §Pb
to its GR prediction. From that it can be seen that if A � 1, only the tensor radiation contributes
signi�cantly and the solution simpli�es to 4

p
A/B.

If this is not the case, the solution has to be found iteratively, where one treats the right-hand-side of
equation (4.9) as a function g (F ) and calculates its derivative, as it is usual for Newton algorithms,
resulting in

g 0(F ) = �3B F 3 + 2 lnFF . (4.10)

https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/newton.hpp
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With these two the series elements are iteratively given [113] using the condition for the next element
Fn+1

Fn � Fn+1 =
g (F )
g 0(F ) , (4.11)

resulting in the iteration condition implemented in Newton::calcStep at the top of listing 4.6 of the
form

Fn+1 = Fn
 
1 + A � B F 4 + ln2 F

3B F 4 � 2 lnF

!
. (4.12)

To ensure that no cyclic behaviour is hindering the convergence, after only 100 steps another try with
a slightly altered starting position is initiated, which can be found in lines 519 �. in the de�nition of
Newton::calcSolution.

479 // algorithm step propto f(R)/f'(R)
480 double Newton::calcStep(ref�NewtStruct� parameters, ref�double� lastPosition)

{
const double termProp � parameters.B * pow(lastPosition, �);
const double termLog � log(lastPosition);

485 // from x_(n��) � x_n - f(x_n) / f'(x_n)
return � � (parameters.A - termProp � pow�(termLog)) / (� * termProp - � * \\

termLog);
}

// find solution for all compactnesses
490 double Newton::calcSolution(ref�NewtStruct� parameters, ref�double� start)

{
// variables for steps and result set at starting point
double step, root � start;

495 // set bounds of looping
const double nbOfSteps � ���;
const double nbOfStarts � �e�;

// iterate over steps until retried too often
500 for (uint stepIndex � �, retryIndex � �;; stepIndex��)

{
// calculate multiplier for next step
step � calcStep(parameters, root);
root *� step;

505

// throw error if multiplier is �
if (step �� �)

throw std::runtime_error{"multiplier in Newton algorithm is �, can't \\
continue to calculate result!"};

510 // return if root isn't changing anymore
if (std::abs(� / step - �) �� �e-��)

return root;

// try again, if inside of iterative cycle
515 if (stepIndex � nbOfSteps)

continue;
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518 // set new starting point and reset step counter
root � start * �.�� * (retryIndex � �);

520 stepIndex � �;
retryIndex��;

// throw exception in case of no convergence
if (retryIndex �� nbOfStarts)

525 throw std::runtime_error{"Newton algorithm isn't converging"};
}
throw;

}

Listing 4.6: The implementation of theNewton algorithm inNewton.cpp for a single set of parameters
A and B in the NewtStruct object and a corresponding starting position handed to
Newton::calcSolution.

4.2.3 Treatment of di�erent cases for most conservative bounds

Because of the additional scalar radiation it is not clear that there is only one set of parameters for
which the predicted period shift is equal to the edges of the allowed range in the inequality equa-
tion (3.45) . Particularly it is not directly clear which of these are crossing either the upper or lower
one. The possible shapes of the curve for §P and its implications for the resulting intervals in the
constraint are depicted in �gure 4.2. To get a feel for the behaviour, especially its dependency on the
mass of the scalar �eld, the branch plotRatio can be used to produce plots similar to these using the
actual data.

Considering this, it becomes necessary to calculate the case from the parameters A and B and set the
start as well as the constraint on §P accordingly. It is done by the Newton::Cases subclass de�ned in
Newton.hpp. It features the condition de�ned in Newton::Cases::decideCase

B( §Pmax) 
1 +

p
1 � 16A

8 exp
⇣
1 +

p
1 � 16A

⌘ (4.13)

for the maximum due to the ln2 term at Fmax = exp
⇣
1/4

⇣
1 +

p
1 � 16A

⌘⌘
being equal to the upper

end of the allowed §Pb interval. There also is the analogue condition for the resulting minimum at
smaller values of F ,

B( §Pmin) �
1 �

p
1 � 16A

8 exp
⇣
1 �

p
1 � 16A

⌘ . (4.14)

Depending on these conditions, the �ve cases implemented in the enumerationNewton::Cases::SolvCases
can be de�ned as

I both conditions are false,
II the upper condition is false, the lower one is true,
III the upper and lower condition are true,
IV the upper condition is true, but the lower one is false,
V the function is monotonous (if A > 1/16).

https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/newton.cpp
https://github.com/DMGW-Goethe/PulsarConstraints/tree/plotRatio
https://github.com/DMGW-Goethe/PulsarConstraints/blob/betaPlots/src/constplot/newton.hpp
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(a) SolvCase I. (b) SolvCase II.

(c) SolvCase III. (d) SolvCase IV.

(e) SolvCase V.

Figure 4.2: The allowed interval i, its break b and the far interval f for the di�erent cases. It is de-
pending on the crossings of the interval of §Pb , which here is depicted for a small deviation
from the GR prediction and a larger one, and the curves in the f(R) case, here depicted
for 5 values of A.
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For a growing value of �V , the cases will always transition in the order V–I–IV or V–II–III–IV and
in the moment the upper condition is met, there is a second allowed interval appearing. This lays
at values larger that the position of the maximum as it can be seen in �gure 4.2c and �gure 4.2d.
Because there is already the condition Fmax � p

e ⇡ 1.6, the whole interval ( fin , ff in) will be at way
larger values than allowed by the solar system constraints [97]. This is the reason, why it can be
neglected here.

If the lower condition is met, another split of the interval is present. In these cases, besides the
endpoints iin and i f in , two more points are added to the list of positions to solve for, the start and end
of the breaking interval (bin , bf in). The combination of these four parameter sets and their starting
positions is stored in a Newton::Cases::fullSolverSet, resulting in an array of these to solve for, stored
in the solverSetsmember variable. The solver then uses this list to perform all necessary calculations.

For the positions of possible crossings, the correct constants have to be chosen, or more precisely
the correct bound on the period shift has to be used calculating these in Newton::Cases::setShiftConst.
They are the upper bound for the initial position in all cases and the lower bound for the �nal position
in all cases besides III and IV, where the crossing will be at §P/ §PGR > 1 as well. If there is a break, it
will always be present, because the predicted shift will be below the lower bound as it can be seen in
�gure 4.2b and �gure 4.2c. This also shows that it is located at the lower bound and the value of that
has to be chosen here, too.

Choosing the starting points for the algorithm is easy as well. This is done in the function New-
ton::Cases::setShiftStarts and the only condition is to be in the surrounding region of the solution in
which the �rst derivative does not change its sign. By that for the �rst point at iin a simple starting
position, which always can be used, is 1. Because the F -4 term as well as the logarithmic one are
monotonous at these values, there is no signi�cant di�erence in the shape of the function between
the di�erent cases.

For the end point i f in , this start can also be chosen for case V, because the function behaves mono-
tonous at F > 1 as well. In case III and IV a suitable choice is

p
e, where the second derivative of

the function changes sign. This will always be located between the minimum and maximum and by
that the convergence to the right position is ensured. Finally, for cases I and II this has to be large
enough to be at the tail behind the maximum. This can be acchieved by setting the starting position
A- ln 2/ln 10, which is mimicking the scaling of the maximum at small values of A. The dependency on
this parameter ensures not to be at way larger values than necessary for some values of A.

Finally, the boundaries of the break interval 1 for bin and
p
e for bf in are suitable as for their neigh-

bouring points of the interval i. Because these lay on the same slope, they are leading to the same
arguments for the usage of these starting positions. The treatment of the di�erent solution cases
together with the solver itself makes it possible to calculate for a position in the M-V phase space,
which has been the goal at the beginning of section 4.2.2 and the Newton::solveEquation function.
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4.3 f0(R) constraints using the bounded compactness range

To calculate the constraints with only F and mq as free parameters, there is another branch in the
repository called massPlots. This features minor changes to the data structure and generation of the
x-axis data done in the commit 3bd4145. Besides that, the most important modi�cation in there is
the addition of the data in the �le betaBound.hdf5 depicted in �gure 4.1 and the implementation of
the lookup mechanism with the class DelBeta in solverSupport.hpp.

This class enables the calculation of bounds for �V for both types of companion objects. As member
functions, lookup and di�Lookup are returning the corresponding extreme values at the masses of
the system and the other two calculation functions called inside Solver::calcCompactnessBounds are
calculating �V using the latter. Because for the case of a WD companion only the compactness of
the pulsar is not �xed, the de�nition of �V in equation (3.44) can directly be used in this case by
inserting the extreme compactnesses for the pulsar.

In the case of a NS companion the value can be constructed with a combination of the extreme values
of the compactness and its derivative in the interval bounded by the two masses

⇥
mp , mc

⇤
,

�V = max
m=mp

( V )
�����1 +

maxm=mp ( V )�
mp � mc

�
minm2 [mp ,mc] ( V 0)

����� (4.15)

By using the extreme derivative times the mass interval, this will give a value which is at least as large
as the actual di�erence. Therefore, the calculated constraints overestimate the possible range of �V
values. However, the slow change of the derivative makes this not very severe.

4.3.1 Generalising cases for intervals of Newton constants

Using the described range of �V values, there is one new challenge to face. It becomes possible that
there is more than one case possible in regards to the allowed values for the constants in the Newton
solver A and B. This makes it non-trivial to decide which value corresponding to which case will
result in the most conservative bounds on F .

From �gure 4.2 one can see that the farthest endpoint will be at the crossing of cases II–III respect-
ively I–IV, where the upper condition from equation (4.13) is on the edge of being true. Because
the interval beyond the maximum can be neglected as discussed in section 4.2.3, the side of this
transition that is chosen for the calculation is III respectively IV. The de�nition of this can also be
found in line 241 of listing 4.7.

The algorithm used to calculate the value of �V that corresponds to this position is a golden search
(GS) . This is usually implemented for �nding a local minimum of a function h by evaluating a it at
one point and compare this with its neighbouring values. The special aspect here is that the three
points used for comparison have distances in the ratio � := 3�

p
5/2 [114]. To start the value at the

point in the middle, b has to be smaller then the value at the edges at point a and c. A new value at
position x is then evaluated. Determined by � the position b and of the a point x using its ratio X is:

b = a + � (c � a) = c � (1 � �) (c � a) , x := b + X (c � a) = a + (X + �) (c � a) . (4.16)

https://github.com/DMGW-Goethe/PulsarConstraints/tree/massPlots
https://github.com/DMGW-Goethe/PulsarConstraints/commit/3bd414562589b5019a6deba7e62eb71701038b66
https://github.com/DMGW-Goethe/PulsarConstraints/blob/massPlots/data/betaBound.hdf5
https://github.com/DMGW-Goethe/PulsarConstraints/blob/massPlots/src/constplot/solverSupport.hpp
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230 // single step for golden search
void Newton::Cases::searchStep(modRef�lmrSet� currentPos)
{

// choose new point (left � right - middle) with corresponding case
casePair next � {.consts � {currentPos.front().consts.A � \\

currentPos.back().consts.A - currentPos.at(�).consts.A,
235 currentPos.front().consts.B � \\

currentPos.back().consts.B - \\
currentPos.at(�).consts.B}};

next.sCase � decideCase(next.consts);

// look for resulting distances in A range
const double middleDist � abs(currentPos.front().consts.A - \\

currentPos.at(�).consts.A) / currentPos.at(�).consts.A,
240 nextDist � abs(currentPos.at(�).consts.A - next.consts.A) / \\

currentPos.at(�).consts.A;
const bool wantedCase � (currentPos.at(�).sCase �� SolvCases::I || \\

currentPos.at(�).sCase �� SolvCases::II);

// return for vanishing distance to break recursion
if (middleDist � nextDist � �� * doubleLim::epsilon() && wantedCase �� true)

245 return;

// next smaller than middle A (more scalar radiation)
if (next.consts.A � currentPos.at(�).consts.A)
{

250 switch (currentPos.at(�).sCase)
{
// below convergent transition
case SolvCases::IV:
case SolvCases::III:

255 currentPos.front() � next; // set next to new left
break;

// above convergent transition
default:

260 currentPos.back() � currentPos.at(�); // set middle to new right
currentPos.at(�) � next; // set next to new middle
break;

}
}

265

// next larger than middle A (less scalar radiation)
else
{

switch (currentPos.at(�).sCase)
270 {

// below convergent transition
case SolvCases::IV:
case SolvCases::III:

currentPos.front() � currentPos.at(�); // set middle to new left
275 currentPos.at(�) � next; // set next to new middle

break;

// above convergent transition
default:

280 currentPos.back() � next; // set next to new right
break;

}



4.3 f0(R) constraints using the bounded compactness range 39

}

285 // recurse and return
return searchStep(currentPos);

}

// golden search for most conservative bounds
290 Newton::Cases::casePair Newton::Cases::goldenSearch(ref�NewtPair� fullConsts)

{
// calculate initial middle position and set up start data
const double delta � �.� * (� - sqrt(�));
const NewtStruct lmrConsts[�] � {fullConsts.front(),

295 {fullConsts.front().A � delta * \\
(fullConsts.back().A - \\
fullConsts.front().A),

fullConsts.front().B � delta * \\
(fullConsts.back().B - \\
fullConsts.front().B)},

fullConsts.back()};
lmrSet SearchSet;
for (uint i � �; i � SearchSet.size(); i��)

300 {
SearchSet.at(i).consts � lmrConsts[i];
SearchSet.at(i).sCase � decideCase(lmrConsts[i]);

}

305 // search and return middle position
searchStep(SearchSet);
return SearchSet.at(�);

}

Listing 4.7: The implementation of the GS algorithm with Newton::Cases::goldenSearch and
Newton::Cases::searchStep in newton.cpp to recursively �nd a case transition based on the
pair of boundary values fullConsts for A and B. In this, lmrSet (de�ned as pairs of SolvCase
and NewtStruct from the Newton class as well) is used to hold the data and the function
decideCase described in section 4.2.3 for their determination.

Depending on whether h(x) is smaller or larger then h(b), the interval used for the next step is either
[a, b] or [b , c]. After both being as likely as the other, if the shape of h(x) is not known, preserving
the golden ratio for the new position by

1�� != X +� ^ X :=
�

1 � � , � =
1 � X

2
=
1 � � (1 � �)

2
, � =

3 �
p
5

2
) x = c�b+ a , (4.17)

results in the fastest convergence towards the minimum.

In order to use this algorithm, the case transition orders described in section 4.2.3 play the role of the
function h(x) determining if one is below or above the transition, where the convergence should lead
to. This is de�ned in the Newton::Cases::goldenSearch function printed in listing 4.7, which is called
inside Newton::Cases::decideShiftCases as long as the compactnesses don’t imply that for their whole
range one is above or below the most conservative transition.

https://github.com/DMGW-Goethe/PulsarConstraints/blob/massPlots/src/constplot/newton.cpp
https://github.com/DMGW-Goethe/PulsarConstraints/blob/massPlots/src/constplot/newton.hpp
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For the starting point and the possible break of the interval this extra step does not need to be done.
Here looking at �gure 4.2 is again enough to determine the most conservative bounds: Because of
the additive nature of the scalar radiation, which grows with smaller values of A, this leads to the
maximal value of it for the smallest starting position and the minimal one for the break start and end
like above described.

Because of the continuous behaviour of the resulting interval with regards to the change of �V , one
can also be sure that all values between a possible break end using the maximal A and furthest end
of the interval with a lower value of A are allowed for some value between these and no further
computations are necessary.

4.3.2 The creation of the two sets of plots

After the solutions are found and the data is transferred to the plotting script, it is restructured as a
new data class in data.py. Besides reordering as a list of pulsar data for each mass value in case of
these calculations and separating the possible constant density datapoint with __separatePoint, the
important part here is to categorise the data depending on V or �V being the x-axis for the plots to
be created. This is done in __decideXQty, which sets a boolean variable to trigger the categorisation
later.

Then in plotting.py shown in listing 4.8 two kinds of colour lists from the twilight colour map of
matplotlib and pyplot.Figure objects [107] are prepared. With these the data is fed to onePulsarPlot
where the data of one pulsar is added to the corresponding set of plots. When all pulsars are plotted,
the last thing to do is adding the external constraint from the Cassini mission [115] before the plots
are polished and saved.

25 def main() -� int:
� parse input from bash script
argInputs � parseInput()

� read-in data file
30 structData � DataLists(filenameInput�argInputs.dataPath, \\

plotPoint�argInputs.paperRes)

� create figure objects and colours for plotting
figLists � iniFigs(len(structData.pulsarList[�].massValues))
colourLists � createColourLists(structData.pulsarList)

35

� plot everything for one pulsar
print("\nstart plotting")
for pulsar in structData.pulsarList:

� get colour pair for plotting and remove from list of available ones
40 if pulsar.figIndex �� False:

colourPair � (colourLists.betaColours.lightColours.pop(), \\
colourLists.betaColours.darkColours.pop())

else:
colourPair � (colourLists.DelBetaColours.lightColours.pop(), \\

colourLists.DelBetaColours.darkColours.pop())

45 � plot lines in correct fig with chosen colours
onePulsarPlot(pulsar, figLists[pulsar.figIndex], colourPair, \\

argInputs.paperRes, argInputs.errors)

https://github.com/DMGW-Goethe/PulsarConstraints/blob/massPlots/bin/sup/data.py
https://github.com/DMGW-Goethe/PulsarConstraints/blob/massPlots/bin/plotting.py
https://matplotlib.org/stable/gallery/color/colormap_reference.html
https://matplotlib.org/stable/
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print("all data plotted", end�"\n\n")

50 � do design modifications and save each plot
filename � argInputs.dataPath.split("/")[-�]
for figIndex, figList in enumerate(figLists):

for index, figure in enumerate(figList):
savePolished(figure, filename, \\

structData.pulsarList[�].massValues[index], figIndex, \\
argInputs.plotPath)

55 mpl.pyplot.close(figure)
s

print("generated all plots concerning " � filename � " and " � \\
str(xQuantities[figIndex]), end�"\n\n")

return os.EX_OK

Listing 4.8: The main function in the script plotting.py in which the restructuring de�ned in data.py is
done with the imported DataLists before several plotting steps from plotSup.py are called.

4.3.3 Including the uncertainties of the measurements

Until now it was not considered for the values used as input from table 4.1 that these come with an
uncertainty related to their measurement. This means that the true constraints using this data will be
weaker, because there are combinations of that parameters that allow for a broader parameter range.

To capture this, the uncertainties are propagated with Gaussian error propagation for the quantities
with known dependencies. For the constants Ci these can be easy calculated from the uncertainties
of the depending values xj by

�Ci (xj) =
vt’

j

⇣
mxjCj ⇤ �xj

⌘2
. (4.18)

Most dependencies are just multiplicative, but one di�culty is the uncertainty of the sum S (mq)
in equation (4.3) . The analogue calculation also using partial derivatives times the corresponding
uncertainties becomes

�S (mq) =
266664

"
�e ⇤

1’
n=1

4n-2
⇣
n2 � (mq/⌦)2

⌘3/2 ⇣
n

⇣
e-1 � e

⌘
J 0n (ne) � e-2 Jn (ne)

⌘
Jn (ne)

#2

+
"
�⌦ ⇤

1’
n=1

3(mq/⌦)2n-1(n2 � (mq/⌦)2)1/2
⇣
J 0n (ne)2 + (e-2 � 1) Jn (ne)2

⌘#2377775

1/2

,

(4.19)

which is implemented in Support::Sum::calcEccentPartial a member of Support.

With theseNewton::Cases::addShiftErrors ensures to alter the constants A and B by adding or subtract-
ing the uncertainties in such a way the most conservative result possible in this interval is calculated
similar to section 4.3.1. The only di�culty emerges for the plots that use the constraint on the com-
pactness. Here there are not only independent A and B uncertainties, but also the �V interval which
modi�es both constants at the same time.

https://github.com/DMGW-Goethe/PulsarConstraints/blob/massPlots/bin/plotting.py
https://github.com/DMGW-Goethe/PulsarConstraints/blob/massPlots/bin/sup/data.py
https://github.com/DMGW-Goethe/PulsarConstraints/blob/massPlots/bin/sup/plotSup.py
https://github.com/DMGW-Goethe/PulsarConstraints/blob/massPlots/src/constplot/solverSupport.hpp
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By looking on their dependency on the case de�ning conditions in equation (4.13) and 4.14, this
shows that an increase in A will only allow for a possible transition from true to false for the lower
bound condition and from false to true for the upper one. For an increase of the value of B as well as
�V it will be the other way around. So taking the broadened interval using (Amax , Bmin , �Vmin) and
vice versa will lead to the most conservative constraints.

Here the only issue is the case where the GS is used, or more precisely, where it would have to
be used when including the uncertainties. It can happen that this is not triggered, because the the
alteration of the parameters in the Newton solver can only be done after deciding for a case. If the
case then would change depending on these, they would again make a di�erent modi�cation from the
uncertainties necessary. However, this will only lead to an overestimation of the allowed values of F
and additionally only for a very small edge case, where the constraints will by far not be competitive in
comparison to the solar system constraint. Because of that matter of fact, a more complex treatment
would not improve the results and hence, it is left like described above.

By this treatment, the actual Newton solver can stay unchanged and the data is simply added when
transferring to the python script. It is plotted as an outer broader area together with the constraints
for the mean values from the used measurements.
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5 Calculated Constraints

5.1 Compactness dependency of the constraints

If one calculates the constraints, one has�V andmq as dependent parameters of f 0(R). To investigate
these, the dependency on the compactness parameter is looked at for a set mass �rst. This is shown
for selected masses in �gure 5.1.

(a) NS-NS binaries and mq = 10�17 eV. (b) NS-WD binaries and mq = 10�17 eV.

(c) NS-NS binaries and mq = 10�19 eV. (d) NS-WD binaries and mq = 10�20 eV.

Figure 5.1: Compactness dependent constraints for selected masses of the scalar �eld.
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As expected one can see here that there is no mass dependency at larger masses, where the amount of
scalar radiation is negligible. This changes when the mass becomes of the order of ~⌦ and hence, the
scalar radiation becomes relevant via the term S (mq). Because it is suppressed by the factor �V -2,
the constraints in this case are getting weaker for large values of the compactness parameter.

In principle �V can go up to in�nity, at least in NS-NS systems, because of its de�nition in equa-
tion (3.44) . However, this would need a very �ne tuned shape of the EoS to get very similar values
for the compactnesses of two NSs with di�erent masses. The values using constant densities as they
are used by Narang, Mohanty and Jana [66] are at the upper end of a more realistic range for �V .

For NS-WD systems it can only have even lower values, because its value is approximately the com-
pactness of the WD, which is of the order of 10�3M�/km. This leads to stronger constraints for
those as long as the mass is small enough.

5.2 Constraints using the calculated compactness ranges

To further study the dependency on mq, constraints were calculated using the massPlots branch as
described in section 4.3. This results in the plot shown in �gure 5.2, where one obtains strong
constraints for small masses and much weaker ones for larger masses as described in the previous
section.

Figure 5.2: f (RVEV)-mq constraints for f (R) gravity using all pulsar data in table 4.1.

A new feature is a sharp spike between these extreme cases, which can be explained by looking at the
di�erent cases in �gure 4.2. This predicts veryweak constraints at the II-III respectively I-IV crossing
from the �at shape of the function g (F ) for the corresponding parameter values. The vertical section
at the end of the spike is an artefact of neglecting the interval f as described in section 4.2.3. This
would go on in a continuous manner with a separating interval growing very fast. The lower end of
this second break would be the end of the interval, as it is shown here.

https://github.com/DMGW-Goethe/PulsarConstraints/tree/massPlots
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In �gure 5.3b one can see a zoomed-in depiction of the constraints for the region of no signi�cant
scalar radiation. In this case none of the systems produce constraints which are competitive in com-
parison to the solar system constraint from the Cassini mission. Opposite to this, in �gure 5.3a one
can see that competitive results are possible for some of them. The mass up to which this is the case
depends on the orbital frequency of these as it is discussed in the previous section.

(a) Stronger constraints at low masses. (b) Mass independent constraints at high masses.

Figure 5.3: Zoomed in constraints for the extreme cases of the mass of the �eld mq together with the
solar system constraint from the Cassini mission as a comparison.

If one separates the systems depending on the type of the companion object like in the previous sec-
tion, one can see that almost all WD systems produce competitive results while none of the systems
with a NS companion, for which the constraints often are not much stronger than in the mass inde-
pendent case. This is the dominant dependency on the strength of the constraints and can be seen
in �gure 5.4.

(a) NS-WD binaries. (b) NS-NS binaries.

Figure 5.4: Comparison of the low mass constraints depending on the companion type.

Additionally, the dependencies on other key features de�ned in table 2.2 were examined in �gure 5.5.
For this it becomes clear that between systems with highly eccentric orbits and ones with a very low
eccentricity no signi�cant di�erences were found as in [66], if one takes into account that almost all
systems with high eccentricity have NS companions.
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(a) Highly eccentric orbits. (b) Low eccentric orbits.

(c) Pulsars with high masses. (d) Millisecond pulsars.

(e) Systems measured with high precision. (f) Extended picture of high precision constraints.

Figure 5.5: Constraints using only certain subsets of the data depending on key features of the system
de�ned in table 2.2.
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This is also the case for only using MSPs and systems whose orbital shift was measured with com-
paratively high precision. Here again the important point is that this was only achieved for NS-NS
binaries. Because of the weakness of the constraints, the picture for these systems becomes clearer,
if they are depicted with a broader range in �gure 5.5f.

5.3 Constraints including the uncertainties of measurements

To provide believe in the trustworthiness and competitiveness of the constraints, it is important to
consider how the uncertainties of the measurements used for the data input a�ect the results. This
is depicted in �gure 5.6, in which one can see that small di�erences between the systems depending
on the precision of measurements are present.

Figure 5.6: Constraints for the NS-WD systems including the uncertainties of the measurements in
form of the dashed lines and lighter shaded regions.

However, if one looks at the complete picture, these are way smaller than the di�erences between the
results for similar systems. The issue is that a system which by chance replicates the exact prediction
of §Pb will lead to a very strong constraint. But this is not to be believed, because it is just an arbitrary
manifestation of the uncertainty distribution.

Nevertheless, the general picture is not as bad. One can see a number of constraints with small
uncertainty bands around 1 ± 2.5 ⇥ 10�6 with some being even 1 order of magnitude better, but for
building trust in the constraints a combination of the di�erent measurements with their uncertainties
in one common constraint would be preferable.
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5.4 Conclusion and possible further steps

From looking at the plots in this chapter, it becomes clear that it is the right decision to step away
frommodelling the compact objects with a constant density. The realisticWDs descriptionmassively
improves the constraints for these systems and also the treatment of the NS EoS, as it is described in
section 5.1, results in a better picture for these.

In addition, the non-trivial shape in �gure 5.2 shows that it is worth to not only look at the simpli�ed
case at very small masses as it has been done by [66]. Even if the constraints are not competitive
enough at the whole mass range, the insights regarding the di�erence the scalar radiation makes for
di�erent systems is very useful.

It also is clear that only looking at three systems – one with a NS companion and one with high
and one with low eccentricity – like in the paper mentioned above is not enough to ensure that the
constraints are not heavily in�uenced by the measurement process with its random and systematic
errors. Here using multiple pulsars and comparing their individual constraints are also not the ideal
solution.

Because of the large number of well observed systems that became available in recent years, a solution
could be to abolish the inequality for the constraints in equation (3.45) completely. Instead, the free
parameters can be �tted to the measured shift of the orbital period and after that a distribution of the
resulting values can be computed to get an allowed region depending on the standard deviation.

The only challenge would be the inclusion of the measurement uncertainties and especially the com-
pactness parameter, which is only given as an allowed interval. But if there is a way to include these
in the standard deviation of the results of the individual systems, this could be the right move to step
away from GR tests by individual measured pulsars as they are very common [116] and start the era
of constraints based on the whole population of them.

The goal for this is to produce a single constraint, which than can be compared with results from
LIGO events or pulsar timing arrays (PTAs) [117] shown in �gure 5.7. This would be particularly
interesting, because they are sensitive to the transmission of gravitational waves and the results in this
work are sensitive to their emission in pulsars.

Figure 5.7: Constraints on the self-interaction of ultralight DM for several orders of magnitude of
their mass based on the observations by the European Pulsar Timing Array (modi�ed
reprint from [117]).
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Another improvement could be a better constraint on the compactness parameter. For example, one
could go away from looking at individual EoSs and try to systematically include all possible ones with
a parametric approach like by Ecker et al. [118]. This could improve the results mainly for NS-NS
systems at small masses. However, it will have almost no e�ect in case of a WD companion, because
for them �V is dominated by the compactness of the WD and hence, no large improvements are
expected. For all systems considered the uncertainty of the compactness parameter was relatively
small compared to the ones of the measured quantities, following that this is not the aspect which has
the most relevance with regards to further improvements.

When the general constraints are set, one interesting next step would be to look at constraints for
individual models. From the relation of f 0(RVEV) to the interaction rate of DMmodels it is possible
to constrain them like in [92, 115, 119, 120]. This would also enable a closer comparison to the
paper the calculations are based on [66]. Over the second derivative of f (R), which is linked to mq,
it is also possible to constraint individual GR extensions like in [121, 122]. From these the code
created here can become a powerful tool to investigate many di�erent models with only modest
computation resources and be a valuable complement to the merger and PTA constraints.
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