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Summary

Large-scale structure surveys have the potential to become the leading probe for precision

cosmology in the next decade. To extract valuable information on the cosmological evolution

of the Universe from the observational data, it is of major importance to derive accurate

theoretical predictions for the statistical large-scale structure observables, such as the power

spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the

greatest challenges of modern cosmology is to theoretically understand the non-linear dy-

namics of large-scale structure formation in the Universe from first principles. While analytic

approaches to describe the large-scale structure formation are usually based on the framework

of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and

develop methods to derive generic, non-perturbative statements about large-scale structure

correlation functions. We study unequal- and equal-time correlation functions of density and

velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in

the soft limit.

In the soft limit, it is possible to link (N + 1)-point and N -point correlation functions

to non-perturbative ‘consistency conditions’. These provide in turn a powerful tool to test

fundamental aspects of the underlying theory at hand. In this work, we first rederive the

(resummed) consistency conditions at unequal times by using the so-called eikonal approxi-

mation. The main appeal of the unequal-time consistency conditions is that they are solely

based on symmetry arguments and thus are universal. Proceeding from this, we direct our

attention to consistency conditions at equal times, which, on the other hand, depend on

the interplay between soft and hard modes. We explore the existence and validity of equal-

time consistency conditions within and beyond perturbation theory. For this purpose, we

investigate the predictions for the soft limit of the bispectrum of density and velocity pertur-

bations in two different approaches, namely in the perturbative time-flow approach and in a

non-perturbative background method. This background method, which relies on absorbing

a spherically symmetric soft mode into a locally curved background cosmology, has recently

inspired a proposal for an (allegedly non-perturbative) angular-averaged equal-time consis-

tency condition for the bispectrum of density perturbations (henceforth referred to as VKPR

proposal). We demonstrate explicitly for an Einstein–de Sitter universe that the time-flow re-

lations as well as the VKPR proposal are only fulfilled at leading order in perturbation theory,

but are not exact beyond it. Since the VKPR proposal still leads to qualitatively accurate

predictions for the bispectrum of density perturbations beyond the linear perturbative order,

it can nevertheless be regarded as a reasonable empirical approximation in this case. However,

transferring the VKPR proposal to the velocity perturbations significantly fails beyond linear

order in perturbation theory. In consequence, we generalize the background method to prop-

erly account for the effect of local curvature both in the density and velocity perturbations

on short distance scales. This allows us not only to identify the discrepancies of the VKPR

proposal, but also to formulate a proper generalization of it which includes both the density



and velocity perturbations. In addition, we use the background method to deduce a generic,

non-perturbative angular-averaged bispectrum consistency condition, which depends on the

density power spectrum of hard modes in the presence of local curvature.

Building upon this, we proceed by deriving a non-perturbative equation for the power spec-

trum in the soft limit. To this end, we perform an operator product expansion, on the one

hand, and deduce a non-perturbative angular-dependent bispectrum consistency condition,

on the other hand. We obtain the latter from extending the background method to the

case of a directional soft mode, being absorbed into a locally curved anisotropic background

cosmology. The resulting non-perturbative power spectrum equation encodes the coupling

to ultraviolet (UV) modes in two time-dependent coefficients. These can most generally be

inferred from response functions to geometrical parameters, such as spatial curvature, in

the locally curved anisotropic background cosmology. However, we can determine one co-

efficient by use of the angular-averaged bispectrum consistency condition together with the

generalized VKPR proposal, and we show that the impact of the other one is subleading.

Neglecting the latter in consequence, we confront the non-perturbative power spectrum equa-

tion against numerical simulations and find indeed a very good agreement within the expected

error bars. Moreover, we argue that both coefficients and thus the non-perturbative power

spectrum in the soft limit depend only weakly on UV modes deep in the non-linear regime.

This non-perturbative finding allows us in turn to derive important implications for pertur-

bative approaches to large-scale structure formation. First, it leads to the conclusion that

the UV dependence of the power spectrum found in explicit computations within standard

perturbation theory is an artifact. Second, it implies that in the Eulerian (Lagrangian) effec-

tive field theory (EFT) approach, where UV divergences are canceled by counter-terms, the

renormalized leading-order coefficient(s) receive most contributions from modes close to the

non-linear scale. The non-perturbative approach we developed can in principle be used to

precisely infer the size of these renormalized leading-order EFT coefficient(s) by performing

small-volume numerical simulations within an anisotropic ‘separate universe’ framework. Our

results suggest that the importance of these coefficient(s) is a ∼ 10% effect at most.



Zusammenfassung

Rotverschiebungssurveys zur Durchmusterung der großräumigen Struktur des Universums ha-

ben das Potential, innerhalb des nächsten Jahrzehnts die führende kosmologische Präzisions-

messung zu werden. Um aus den Beobachtungsdaten wertvolle Informationen über die kos-

mologische Entwicklung des Universums gewinnen zu können, ist es von größter Bedeutung

präzise theoretische Vorhersagen für die statistischen Observablen der großräumigen Struktur

des Universums, wie zum Beispiel das Leistungsspektrum und das Bispektrum der (Dunkle-)

Materiedichtefluktuationen, zu machen. Eine der größten Herausforderungen der modernen

Kosmologie ist es daher, die nicht-lineare Dynamik der kosmologischen Strukturbildung von

Grund auf theoretisch zu verstehen. Während analytische Methoden zur Beschreibung der

kosmologischen Strukturbildung in der Regel auf den Grundlagen der nicht-relativistischen

kosmologischen Störungstheorie basieren, verfolgen wir in dieser Dissertation einen anderen

Ansatz und entwickeln Methoden, um generelle, nicht-perturbative Aussagen über Korrela-

tionsfunktionen der großräumigen Struktur des Universum herzuleiten. Hierfür untersuchen

wir Korrelationen von Dichte- und Geschwindigkeitsfluktuationen ungleicher und gleicher Zei-

ten in dem Limes, in dem eine ihrer Wellenzahlen sehr klein wird, das heißt im sogenannten

‘weichen’ Limes.

In diesem weichen Limes ist es möglich, (N + 1)-Punkts- und N -Punktskorrelationsfunktio-

nen zu nicht-perturbativen ‘Konsistenzbedingungen’ zu verknüpfen. Diese bilden ihrerseits

ein mächtiges Handwerkszeug, um fundamentale Aspekte der zugrundliegenden physikali-

schen Theorie zu testen. Im Rahmen dieser Arbeit leiten wir zunächst die (resummierten)

Konsistenzbedingungen für ungleiche Zeiten her, indem wir die sogenannte Eikonalnäherung

verwenden. Der größte Reiz dieser Konsistenzbedingungen für ungleiche Zeiten besteht darin,

dass sie auschließlich auf Symmetrieargumenten beruhen und daher universell sind. Danach

wenden wir uns den Konsistenzbedingungen für gleiche Zeiten zu, die andererseits von der

Wechselwirkung zwischen weichen und harten Moden abhängen. Wir erforschen die Existenz

und Gültigkeit von Konsistenzbedingungen für gleichen Zeiten innerhalb der Störungstheorie

sowie über sie hinausgehend. Zu diesem Zweck untersuchen wir die Vorhersagen zweier ver-

schiedener Methoden für den weichen Limes des Bispektrums der Dichte- und Geschwindig-

keitsfluktuationen, nämlich zum einen der perturbativen ‘time-flow’-Methode und zum ande-

ren einer nicht-perturbativen Hintergrundmethode. Diese Hintergrundmethode, die auf der

Absorbierung einer sphärisch symmetrischen weichen Mode in eine lokal gekrümmte Hinter-

grundkosmologie basiert, hat kürzlich zu einem (vermeintlich nicht-perturbativen) Vorschlag

einer winkelgemittelten Konsistenzbedingung gleicher Zeiten für das Bispektrum der Dich-

tefluktuationen (fortan als VKPR-Vorschlag bezeichnet) geführt. Wir weisen explizit für ein

Einstein-de-Sitter-Universum nach, dass die ‘time-flow’-Relationen ebenso wie der VKPR-

Vorschlag nur in Stöhrungstheorie erster Ordnung, nicht aber darüber hinaus, exakt sind. Da

der VKPR-Vorschlag jenseits der Störungstheorie erster Ordnung dennoch zu qualitativ kor-

rekten Vorhersagen für das Bispektrum der Dichtefluktuationen führt, kann er jedoch als eine



vernünftige empirische Näherung betrachtet werden. Wird der VKPR-Vorschlag allerdings

auf die Geschwindigkeitsfluktuationen übertragen, ergeben sich signifikante Abweichungen

jenseits der Störungstheorie erster Ordnung. Aufgrund dessen verallgemeinern wir die Hinter-

grundmethode, um den Effekt lokaler Krümmung auf die Dichte- und Geschwindigkeitsfluk-

tuationen auf kurzen Distanzskalen physikalisch richtig zu beschreiben. Dadurch ist es uns

möglich, nicht nur die Unstimmigkeiten des VKPR-Vorschlags auszumachen, sondern auch

eine geeignete Verallgemeinerung des letzteren, die sowohl Dichte- als auch Geschwindigkeits-

fluktuationen einbezieht, zu formulieren. Zusätzlich verwenden wir die Hintergrundmethode,

um eine generelle, nicht-perturbative winkelgemittelte Bispektrumkonsistenzbedingung herzu-

leiten, die vom Dichteleistungsspektrum harter Moden in Gegenwart von lokaler Krümmung

abhängt.

Wir fahren anschließend fort, indem wir eine nicht-perturbative Gleichung für das Leistungs-

spektrum im weichen Limes herleiten. Dafür führen wir einerseits eine Operator-Produkt-

Entwicklung durch und ermitteln andererseits eine nicht-perturbative winkelabhängige Bi-

spektrumkonsistenzbedingung. Wir erhalten diese, indem wir die Hintergrundmethode für den

Fall einer gerichteten weichen Mode, die in eine lokal gekrümmte anisotrope Hintergrundkos-

mologie absorbiert wird, erweitern. Die resultierende nicht-perturbative Leistungsspektrum-

gleichung beinhaltet die Kopplung an ultraviolette (UV-)Moden durch zwei zeitabhängige

Koeffizienten. Diese können am allgemeinsten durch Antwortfunktionen (‘response functions’)

bezüglich geometrischer Parameter, wie etwa räumlicher Krümmung, in der lokal gekrümmten

anisotropen Hintergrundkosmologie abgeleitet werden. Allerdings können wir einen Koeffizi-

enten mithilfe der winkelgemittelten Bispektrumkonsistenzbedingung sowie des verallgemei-

nerten VKPR-Vorschlags bestimmen. Wir zeigen zudem, dass der andere Koeffizienten nur

einen geringfügigen Einfluss hat. Daher vergleichen wir, unter Vernachlässigung des letzteren,

die nicht-perturbative Leistungsspektrumgleichung mit numerischen Simulationen und stel-

len in der Tat eine sehr gute Übereinstimmung innerhalb der erwarteten Fehlergrenzen fest.

Darüber hinaus erörtern wir, dass beide Koeffizienten und folglich das nicht-perturbative Leis-

tungsspektrum im weichen Limes nur schwach von UV-Moden weit im nicht-linearen Bereich

abhängen. Diese nicht-perturbative Erkenntnis ermöglicht es uns ihrerseits, wichtige Implika-

tionen für perturbative Methoden der kosmologischen Strukturbildung abzuleiten. Zum einen

führt sie zu der Schlussfolgerung, dass die UV-Abhängigkeit des Leistungsspektrums, die in

expliziten Berechnungen innerhalb der perturabtiven Standardmethode (‘standard perturba-

tion theory’) auftritt, ein Artefakt ist. Zum anderen impliziert sie, dass in der Eulerschen

(Lagrangeschen) Methode der effektiven Feldtheorie (EFT), in der die UV-Divergenzen durch

Gegenterme (‘counter-terms’) aufgehoben werden, die renormierten Koeffizient(en) führender

Ordnung die größten Beiträge von Moden nahe des nicht-linearen Bereiches erhalten. Die

von uns entwickelte nicht-perturbative Methode kann im Prinzip verwendet werden, um die

Größe der renormierten EFT-Koeffizient(en) präzise mithilfe von numerischen Simulationen

eines anisotropen unabhängigen Unversums (‘separate universe’) zu bestimmen. Unsere Er-

gebnissen nach entspricht die Relevanz dieser Koeffizient(en) allenfalls einem ∼ 10%-Effekt.



The results presented in this thesis are based on the following publications:

[1] I. Ben-Dayan, T. Konstandin, R. A. Porto, and L. Sagunski, “On Soft Limits of Large-

Scale Structure Correlation Functions,” JCAP 1502 no. 02, (2015) 026, arXiv:1411.3225

[astro-ph.CO].

[2] M. Garny, T. Konstandin, R. A. Porto, and L. Sagunski, “On the Soft Limit of the

Large Scale Structure Power Spectrum: UV Dependence,” JCAP 1511 no. 11, (2015)

032, arXiv:1508.06306 [astro-ph.CO].

http://dx.doi.org/10.1088/1475-7516/2015/02/026
http://arxiv.org/abs/1411.3225
http://arxiv.org/abs/1411.3225
http://dx.doi.org/10.1088/1475-7516/2015/11/032
http://dx.doi.org/10.1088/1475-7516/2015/11/032
http://arxiv.org/abs/1508.06306




Contents

List of Figures v

Nomenclature vii

1 Introduction 1

2 Eulerian Dynamics of Gravitational Instability 17

2.1 Dark matter evolution on large distance scales . . . . . . . . . . . . . . . . . . 17

2.1.1 Summary of approximations . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.2 Approximations in detail . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 Particle dynamics in the expanding Universe . . . . . . . . . . . . . . . . . . . 22

2.3 The Vlasov-Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Velocity moments of the Vlasov-Poisson hierarchy . . . . . . . . . . . . 26

2.4 Closing the infinite Vlasov-Poisson hierarchy . . . . . . . . . . . . . . . . . . . 27

2.4.1 Fluid equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.2 Single-flow approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Standard Cosmological Perturbation Theory 31

3.1 Linear perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Linear solutions for an Einstein–de Sitter cosmology . . . . . . . . . . . 34

3.1.2 Linear solutions for a ΛCDM cosmology . . . . . . . . . . . . . . . . . . 35

3.2 Non-linear perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Non-linear evolution equations in Fourier space . . . . . . . . . . . . . . 36

3.2.2 Standard formulation of perturbation theory . . . . . . . . . . . . . . . 38

3.2.3 Non-linear solutions for an Einstein–de Sitter cosmology . . . . . . . . 38

3.2.4 Approximate non-linear solutions for arbitrary cosmologies . . . . . . . 41

3.3 Diagrammatic formulation of perturbation theory . . . . . . . . . . . . . . . . . 43

3.3.1 Fluid equations in a compact notation . . . . . . . . . . . . . . . . . . . 44

i



Contents

3.3.2 Linear propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3.3 Approximate solutions of the fluid equations for arbitrary cosmologies . 46

3.3.4 Solutions of the fluid equations for an Einstein–de Sitter cosmology . . . 47

3.3.5 Perturbative solutions of the fluid equations . . . . . . . . . . . . . . . . 50

3.3.6 Diagrammatic representation of the perturbative solution . . . . . . . . 52

4 Statistical Large-Scale Structure Observables 57

4.1 The need for a statistical approach . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.2 Definition of the power spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3 Higher-order correlation functions . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3.1 The Wick theorem for Gaussian random fields . . . . . . . . . . . . . . 60

4.3.2 Connected parts of correlation functions . . . . . . . . . . . . . . . . . . 61

4.4 Power spectrum and bispectrum in SPT . . . . . . . . . . . . . . . . . . . . . . 63

4.4.1 Perturbative expansion of the power spectrum . . . . . . . . . . . . . . 63

4.4.2 Perturbative expansion of the bispectrum . . . . . . . . . . . . . . . . . 70

5 Overview of Perturbative Approaches 77

5.1 Shortcomings of standard perturbation theory . . . . . . . . . . . . . . . . . . . 77

5.1.1 Lack of a clear perturbative expansion parameter . . . . . . . . . . . . . 80

5.1.2 UV divergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1.3 Spurious IR divergences . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.4 Deviations from the perfect fluid approximation . . . . . . . . . . . . . 84

5.2 Alternative perturbative approaches . . . . . . . . . . . . . . . . . . . . . . . . 85

5.2.1 Resummation schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2.2 Current focus of analytic studies . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Renormalized perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3.1 Non-linear propagator . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Power Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.4 Eikonal approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4.1 Decomposition of the fluid equations . . . . . . . . . . . . . . . . . . . . 101

5.4.2 Propagator resummation . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.5 Time-flow approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.5.1 Infinite hierarchy of differential evolution equations . . . . . . . . . . . 110

5.5.2 Closure approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5.3 Analytical solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ii



Contents

6 Bispectrum Consistency Conditions 119

6.1 Correlation functions at unequal times in the soft limit . . . . . . . . . . . . . . 120

6.1.1 Eikonal approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.2 Correlation functions at equal times in the soft limit . . . . . . . . . . . . . . . 123

6.2.1 Soft limit of the bispectrum in SPT . . . . . . . . . . . . . . . . . . . . 123

6.2.2 Soft limit of the bispectrum in the time-flow approach . . . . . . . . . . 128

6.3 Background method for a spherically symmetric soft mode . . . . . . . . . . . . 134

6.3.1 Perturbed FRW metric in the Newtonian gauge . . . . . . . . . . . . . . 134

6.3.2 Newtonian mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

6.3.3 Non-perturbative bispectrum consistency condition . . . . . . . . . . . . 138

6.4 VKPR proposal of ‘equal-time consistency relations’ . . . . . . . . . . . . . . . 142

6.4.1 VKPR bispectrum consistency relation . . . . . . . . . . . . . . . . . . . 142

6.4.2 Validity of the VKPR proposal . . . . . . . . . . . . . . . . . . . . . . . 143

6.5 Generalization of the background method . . . . . . . . . . . . . . . . . . . . . 146

6.5.1 Impact of the velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

6.5.2 Fluid perturbations in a curved background . . . . . . . . . . . . . . . . 147

7 Non-Perturbative Power Spectrum Equation 153

7.1 Derivation of a non-perturbative power spectrum equation . . . . . . . . . . . . 154

7.1.1 Operator product expansion . . . . . . . . . . . . . . . . . . . . . . . . . 156

7.1.2 Fluid equations in the soft limit . . . . . . . . . . . . . . . . . . . . . . . 158

7.2 Background method for a directional soft mode . . . . . . . . . . . . . . . . . . 165

7.2.1 Newtonian mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7.2.2 Non-perturbative bispectrum consistency condition . . . . . . . . . . . . 171

7.3 Evaluation of the non-perturbative power spectrum equation . . . . . . . . . . 173

7.4 Numerical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

7.4.1 Estimation of the error due to neglecting the α-terms . . . . . . . . . . 176

7.4.2 Impact of hard modes beyond the non-linear scale . . . . . . . . . . . . 176

7.4.3 Dependence on the background cosmology . . . . . . . . . . . . . . . . . 179

7.4.4 UV dependence of the SPT power spectrum . . . . . . . . . . . . . . . . 183

7.4.5 Implications for the EFT of LSS . . . . . . . . . . . . . . . . . . . . . . 186

8 Conclusions and Outlook 189

A Appendix 203

A.1 The soft limit of the one-loop density bispectrum in SPT . . . . . . . . . . . . 203

A.2 Estimating the impact of the coefficient C12 . . . . . . . . . . . . . . . . . . . . 206

iii



Contents

B Zusammenfassung 209

Bibliography 217

Acknowledgements 251

Eidesstattliche Erklärung 252

iv



List of Figures

1.1 Power spectrum of the galaxy distribution from the 2-degree Field Galaxy

Redshift Survey and the Sloan Digital Sky Survey. . . . . . . . . . . . . . . . . 3

1.2 Galaxy distribution map from the 2-degree Field Galaxy Redshift Survey and

the Sloan Digital Sky Survey as well as from mock catalogs based on the Mil-

lenium simulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Galaxy distribution map from the complete 2-degree Field Galaxy Redshift

Survey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 One-dimensional phase-space depicting the first shell crossing and the emer-

gence of multi-flow regions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.1 Diagrammatic representation of the three basic building blocks to construct

the perturbative solutions of the non-linear fluid equations. . . . . . . . . . . . 53

3.2 Diagrams representing the solutions ψ
(n)
a up to order n = 4 in perturbation

theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.1 Diagrammatic representation of the initial power spectrum Pab,0. . . . . . . . 60

4.2 Diagrammatic representation of the connected parts of the correlation functions

of up to N = 4 fields. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Decomposition of the three-point correlation function into its connected parts. 62

4.4 Perturbative contributions to the power spectrum of density perturbations

P11

(
k, z = 0

)
at present time and for a ΛCDM universe up to one-loop order

in SPT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Diagrammatic representation of the tree-level contribution PLab as well as the

one-loop corrections P
(22)
ab and P

(13)
ab to the power spectrum. . . . . . . . . . . 69

4.6 Diagrammatic representation of the tree-level contribution BL
abc as well as the

one-loop corrections B
(222)
abc , B

(321,I)
abc , B

(321,II)
abc and B

(411)
abc to the bispectrum. . . 74

v



List of Figures

5.1 Perturbative contributions to the power spectrum of density perturbations,

P
(
k, z = 0

)
at present time and for a ΛCDM universe up to three-loop order

in SPT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Comparison of perturbative contributions to the power spectrum of density

perturbations P
(
k, z = 0

)
at present time and for a ΛCDM universe at tree-

level, one- and two-loop order in RPT and closure theory. . . . . . . . . . . . . 89

5.3 Comparison of the one-loop predictions for the power spectrum of density per-

turbations, P
(
k, z = 0

)
at present time and for a ΛCDM universe at one-loop

order in SPT, the time-flow approach, RGPT, large-N theory and Lagrangian

resummation theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

7.1 Numerical results for the coefficients cab(z) as a function of redshift z for

a ΛCDM universe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.2 Dependence of the variance of the displacement fields σ2
ab(kmax) on the cutoff

scale kmax at redshift z = 0 for a ΛCDM universe. . . . . . . . . . . . . . . . . 178

7.3 Momentum dependence of the density power spectrum response functionG1(k, z)

at redshift z = 0 and z = 2 for a ΛCDM universe. . . . . . . . . . . . . . . . . 181

7.4 Time derivative of the variance of the displacement fields ∂ησ
2
ab(kmax, η) as a

function of the cutoff scale kmax for a ΛCDM universe. . . . . . . . . . . . . . 183

7.5 Comparison of the non-perturbative predictions with the perturbative SPT

predictions for the cutoff-scale dependence of the coefficients cab(z) and the

variances of the displacement fields σ2
ab(kmax) at zero redshift and for a ΛCDM

universe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

A.1 Estimate for the impact of C12(η) on the coefficients cab(z) as a function of

redshift z for a ΛCDM universe. . . . . . . . . . . . . . . . . . . . . . . . . . . 208

vi



Nomenclature

ΛCDM universe . . . . . . . . . . . . . . . . . . . . . . . . Universe with cosmological constant Λ and CDM

2dFGRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-degree Field Galaxy Redshift Survey

BAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Baryon acoustic oscillations

BBGKY hierarchy . . . . . . . . . . . . . . . . . . . . Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy

BICEP . . . . . . . . . . . . . . . . . . . . . . . . Background Imaging of Cosmic Extragalactic Polarization

BOSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Baryon Oscillation Spectroscopic Survey

CAMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Code for Anisotropies in the Microwave Background

CDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cold dark matter

CMB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Cosmic microwave background

COBE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . COsmic Background Explorer

COLA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . COmoving Lagrangian Acceleration

DES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dark Energy Survey

DESI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dark Energy Spectroscopic Instrument

DM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Dark matter

e.g. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . From Latin ‘exempli gratia’, for example

EAGLE . . . . . . . . . . . . . . . . . . . . Evolution and Assembly of GaLaxies and their Environments

eBOSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . enhanced BOSS

EdS universe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Einstein–de Sitter universe

vii



Nomenclature

EFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Effective field theory

ESA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . European Space Agency

FRW metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Friedmann–Robertson–Walker metric

GADGET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . GAlaxies with Dark matter and Gas intEracT

GW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Gravitational wave

i.e. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . From Latin ‘id est’, that is

IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Infrared

LEFT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lagrangian-space EFT

LIGO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Laser Interferometer Gravitational-Wave Observatory

LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Leading order

LPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lagrangian perturbation theory

LSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large-scale structure

LSST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Large Synoptic Survey Telescope

NL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Non-linear

NLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Next-to-leading order

NNLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Next-to-next-to-leading order

OPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operator product expansion

PT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Perturbation theory

RG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Renormalization group

RGPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Renormalization group perturbation theory

RPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Renormalized perturbation theory

SDSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Sloan Digital Sky Survey

SNe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Supernovae

SPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Standard perturbation theory

viii



Nomenclature

TF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Trace-free

TRG approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Time-renormalization group approach

UV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ultraviolet

VKPR proposal . . . . . . . . . . Proposal by Valageas, and also by Kehagias, Perrier and Riotto

WFIRST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wide Field Infrared Survey Telescope

WMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wilkinson Microwave Anisotropy Probe

ZA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Zel’dovich approximation

ix





Chapter 1

Introduction

“I, however, believe that there is at least one philosophical problem in which all

thinking men are interested. It is the problem of cosmology: the problem of under-

standing the world – including ourselves, and our knowledge, as part of the world.

All science is cosmology, I believe, and for me the interest of philosophy, no less than

that of science, lies solely in the contributions which it has made to it.”

— Sir Karl Raimund Popper, The Logic of Scientific Discovery [3]

Preface

The recent first direct detection of gravitational waves (GW) from a merging black hole binary

system by the Laser Interferometer Gravitational-Wave Observatory (LIGO) [4] is not only a

confirmation of a century-old major prediction of Einstein’s general relativity [5], but marks

the dawn of new era for testing the fundamental properties of the theory of gravitation [6–8].

Moreover, it paves the way for establishing direct GW detection as an unprecedented window

into the Universe with the potential to probe gravitational waves both from astrophysical

sources and of (primordial) cosmological origin in the near future (see for instance [9, 10]).

Cosmology itself – as the study of the beginning, evolution and composition of the physical

Universe – has already reached a ‘golden age’ [11] at this present time. Within the last decades,

tremendous observational progress accompanied by a spectacular amount of high-accuracy

data has heralded an era of precision cosmology. Thereby, measurements of the temperature

fluctuations in the cosmic microwave background (CMB) by the COsmic Background Explorer

(COBE) [12], the Wilkinson Microwave Anisotropy Probe (WMAP) [13] and more recently by
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1. Introduction

the Planck satellite1 [16, 17], as well as the imprint of the baryon acoustic oscillations (BAOs)

in the large-scale structure (LSS) observed by galaxy redshift surveys such as the ground-based

Sloan Digital Sky Survey (SDSS) [18, 19] (see Figure 1.1) and distance measurements based on

type Ia supernovae (SNe) [20, 21] are probably the most eminent examples for observational

probes that contributed to the establishment of a ‘concordance model’ of the Hot Big Bang

cosmology, the ΛCDM model.

In this standard cosmological model, the Universe is homogeneous and isotropic on its

largest scales, spatially flat (ΩK ' 0), with a mass-energy density being dominated not by

baryonic matter (‘b’), but by cold dark matter (CDM) and dark energy in form of a cosmolog-

ical constant Λ (with density parameters Ωb,0 ' 0.05, ΩDM,0 ' 0.26, ΩΛ,0 ' 0.69 at present

time) [17]. Moreover, the cosmological observations offer powerful evidence in favor of simple

(single-field) inflationary models [22], providing an attractive mechanism for generating the

nearly scale-invariant (with spectral index ns ' 0.97) primordial power spectrum of highly

Gaussian, adiabatic (scalar) seed perturbations [23].

The measurements of the anisotropies in the CMB by the Planck satellite have provided

invaluable information about the origin of the seeds of structure [17, 22], which have plau-

sibly been created out of quantum fluctuations during an inflationary phase of accelerated,

exponential expansion in the very Early Universe [24–26] (for reviews see [27–29]), as well

as about their development throughout the cosmological ages into the present large-scale

structure. While this is a remarkable achievement, many issues regarding the nature of an

inflationary cosmology remain unresolved. Perhaps the most outstanding one is whether a

slowly-rolling, weakly coupled fundamental scalar field played the role of the Higgs mechanism

for the Early Universe or if the Universe chose a different path, such as dynamics of strong

coupling or supersymmetry [30–32]. These possibilities remain viable candidates to play a role

in the Early Universe and have not been considerably hindered by the Planck data [30]. In

particular, the currently existing bounds on (equilateral) non-Gaussianity [23] lie still above

certain well-motivated theoretical thresholds (see e.g., [30–36]). A venue to improve on our

present understanding of cosmological evolution of the Universe and address the origin of both

its late and its (very plausibly) early phase of accelerated expansion is provided by the study

of the large-scale structure of the Universe [37].

Large-scale structure surveys are due to become the next leading probe for precision cosmol-

ogy in the next decade. Through ambitious observational programs, the currently under way

and upcoming galaxy redshift surveys will be able to constrain the cosmological model and

1In addition to these satellite missions, a new generation of ground-based observatories, among them the

BICEP (Background Imaging of Cosmic Extragalactic Polarization) experiment [14] and the Keck Array [15]

provide an unprecedented sensitivity to measure the B-mode polarization of the CMB.
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Fig. 1.1.: Power spectrum of the galaxy distribution from the 2-degree Field Galaxy Redshift

Survey (2dFGRS) [38] and the Sloan Digital Sky Survey (SDSS) [18] (reprinted

from [39]). While the 2dFGRS galaxy power spectrum is shown by the black cir-

cles with a shaded 1σ-error band, the SDSS galaxy power spectrum is displayed by

the red triangles and error bars. The solid curve corresponds to the best theoreti-

cal fit for the ΛCDM concordance model and is normalized to the 2dFGRS galaxy

power spectrum [38]. The power spectrum of the galaxy number density fluctua-

tions is related to the dark matter density power spectrum by a bias parameter (see

e.g., [40]). For wavenumbers k & 0.05h/Mpc, one can see the characteristic signa-

ture which has been imprinted in the galaxy distribution by sound waves of the

baryon-photon fluid in the Early Universe. These are the so-called baryon acoustic

oscillations (BAOs) [41, 42].

the nature of dark energy with remarkable accuracy. Since the turn of the century, galaxy red-

shift surveys, as for instance SDSS (see before) or the 2-degree Field Galaxy Redshift Survey

(2dFGRS) [38, 43], have confirmed the rich variety of the large-scale structure in the Universe

(see Figure 1.2). Besides groups, clusters and superclusters of galaxies, the observed three-

dimensional distribution of galaxies shows walls, filaments and voids. Recently, the Baryon

Oscillation Spectroscopic Survey (BOSS) [44, 45], as a part of the SDSS-III project [46], has

provided the largest volume of the low-redshift Universe ever surveyed, with a galaxy density

valuable for precision cosmology.2

2BOSS has mapped 1.5 · 106 luminous galaxies covering a survey area of 104 deg2 to measure the scale of

the baryon-acoustic oscillations in the clustering of matter up to redshifts z < 0.7 [44]. Here, the unit

of square degrees ‘deg2’ constitutes a measure of the solid angle, with the whole sphere being equal to

4π (180/π)2 deg2 ' 4.12 · 104 deg2.
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Fig. 1.2.: Galaxy distribution map from the 2-degree Field Galaxy Redshift Survey (2dFGRS)

[38, 43] and the Sloan Digital Sky Survey (SDSS) [18, 19] as well as from ‘mock’

catalogs based on the Millenium simulation [47–49] (reprinted from [50]). The radial

direction indicates the redshift, whereas the polar angle is the right ascension.

Here, the two slices at the top show the Great Wall [51], with the Coma Cluster at

the center, and the Sloan Great Wall, which has been identified by SDSS [52]. The

latter is one of the largest observed structures in the Universe, stretching over more

than ∼ 109 ly (light years) and containing more than ∼ 104 galaxies. Besides, the

cone on the left shows a part of the galaxy distribution map from 2dFGRS, which

has in total determined the distances of more than 220 000 galaxies.

At the bottom and on the right, mock catalogs of the galaxy distribution, selected

according the maps of the surveys, are depicted. These have been constructed

with semi-analytic techniques to describe the formation and distribution of galaxies

within the dark matter evolution modeled by the Millenium simulation.

In the next decade, the advent of additional ground-based galaxy redshift surveys, such as

the Dark Energy Survey (DES) [53, 54], the enhanced Baryon Oscillation Spectroscopic Survey

(eBOSS) [55], the Dark Energy Spectroscopic Instrument (DESI) [56] and the Large Synoptic
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Survey Telescope (LSST) [57], as well as complementary spaceborne surveys like the Wide

Field Infrared Survey Telescope (WFIRST) [58] or the ESA Euclid satellite mission [59, 60]

will revolutionize observational cosmology by measuring the distribution of galaxies with un-

precedented accuracy. Thus, they will be able to address the very fundamental open questions

of cosmology, namely the physics of inflation as origin of the seeds of structure, the proper-

ties of dark matter, the nature of dark energy or alternatively modifications of gravity on

cosmological scales [59, 61].

While CMB measurements primarily supply two-dimensional data from the last-scattering

surface, large-scale structure surveys map the three-dimensional distribution of galaxies in

the Universe and hence contain more, potentially richer cosmological information [62]. In

principle, they provide roughly a 1000-fold increase in the number of modes available compared

to the CMB [63]. However, extracting this information is a daunting task due to the currently

more limited theoretical understanding of LSS physics in the low-redshift universe, which is

additionally complicated by the non-linear nature of dark matter clustering. In fact, according

to the nowadays widely accepted physical picture, the present large-scale structure grew in

the expanding Universe out of the small primordial seed fluctuations in the matter density

through the dynamics of gravitational instability, driven by the dominant dark matter density

component. Thus, one of the main goals of present cosmology is to theoretically understand

the dynamics of large-scale structure formation and derive reliable theoretical predictions for

the LSS observables from it.

To date, most cosmological implications from large-scale structure data have been drawn by

confronting it against the theoretical predictions for the power spectrum, i.e., the (connected)

two-point correlation function, of (dark) matter density perturbations. This statistical LSS

observable encodes all the information available if the primordial random density fluctuations

are Gaussian distributed. However, in order to fully exploit the wealth of information con-

tained in the large-scale structure data, it is also important to study higher-order statistical

correlation functions, such as the bispectrum, the (connected) three-point correlation func-

tion, of density perturbations. For instance, since the density bispectrum is initially zero for

Gaussian-distributed density perturbations and subsequently generated only due to the non-

linear dynamics of dark matter clustering [64], theoretical predictions of the latter directly

allow to constrain primordial non-Gaussianity [65–71] (for constraints from the density power

spectrum see [72–77]).

However, providing sufficiently accurate theoretical predictions for the large-scale structure

observables even in the simplest cosmological models is a challenging task due to the non-

linear nature of dark matter clustering. Due to this, the traditional approach to model the
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dynamics of gravitational instability consists in performing numerical N -body simulations of

collisionless cold dark matter particles (for an introduction to different N -body methods and

a review of the latest numerical techniques, we refer to [40] and [78], respectively). Using

numerical simulations to model the dynamics of gravitational instability has a long and dis-

tinguished history, dating back to the year 1960 where the first computer calculations were

performed with a number of N = 16 collisionless particles [79]. By comparison, current state-

of-the-art simulations, such as Millenium Simulation [47–49] carried out with the N -body code

GADGET [80, 81] 3, involve more than N = 1010 particles (see also Figure 1.2). For other

advanced numerical simulations see e.g., [82–84]. While these N -body simulations model the

gravitational clustering of pure dark matter particles, the challenge however lies in including

the baryonic matter component to predict the formation and distribution of observable lu-

minous galaxies. In fact, appropriate hydrodynamic simulations which account for the fluid

motion (hydrodynamic evolution) of the baryons as well as the dynamics of gravitational

instability, such as the Illustris or EAGLE (Evolution and Assembly of GaLaxies and their

Environments) project [85, 86], are computationally very expensive and thus only applicable

for a limited range of distance scales. Due to this limitation, one uses instead algorithms,

as for instance COLA (COmoving Lagrangian Acceleration) [87, 88] or PTHalos, that com-

bine N -body simulations for small distance scales with analytic approaches of cosmological

perturbation theory (PT) for large distance scales, to generate ‘mock’ catalogs of the galaxy

distribution and extract the statistical large-scale structure observables thereof.

Even though these numerical methods provide fairly accurate theoretical predictions for the

large-scale structure observables, the considerations above reveal a number of reasons to resort

instead – when possible – to analytic approaches [89]. First of all, it is currently challenging

to perform hydrodynamic simulations including baryonic matter. Moreover, simultaneously

scanning over a large set of cosmological parameters or models and a wide dynamical range

of scales becomes computationally expensive and time consuming the higher the precision is

targeted (for a critical analysis of the ultimate level of accuracy and feasibility of numerical

simulations see [90]). Finally and most importantly, the development of analytic approaches

to assess the dynamics of large-scale structure formation allows to gain a fundamental under-

standing of the underlying physics from first principles.

Since the very early days of modern cosmology [40, 91, 92], analytic approaches within

the framework of non-relativistic cosmological perturbation theory, both in Eulerian and La-

grangian space, have been developed with the aim to describe the formation of the large-scale

structure in the Universe from first principles. By far the most studied analytic approach to

3The abbreviation GADGET stands for ‘GAlaxies with Dark matter and Gas intEracT’.
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model the dynamics of LSS formation is the so-called standard perturbation theory (SPT) in

Eulerian space (see for instance [40, 92–102]). It is based on solving the non-linear perfect fluid

equations of the dark matter clustering in Fourier space by a perturbative expansion in terms

of the linearly evolved matter density contrast. This perturbative ansatz is well justified as

long as the real-space density contrast, describing the relative deviation of the matter density

from the spatially-averaged mean matter density, is very small compared to unity. This is the

case on large distance scales (corresponding to small momentum scales in Fourier space) and

at early times (or high redshifts).

While the density contrast is the fundamental physical quantity in the Eulerian framework of

perturbation theory, Lagrangian perturbation theory (hereafter LPT) implements a displace-

ment vector field as basic dynamical variable [103–127]. In particular, by proceeding from the

linear perturbative order of this displacement field, the Zel’dovich approximation (ZA) [91]

derives an approximate solution to the fluid equations (for its applications see e.g., [105, 128–

137]). Both the perturbative approaches of SPT and LPT have certain advantages, but reveal

shortcomings as well [138–141]. However, LPT has received less attention in the past than

SPT as its Eulerian counterpart, partly because it has – in addition to the shortcomings of

SPT – the drawback that the Lagrangian picture breaks down once shell-crossing occurs in

the clustering process.

Although SPT as a perturbative method provides valuable insights in the dynamics of LSS

formation [40], it has been realized soon that its shortcomings lead to a fundamental limitation

of its predictive power. For instance, its perturbative predictions for the power spectrum of

matter density perturbations possess only a small range of validity beyond linear order at

late times (or equivalently at low redshifts) and show poor convergence properties due to the

appearance of UV-divergent integrals (see [102]). Hence, a lot of effort has been devoted in

the last decade to the development of alternative perturbative LSS approaches with the aim

to overcome the intrinsic limitations of SPT and extend the range of reliable perturbative

predictions for the density power spectrum from the weakly to the mildly non-linear regime.

Thereby, predicting the power spectrum of density perturbations accurately in the mildly

non-linear regime is of particular interest since it contains invaluable information about the

cosmological evolution encoded in the features of the baryon acoustic oscillations.

The first significant progress in this direction was made by the pioneering work of the

renormalized perturbation theory (RPT) approach [142–144] (see also [142–146] in this con-

text). Based on the observation that large perturbative contributions arising from soft, long-

wavelength effects can be resummed in SPT, it reorganized the perturbative expansion using

techniques of quantum field theory and the theory of turbulence in hydrodynamics [147].

Compared to SPT, the method of RPT leads indeed to an improvement of the convergence
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properties of the power spectrum on intermediate scales. This success of RPT motivated the

development of a plethora of resummation schemes in the years that followed [114, 116, 148–

163]. Among others, two interesting approaches are the so-called closure theory [149] and

the time-flow approach [156], also referred to as time-renormalization group approach (TRG).

Their particular characteristic consists in extending the fluid equations to an infinite hier-

archical system of evolution equations directly formulated in terms of the final quantities of

interest, namely correlation functions such as the power spectrum and the bispectrum. One

then relies on truncating the infinite hierarchy of evolution equations to a closed system of

equations by an appropriate ‘closure approximation’ to derive a perturbative solution of the

correlation functions in these approaches. In general, all of the resummation techniques lead

to relatively accurate perturbative predictions on the onset of non-linearity, but fail on suf-

ficiently large momentum scales. A detailed overview of the different resummation schemes

can be found in the review articles [100, 138–141, 164].

The main recent focus of analytic studies in the field of LSS formation can be broadly

classified in two categories [89, 100]. On the one hand, the impact of soft, long-wavelength

(IR) perturbations on modes around the scale of the baryon acoustic oscillations has been

addressed from different directions, for instance comprising symmetry arguments, such as

(extended) Galilean invariance and the equivalence principle [165–177], or by applying the

eikonal approximation [101, 159, 160].

On the other hand, considerable efforts have been directed towards understanding the in-

fluence of hard, short-wavelength (UV) perturbations. Their treatment is further complicated

by the inherently non-linear process of dark matter clustering on short momentum scales.

In this regard, the semi-analytic effective field theory (EFT) approach to large-scale struc-

ture [49, 63, 178–207] and its formulation in Lagrangian space (LEFT) [89, 208] has emerged

as a useful tool to parameterize the imprint of UV modes on long-distance observables and

push the validity of perturbation theory towards short(er) distance scales. In the EFT ap-

proach, corrective terms with effective parameters are added to the perturbative expansion in

SPT (see e.g., [63, 178, 208]). These EFT parameters are split into a counter-term to cancel

possible UV divergences of the perturbative expansion in SPT and a (physical) renormal-

ized piece that accounts for deviations from the perfect-fluid approximation on short distance

scales. Subsequently, the renormalized parameters are determined from observational data

and numerical simulations. In addition, partly motivated by results from N -body simula-

tions [209, 210], complementary analytic approaches have been put forward with the aim to

circumvent the intrinsic limitations of SPT from first principles [102, 211–216].
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Motivation

In this thesis, however, we pursue another road. To check the consistency of different per-

turbative approaches and, in greater depth, to test the fundamental aspects of the underly-

ing theory against observations or numerical simulations, it is of major importance to gain

non-perturbative and method-independent information on large-scale structure observables.

Given the complexity of correlation functions in the theory of structure formation as such,

examples of these non-perturbative statements are rare. A case in which the derivation of

non-perturbative predictions is possible is the so-called squeezed or soft limit of large-scale

structure correlation functions, that is, the limit where one of their wavenumbers becomes

small. For this reason, our motivation in this thesis consists in investigating large-scale struc-

ture correlation functions in the soft limit. We develop methods to derive correlation functions

of the matter density and velocity perturbations, such as the power spectrum and the bispec-

trum, in the soft limit non-perturbatively. In turn, we use these non-perturbative relations to

address shortcomings in perturbation theory and explore implications within and beyond it.

In the soft limit, it is for instance possible to link (N + 1)-point and N -point correlation

functions of density and velocity perturbations to so-called ‘consistency conditions’. These

consistency conditions do not only allow to derive non-perturbative statements, but are also

independent of the details of the physics on short distance scales, which can be highly non-

linear. Hence, they provide a powerful tool for probing basic aspects of the underlying theory

at hand. Due to the huge amount of data that future large-scale structure surveys will deliver,

the consistency conditions in the context of structure formation might be possibly even more

valuable than the inflationary ones (see e.g., [33, 217–227]). Indeed, large-scale structure

consistency conditions have recently received significant attention [167–171, 173–176, 228–

234]. They can be derived for correlation functions of density and velocity fields evaluated at

equal or unequal times.

The main appeal of the consistency conditions for unequal-time correlation functions lies

in the fact that they can be deduced solely from symmetry arguments and hence are univer-

sal. They are only based on the general assumption of a single-field inflationary background,

providing the initial conditions for the seeds of structure, and the diffeomorphism invari-

ance (general covariance) of general relativity. For this reason, the unequal-time consistency

conditions provide fairly generic, non-perturbative predictions about the dynamics on short

distance scales, which can serve as a probe of the underlying assumptions and the fundamental

aspects of the theory [165–171, 228, 235]. Hence, confronted against observations of forth-

coming large-scale structure surveys, they will allow to test single-field inflation as the theory

9



1. Introduction

providing the initial seed perturbations, as well as the equivalence principle in gravitational

theories, especially since fluctuations enter the non-linear regime at small redshift.

In this work, we (re-)derive the consistency conditions for unequal-time correlation func-

tions of both density and velocity perturbations. For this purpose, we work in the Eulerian

framework of cosmological perturbation theory and use the compact notation of the large-

scale structure fluid equations, simultaneously including the density and velocity perturbation

fields (see for instance [40, 236]). One crucial aspect in the derivation of the unequal-time

consistency conditions is the factorization of soft and hard modes. Here, we apply the eikonal

approximation which naturally accounts for the resummation of the soft mode into a so-called

eikonal phase [159, 160, 237]. Moreover, it allows to derive consistency conditions for unequal-

time correlation functions of both the density and velocity fluctuations in a straightforward

and transparent way.

However, these consistency conditions become degenerate for the observationally most inter-

esting case of equal-time correlation functions, in the sense that they vanish at leading order in

the soft momentum (the long-wavelength mode) q. In order to gain information about equal-

time correlation functions, one thus needs to investigate next-to-leading order (NLO). Beyond

leading order, the equal-time correlators depend, on the other hand, on the interplay between

soft and hard modes so that dynamical information starts to become relevant [165, 166, 224].

Hence, it is important to investigate the existence and validity of equal-time consistency

conditions even for short-distance modes deep in the non-linear regime. In fact, allegedly

non-perturbative (angular-averaged) consistency conditions have been advocated in the re-

cent literature [173, 174].

To explore under which circumstances consistency conditions for equal-time correlation

functions exist beyond a perturbative treatment of the hard modes, we first compute the

soft limit of the angular-averaged connected three-point function, namely the bispectrum, up

to next-to-leading order in SPT. This serves us as a benchmark for subsequently comparing

different perturbative and non-perturbative methods. We investigate the predictions for the

soft-limit of the bispectrum in two different approaches, namely in the perturbative time-

flow approach (also known as time-renormalization group (TRG) approach) [156], and in a

non-perturbative background method where the soft mode is absorbed into a locally curved

cosmology, on the other hand.

The time-flow approach constitutes a perturbative method which is based on truncating a

hierarchical system of differential evolution equations for equal-time correlation functions, the

flow equations, by applying a ‘closure’ approximation. In general, perturbative statements

can be derived in the time-flow approach only by imposing a suitable closure approximation.
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Usually, the closure approximation truncating the infinite hierarchy of flow equations consists

in neglecting the connected four-point correlation function, i.e., the trispectrum. However,

we show that the latter plays an important role in assessing the validity of an equal-time

consistency condition for the angular-averaged bispectrum in the soft limit derived from the

time-flow approach.

The non-perturbative background method, on the other hand, implements a map between

the dynamics on short distance scales within a flat Friedmann–Robertson–Walker (FRW)

cosmology in the presence of a spherically symmetric long-wavelength perturbation and a

locally curved FRW universe. Thereby, the soft mode is absorbed into the locally curved

background cosmology. This background method, first discussed in [165, 166], is referred

to as ‘separate universe’ approach in the context of N -body simulations where it is used

to determine the so-called power spectrum response function [238–241]. It is exactly this

equivalence between a soft, long-wavelength perturbation in a flat universe and a locally

curved background which has inspired a proposal for an (allegedly non-perturbative) ‘equal-

time consistency condition’ for the angular-averaged bispectrum of density perturbations by

Valageas, and also by Kehagias, Perrier and Riotto (VKPR) in [173, 174].

Since the VKPR proposal is advocated in [173, 174] as being valid even in the non-linear

regime, we compare its predictions for the bispectrum of density perturbations up to one-

loop order with the ones derived in SPT. This gives us a first insight into the validity and

quantitative accuracy of the VKPR proposal within the realm of perturbation theory.

For assessing the validity of the VKPR proposal beyond perturbation theory, we subse-

quently derive a non-perturbative angular-averaged consistency relation for the bispectrum in

the soft limit from first principles. For this purpose, we develop a straightforward and short-

ened derivation of the relevant transformations in the background method. Building upon

that, we use these transformations to relate the bispectrum of density perturbations in the

soft limit to the variation of the power spectrum on short distance scales in the presence of lo-

cal curvature. As a result, we obtain a generic, non-perturbative angular-averaged bispectrum

consistency condition. In turn, we confront this non-perturbative bispectrum relation against

the VKPR proposal. Thereby, we identify the differences between these relations and work

out the reasons behind them. This allows us to draw a final conclusion about the validity of

the VKPR proposal within and beyond perturbation theory. In addition, we derive a gener-

alization of the background method to properly incorporate the effect of local curvature not

only in the density perturbations on short distance scales but also in the respective velocity

fluctuations. Thereby, we reveal that the velocity fluctuations react differently (by a factor

of the order one) to the presence of local curvature than the density perturbations. Based on

this, we formulate a generalization of the VKPR proposal that includes both the density and

11



1. Introduction

velocity perturbation fields.

Building upon the derivation of the non-perturbative relation for the bispectrum in the soft

limit, we proceed in the same direction afterwards. In fact, our aim consists in deducing a

non-perturbative equation for the power spectrum in the soft limit.

To arrive at such a power spectrum equation, a rather sophisticated procedure is required.

For instance, one needs to include information deduced from an angular-dependent non-

perturbative relation for the bispectrum in the soft limit. Hence, we first use an operator

product expansion (OPE) to infer the structure of such a bispectrum relation and to parame-

terize its angular dependence in terms of Legendre polynomials. Based on the fluid equations,

we then derive a non-perturbative differential evolution equation for the power spectrum in the

soft limit which includes two-non linear contributions depending on the bispectrum. However,

on the basis of the overall momentum dependence of each of the non-linear contributions, we

can subsequently deduce the bispectrum contributions remaining after performing the loop

integral. This allows us finally to formulate the non-perturbative equation for the power spec-

trum in the soft limit solely in terms of two time-dependent coefficients, encoding in particular

the dependence of the ultraviolet (UV) modes.

To extract these coefficients, we subsequently need to determine the non-perturbative

angular-dependent consistency condition for the bispectrum in the soft limit explicitly. Thus,

we generalize the background method from the case of a spherically symmetric soft mode to

the one of a directional long-wavelength perturbation. Thereby, we implement a map be-

tween a flat FRW cosmology in the presence of a directional soft mode and a locally curved

anisotropic universe. From the resulting angular-dependent bispectrum consistency condi-

tion we determine the coefficients entering in the non-perturbative power spectrum equation.

These constitute a function of the variance of the ‘displacement fields’ on short distance

scales or equivalently the momentum integrated power spectrum of hard modes, albeit to

some extent in a locally curved anisotropic universe. However, since one of the coefficients

is suppressed compared to the other, we perform a truncation of the non-perturbative power

spectrum equation. We demonstrate that the remaining contribution can be determined by

use of the angular-averaged bispectrum consistency condition only and use the generalized

VKPR proposal to evaluate its curvature dependence.

In the numerical analysis performed afterwards, we solve the truncated equation for the

power spectrum in the soft limit and show that it fares relatively well against numerical

simulations. Besides, we estimate the overall error in the non-perturbative power spectrum

equation induced by neglecting the impact of one coefficient and approximating the curvature

dependence of the other one by the generalized VKPR proposal. Furthermore, we study
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the dependence of the non-perturbative power spectrum in the soft limit on the hard modes

beyond the non-linear scale. Since their impact on the non-perturbative power spectrum is

encoded in the momentum integral of variance of the displacement fields, we evaluate the

latter by introducing a cutoff scale. From the conclusions we draw about the dependence of

the non-perturbative power spectrum on hard modes deep in the non-linear regime, we finally

deduce important ramifications for the power spectrum in perturbation theory. To be precise,

our findings allow us to address the UV dependence of the power spectrum observed in explicit

computations within SPT as well as to derive implications for the renormalized leading-order

coefficient(s) in the effective field theory (EFT) approach of large-scale structure.

Outline of the thesis

The remainder of this thesis is structured as follows. After this introductory chapter, we

develop in Chapter 2 the theoretical framework to analytically describe the formation of

the large-scale structure in the Universe. We first discuss the dynamics of gravitational

instability in the expanding Universe and derive the large-scale structure fluid equations of

the dark matter evolution. These are exactly the fluid equations which one aims to solve by a

perturbative expansion in terms of the linear density contrast within the Eulerian framework

of cosmological perturbation theory. In Chapter 3, we review the basic concept of the standard

perturbation theory approach to solve the fluid equations perturbatively, proceeding from the

linear to the non-linear solutions and accounting for different cosmological models. To go

beyond that, we rewrite the non-linear fluid equations in a compact form which allows for a

diagrammatic interpretation of the perturbative solutions in SPT.

Based on these perturbative solutions of the fluid equations, we derive in Chapter 4 the

perturbative predictions for the statistical large-scale structure observables such as the power

spectrum and the bispectrum, which we define as connected parts of correlation functions.

Moreover, we extend the diagrammatic representation of SPT to present the perturbative

contributions to the correlation functions in terms of tree-level and loop diagrams. By the

example of the perturbative predictions for the power spectrum in SPT, we point out the

qualitative and quantitative shortcomings of SPT afterwards (see Chapter 5). Subsequently,

we present an overview of different approaches in cosmological perturbation theory aiming

at addressing these drawbacks and improving the perturbative predictions for the large-scale

structure observables. Subsequently, we discuss a few specific perturbative approaches in

further detail, namely the framework of renormalized perturbation theory (RPT), the eikonal

approximation as well as the time-flow approach.

We refer to these particular perturbative approaches or make use of their characteristic
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1. Introduction

properties in the chapters that follow. For instance, we apply the eikonal approximation in

Chapter 6 to (re-)derive the consistency conditions for unequal-time correlation functions in

the soft limit. Moreover, to explore the existence of equal-time consistency conditions, we first

investigate the perturbative predictions of the time-flow approach for the angular-averaged

bispectrum in the soft limit, before proceeding to the non-perturbative background method.

By use of this, we then derive a non-perturbative angular-averaged bispectrum consistency

condition to assess the validity of the VKPR proposal and additionally deduce a generalization

of the latter. It turns out that these are the two ingredients needed to evaluate the truncated

non-perturbative power spectrum equation in the soft limit that we derive in Chapter 7.

The numerical analysis of this non-perturbative power spectrum allows us in turn to derive

implications for the power spectrum in perturbation theory, in particular with regard to SPT

and the EFT of LSS. Finally, in Chapter 8 we summarize the main conclusions of this thesis

and presents an outlook with interesting aspects for future work.

For computational details, we refer to Appendix A which contains, our calculation of the

SPT bispectrum at one-loop order in the soft limit as well as an estimate for the impact of

the coefficient neglected in the truncated non-perturbative power spectrum equation.

Unless marked otherwise, the results in this thesis have been worked out by myself. Chap-

ter 6 and Chapter 7 are based on the publications [1] and [2], respectively.

Notations and conventions

Throughout this thesis, we choose the signature of the spacetime metric to be (− + + +)

and use the Einstein summation convention to implicitly sum over repeated indices. Thereby,

the range of the sum is dictated by the nature of the indices. In detail, spacetime indices

are denoted by small Greek letters, e.g., µ, ν = {0, 1, 2, 3}, whereas Latin indices, such as

i, j = {1, 2, 3, . . .}, refer to conventional summations. (Particularly in this work, we label the

power spectrum and the bispectrum usually by indices a, b, c which are either 1 or 2, indicating

the density or velocity perturbations, respectively.) Furthermore, we denote three-dimensional

vectors, such as the comoving momentum k, in boldface and their magnitudes by |k| ≡ k.

To account for the expansion of the Universe, we usually work in comoving spacetime coordi-

nates (x, τ), which are related to the physical coordinates (r, t) by the scale factor a(τ). Since

the scale factor is a universal function of time τ , we also take a(τ) itself, its logarithm ln a(τ)

(related to the parameter η) and the cosmological redshift z,

1 + z =
a0

a(τ)
(1.1)

with present-time value a0 ≡ 1, as a measure of time.
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Furthermore, we work in natural units where the speed of light c and the reduced Planck

constant ~ are equal to unity,

c = ~ ≡ 1 . (1.2)

In cosmology, distances which are measured via redshift z and converted to physical length

scales by Hubble’s law [242] incorporate the uncertainty of the present value of the Hubble

parameter, the so-called Hubble constant H0.4 The uncertainty in the Hubble constant is

usually expressed by the dimensionless Hubble parameter h (not to be confused with the

Planck constant), defined as [243]

H0 = 100h
km

s ·Mpc
' 1

3000
h/Mpc (1.3)

with 1 pc ' 3.086 · 1016 m = 3.262 ly (see e.g., [244]). Here, we have used c = 1 in the last

equality. To indicate this uncertainty, distances (momenta) are traditionally expressed in

units of length (inverse length) as

[distance] = 1 Mpc/h , [momentum] = 1h/Mpc (1.4)

(see Figure 1.1). For instance, the characteristic length scale of the (observable) Universe,

namely the Hubble radius RH , which is defined as the distance light has traveled during the

characteristic age of the Universe, the Hubble time tH = 1/H0, then arises as (see (1.3)) [245]

RH ≡
c

H0
' 3000 Mpc/h . (1.5)

Finally, our conventions for the 3-dimensional Fourier transform of a space- and time-

dependent field f(x, τ) are

f̃(k, τ) ≡
∫

d3x

(2π)3
e−ik·x f(x, τ) , f(x, τ) ≡

∫
d3k eik·x f̃(k, τ) , (1.6)

where the Fourier transform f̃(k, τ) includes a dependence on the comoving wavenumber

(momentum) k. For reasons of better readability, we usually omit the tilde symbol of the

Fourier transform.

Moreover, we denote the Laplace transform of a time-dependent function g(τ) by [246]

ĝ(ω) ≡
∫
dτ e−ωτg(τ) , g(τ) ≡

c+i∞∮
c−i∞

dω

2πi
eωτ ĝ(ω) . (1.7)

4In the latest data release of the Planck collaboration, the value for the Hubble constant, representing the

present expansion rate of the Universe, is given by H0 = (67.8± 0.9) km s−1 Mpc−1 [17].
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1. Introduction

Here, ω refers to a complex number frequency parameter, whereas c constitutes a real number

such that the contour path of integration lies within the region of convergence of ĝ(ω). Besides,

we use the following differentiation property of the Laplace transform

∞∫
τ0

dτ e−ωτ
dg(τ)

dτ
= ω ĝ(ω)− g(τ0) . (1.8)
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Chapter 2

Eulerian Dynamics of Gravitational

Instability

Contents

2.1 Dark matter evolution on large distance scales . . . . . . . . . . . . . . . . 17

2.2 Particle dynamics in the expanding Universe . . . . . . . . . . . . . . . . . 22

2.3 The Vlasov-Poisson equation . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 Closing the infinite Vlasov-Poisson hierarchy . . . . . . . . . . . . . . . . . 27

2.1. Dark matter evolution on large distance scales

Galaxy redshift surveys such as the Sloan Digital Sky Survey (SDSS) [18, 19] or the 2-degree

Field Galaxy Redshift Survey (2dFGRS) [38, 43] have revealed a rich variety of the large-scale

structure in the Universe. Besides groups, clusters and superclusters of galaxies, the observed

galaxy distribution shows walls, filaments and voids. Walls and filaments are stretched regions

with a high galaxy density which form the boundaries between voids, vast regions of nearly

empty space. A map of the galaxy distribution from 2dFGRS can be seen in Figure 2.1.

One of the largest known structures is the Sloan Great Wall [248], shown in Figure 1.2. It

has a length (proper size at the present epoch) of [249]

r ' 100 Mpc/h . (2.1)

One of the main goals of present cosmology is to understand the formation process of these

large-scale structures in the Universe. The idea that the large-scale structure, seen in galaxy
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2. Eulerian Dynamics of Gravitational Instability

Fig. 2.1.: Galaxy distribution map from the complete 2-degree Field Galaxy Redshift Survey

(1997-2002) [38, 43] (reprinted from [247]). In the radial direction the redshift is

plotted, while the polar angle is the right ascension. Since the redshift is directly

related to the distance of an object by the Hubble law, redshift surveys map the

three-dimensional distribution of galaxies. Our Galaxy is in the center of the fig-

ure. Here, the distribution of more than 200 000 galaxies is plotted [245] (see also

Figure 1.2).

surveys, grew out of small (primordial) inhomogeneities in the matter density through gra-

vitational instability [250, 251] has become widely accepted in the last three decades. In the

framework of gravitational instability, one assumes that on large distance scales gravity is the

only agent responsible for the formation of structures, and that the growth and the evolution

of the matter density fluctuations is dominated by its dark matter (DM) component [40, 92].

According to the current cosmological paradigm, the observed baryonic mass constitutes

just a small fraction of the total mass in the Universe. The main component, however, is

expected to be a form of non-relativistic and collisionless matter, called cold dark matter

(CDM) [252–255]. The large-scale structure seen in galaxy surveys arises from the primordial

fluctuations in the matter density, which are generated out of quantum fluctuations during

inflation. When in the matter-dominated era of the Universe, CDM becomes the dominant

form of energy, the primordial fluctuations are amplified due to gravitational interactions of

CDM particles. Moreover, the distribution of CDM in the expanding Universe forms potential

wells where stars, galaxies and galaxy clusters develop by hierarchical growth and clustering.

This leads finally to the large-scale structure we observe in the Sky today.

No evidence for structures with a linear dimension much larger than r ' 100 Mpc/h has
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2.1. Dark matter evolution on large distance scales

been found. This homogeneity scale has to be compared to the Hubble radius at present time,

as defined in (1.5),

RH ' 3000 Mpc/h . (2.2)

The fact that r � RH justifies the Cosmological Principle, i.e., the Universe can been seen as

homogeneous and isotropic on large Hubble scales.

Consequently, on spheres of size much than larger the typical size of galaxy clusters, the

galaxy number density corresponds to the mean density of the Universe modified by small

fluctuations. One assumes that this characteristic also holds for the dark matter density dis-

tribution. Hence, on sufficiently large distance scales, the formation of structures can be mod-

eled by using perturbative techniques in terms of the small matter density fluctuations. This

perturbative description of LSS formations is denoted as cosmological perturbation theory.

However, when approaching smaller distance scales and later times, the density fluctuations

become larger and the validity of perturbative methods starts to break down.

Throughout this thesis, we assume the framework that the LSS formed due to gravitational

instabilities and discuss how perturbation theory can be used to understand the physics of

gravitational instability and to test this hypothesis against observations.

2.1.1. Summary of approximations

To study the process of LSS formation with analytic methods, we have to rely on certain

assumptions and approximations [123]. These restrictions are valid when we consider the

dark matter evolution on sufficiently large scales. They can be summarized as follows:

• The LSS is formed due to gravitational instability only.

• CDM dominates the dynamics of gravitational instability.

• CDM is collisionless and non-relativistic at decoupling.

• On subhorizon scales, CDM can be described by non-relativistic Newtonian gravity.

• In the early stages of gravitational instability, CDM behaves like a pressureless perfect

fluid.

• The velocity dispersion is negligible so that the single-stream approximation can be

used.

• There is neither primordial vorticity, nor vorticities on sufficient large distance scales.
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2. Eulerian Dynamics of Gravitational Instability

The last three points are further discussed in Section 2.4 and Chapter 3 where we derive the

non-linear fluid equations of LSS and motivate the single-flow approximation. In the following

section, we consider the remaining points in detail.

2.1.2. Approximations in detail

Dynamics of gravitational instability

According to the ΛCDM model, the evolution of the Universe after the Big Bang up to the

present time can be divided in four global phases [256], namely inflation (∼ 10−36 . . . 10−32 s),

radiation domination (∼ 10−32 . . . 1011 s), matter domination (∼ 1011 . . . 1017 s) and dark en-

ergy domination (∼ 1017 s to today). Since matter decouples from the primordial plasma in

the early stages of matter domination, modeling the LSS formation thus amounts to describe

gravitational instabilities in the two phases of matter and dark energy domination.1 During

both phases, the energy composition of the Universe shows a significant higher amount of

dark matter than of baryonic matter (atoms). As a consequence, we can neglect the baryonic

contribution to the total matter density in the Universe and approximate it by its dark matter

component only. Consequently, we solve the evolution equations of gravitational instability

just in terms of the dark matter density. Compared to typical masses of galaxies with particle

number densities of at least 1050 particles per Mpc3 [257], the mass of all possible DM can-

didates is extremely small. In this limit where the number of particles N � 1, discreteness

effects such as two-body relaxation (important for instance in globular clusters [258]) are neg-

ligible.2 Note that this means that we can describe DM as a (pressureless) fluid since internal

effects within the fluid should not significantly affect the evolution on large distance scales.

Moreover, on sufficiently large distance scales, thermal effects of the intergalactic medium

(hot gas) can be neglected. Thus, on those scales, it is justified to assume that the LSS is

formed only due to gravitational self-interaction of CDM particles.

Properties of CDM

There is substantial evidence (though, no direct detection yet) that the Universe contains a

large amount of non-baryonic dark matter (for a review on DM see e.g., [261]). Usually, one

assumes that there must be at least some CDM, composed of particles with non-relativistic

velocities when decoupling takes place during the early stages of the matter domination

epoch [243, 262, 263]. Apart from CDM, there might be also some hot or warm dark matter

particles that decouple having relativistic velocities.

1Galaxy formation started roughly at ∼ 6·108 yrs ' 2·1015 s (at about redshift z ∼ 10) after the Big Bang [27].
2See for instance [259, 260] for studies of discreteness effects in N -body simulations.
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The details of how large-scale structures evolve from primordial density fluctuations depend

on the nature of dark matter. Hot and warm dark matter, for instance, cannot cluster on

galaxy scales until it has cooled down to relativistic speeds and so gives rise to a considerably

different primordial power spectrum. CDM, on the other hand, explains the observed prop-

erties of galaxies quite well [252–255] (see also [264]). In particular, the measured two-point

correlation function of galaxies indicates that there exists a large amount of power on small

distance scales, of order of a few kpc. If the dark matter particles had significant velocities,

i.e., if they were hot or warm, the structures on small scales would be erased [262]. This is

why one usually assumes that large-scale structure formation is driven mainly by CDM.3

In addition, CDM has to be nearly collisionless. Collisions would lead to halos which are

round, in contrast to data that indicates triaxiality, e.g in clusters [267]. The limit of this

constraint is that there might be dark matter self-interactions (for details see e.g., [265, 266,

268, 269]) which may serve to erase small-scale structures in galaxy halos as well as density

cusps expected in the cores of galaxies.

Non-relativistic Newtonian gravity

Current galaxy surveys are focused on distance scales of the order O (100 Mpc/h) [270]. On

those scales much smaller than the Hubble radius, in the sub-horizon regime, CDM particles

can be treated as non-relativistic so that the equations of motion reduce to those of Newtonian

gravity.4 Thus, we can use Newtonian dynamical laws to study LSS formation.

On the other hand, future LSS surveys will probe larger and larger volumes and access

scales comparable to the Hubble horizon. On those ultra-large distance scales, it is important

to take general relativistic effects into account. In general, relativistic corrections to the

Newtonian approximation scale like the ratio of the physical wavenumber k/a and the Hubble

parameter H [63, 179]

Relativistic corrections

Newtonian approximation
∼
(
aH

k

)2

(2.3)

with (aH)/k � 1 on subhorizon scales and (aH)/k > 1 on superhorzion scales (see (1.5)) [27].

All relativistic effects can be interpreted as projection effects. They comprise, for instance,

weak gravitational lensing, redshift-space distortions or gravitational redshift, and have been

treated consistently in [274–279]. On extremely large distance scales, relativistic effects can

3Some of the existing problems in the CDM model may, however, be overcome by considering DM that is not

completely cold [265, 266].
4For a proper justification of the Newtonian treatment starting from the general relativistic equations see

e.g., [92]. A detailed description of gravitational instability in relativistic perturbation theory is given in

[271–273].
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2. Eulerian Dynamics of Gravitational Instability

substantially modify the power spectrum of the number density of galaxies from the usual

Newtonian predictions. However, they are strongly sub-dominant on distance scales of the

order O (100 Mpc/h), where current galaxy surveys are focused on [270].

In this thesis, we investigate LSS formation on scales on which relativistic corrections are

negligible. Thus, we restrict our considerations to the Newtonian description of gravitational

instabilities in what follows.

2.2. Particle dynamics in the expanding Universe

We use the Eulerian framework to describe the dynamics of gravitational instability. This

amounts in studying the dynamics of density and velocity fields in terms of fixed time and

space coordinates, t and r. In contrast to this, there exists the so-called Lagrangian scheme

following the trajectories of particles or fluid elements [91, 103, 104] (see also the discussion

in Section 5.2).

To describe the formation of large-scale structure by the Eulerian dynamics of gravitational

instability, let us model the matter content of the Universe as a sea of identical dust-like

particles of mass m interacting only gravitationally. This means that collisions between them

are rare and the mean free path is large. Moreover, let us assume that the particles move in a

smoothly varying Newtonian gravitational potential Φ induced by the local mass density due

to the particle distribution in the Universe.

In order to study the dynamics of particles in the expanding Universe in terms of the

departure from the homogeneous and isotropic background expansion, it is convenient to use

comoving coordinates x. These are related to the physical coordinates r by the cosmological

scale factor a(τ),

r = a(τ)x . (2.4)

At present time, x and r are equal since a0 = 1. Due to homogeneity and isotropy of the

Universe, the scale factor a(τ) is a universal function of time. Here, we have defined it with

respect to conformal time τ , which is connected to physical time by

dt = a(τ) dτ . (2.5)

In the following, we only use conformal time as our time variable and comoving coordinates

as space variable. All spatial derivatives are taken with respect to x so that ∇ ≡ ∇x.

The equations of motion that we derive in the following are valid in a homogeneous and

isotropic Universe, which evolves according to the Friedmann equations [280, 281]

H2 =
8πG

3
a2ρ̄+

Λ

3
a2 −K ,

∂H
∂τ

= −4πG

3
a2 (ρ̄+ 3p) +

Λ

3
a2 . (2.6)
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2.2. Particle dynamics in the expanding Universe

Here, the quantity H denotes the conformal expansion rate which is related to the Hubble

parameter H as [40]

H(τ) ≡ d ln a(τ)

dτ
= Ha . (2.7)

Besides, ρ̄ and p denote the mean energy density and the pressure, respectively. Note that

in the phase of matter and dark energy domination, relevant to describe large-scale structure

formation, the contribution of radiation to the energy density is negligible so that ρ̄ is equiv-

alent to the mean matter density. Moreover, notice that in the matter-dominated phase, the

pressure p can be neglected as well. Finally, in the Friedmann equations above, G refers to

the gravitational constant, Λ to the cosmological one and K = {−1, 0, 1} to the curvature

parameter representing an ‘open’, a ‘flat’ or a ‘closed’ Universe, respectively.

If we then define the cosmological density parameters

Ωm(τ) ≡ 8πGa2ρ̄

3H2
=

ρ̄

ρc
, ΩΛ(τ) ≡ a2Λ

3H2
, Ωk(τ) ≡ − K

H2
(2.8)

with the critical density ρc(τ), we can rewrite the Friedmann equations as [40]

(Ωtot(τ)− 1)H2(τ) = K ,
∂H
∂τ

=

(
−Ωm(τ)

2
+ ΩΛ(τ)

)
H2 (2.9)

where

Ωtot(τ) ≡ Ωm(τ) + ΩΛ(τ) = 1− Ωk(τ) (2.10)

by neglecting the radiation density as well as the pressure p. In particular, the first Friedmann

equation implies that Ωtot < 1, Ωtot = 1 and Ωtot > 1 for K = {−1, 0, 1}, that is, for an ‘open’,

a ‘flat’ or a ‘closed’ Universe, respectively.

Proceeding from this, let us derive the equations of motion for particles in the expanding

Universe whose evolution follows the Friedmann equations. We first define the proper particle

velocity v ≡ dr/dt in comoving coordinates (and conformal time). Using (2.4) and (2.7), we

see that it splits up into two terms,

v(x, τ) = Hx + u , u ≡ dx

dτ
. (2.11)

The first term represents the contribution from the background expansion, whereas the second

term defines the peculiar velocity u, the motion of the particle relative to an observer comoving

with the background.

Hence, the Lagrangian of a particle with mass m and velocity v moving in a smooth

Newtonian gravitational potential Φ(x, t) reads [92, 280]

L =
1

2
m (Hx + u)2 −mΦ(x, t) . (2.12)
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2. Eulerian Dynamics of Gravitational Instability

By a canonical transformation, preserving the form of the equations of motion, of the form

L → L− dψ/dτ with ψ = mHx2/2, the Lagrangian reduces to

L =
1

2
mu2 −mφ(x, τ) , (2.13)

where we defined the cosmological gravitational potential φ(x, τ) as

φ(x, τ) ≡ 1

2

∂H
∂τ

x2 + Φ(x, τ) . (2.14)

As we derive in the next section, the cosmological gravitation potential is sourced only by

fluctuations around the mean mass density in the Universe and hence describes the deviation

from the Newtonian background potential Φ(x, τ).

Based on Lagrangian mechanics, it follows from (2.11) and (2.13), that the canonical mo-

mentum, defined as p ≡ ∂L/∂ẋ with ẋ = dx/dt ≡ u/a, is given by

p = mau . (2.15)

Consequently, the Newtonian equation of motion, derived from the Euler-Lagrange equations

dpi/dt = ∂L/∂xi, arises in comoving coordinates as

dp

dτ
= −ma∇φ . (2.16)

In general, one derives the time variation of the momentum from the geodesic equation.

However, assuming that the metric perturbations are small and for distance scales much

below the Hubble scale, the previous Newtonian equation holds. A detailed derivation of the

Newtonian limit from general relativity can be found in [92].

2.3. The Vlasov-Poisson equation

In the theory of cosmological structure formation, the distribution of matter is described as

a continuous field. In other words, cosmological perturbations on sufficiently large distance

scales allow for a fluid description. The transition from a microscopic system of N point-like

particles in form of a discrete distribution in phase space, described by the Klimontovich equa-

tion (for a detailed discussion see [211, 212, 282]), to a smoothed coarse-grained system can be

seen as the continuum (or thermodynamical) limit. In this limit, where the discrete character

or particles is lost, one formally takes the limit of an infinite number of particles, N →∞. As a

consequence, the individual masses are negligible, m→ 0, while the total mass density ∝ Nm
is kept constant. In this continuum limit, the Klimontovich equation becomes the so-called

Vlasov equation [283]. Combining the Vlasov with the Poisson equation for the cosmological
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2.3. The Vlasov-Poisson equation

gravitational potential, the Vlasov equation yields the Vlasov-Poisson equation. This con-

stitutes the fundamental equation to describes the dynamics of gravitational instability. All

subsequent calculations are derived from this equation.

Before regarding the Poisson equation, let us derive the Vlasov equation. For this purpose,

we consider the number of particles per unit volume in phase space,

dN = f(x,p, τ) d3x d3p , (2.17)

which defines the phase-space distribution function f(x,p, τ). According to Liouville’s theo-

rem, which is a key theorem in classical statistical and Hamiltonian mechanics, the phase-space

density f is constant along each particle trajectory in phase space. In other words, its total

time derivative vanishes, df/dτ = 0. By using the equations of motion (2.15) and (2.16), this

leads to the expression [40, 284]

df

dτ
=
∂f

∂τ
+

p

ma
· ∇f − am∇φ · ∂f

∂p
= 0 . (2.18)

This equation, corresponding to the collisionless Boltzmann equation, is referred to as Vlasov

equation. It describes the conservation of particle number, i.e., the rate of change in particle

number per unit phase-space volume is equal to the net flux of particles across its surface.

Based on the definition of the particle distribution function in (2.17), the comoving number

density of particles equals n(x, τ) ≡
∫
d3p f(x,p, τ) so that the proper mass density is given

by

ρ(x, τ) ≡ m

a3

∫
d3p f(x,p, τ) . (2.19)

Here, the factor a−3 is the conversion to proper space density (per volume d3r = d3x/a3). The

mass density can be decomposed in a homogeneous and an inhomogeneous part to account

for global and local effects,

ρ(x, τ) ≡ ρ̄(τ) [1 + δ(x, τ)] , (2.20)

where ρ̄(τ) denotes the spatial average of ρ(x, t), i.e., the mean mass density (see (2.6)),

scaling like a−3 for non-relativistic particles during the matter-domination era, and δ(x, τ) is

the dimensionless density contrast.

The mass density ρ(x, τ) is related to the Newtonian gravitational potential Φ(x, t) by the

Poisson equation

∇2Φ(x, τ) = 4πGa2 (ρ+ 3p)− a2Λ , (2.21)

which has been modified compared to the usual Poisson equation by a pressure term and a

term accounting for the presence of a cosmological constant Λ. Note that the pressure term
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2. Eulerian Dynamics of Gravitational Instability

has been added for completeness. Since we are concerned with a pressureless perfect fluid,

the pressure term vanishes in our considerations.

For the cosmological gravitational potential φ(x, τ), defined in (2.14), we obtain, on the

other hand, the following field equation,

∇2φ(x, τ) = 4πGa2 (ρ+ 3p)− a2Λ + 3
∂H
∂τ

= 4πGa2 (ρ− ρ̄)

=
3

2
ΩmH2 δ ,

(2.22)

where we used the second Friedmann equation in (2.6) and the definition of the matter density

parameter Ωm for the second and third equality. From the last equality, we can see that the

gravitational cosmological potential φ is only sourced by density fluctuations δ.

The cosmological potential φ depends through the Poisson equation (2.22) on the density

field ρ, which in turn is the integral of the particle distribution function over momentum

(see (2.19)). Due to this, φ induces a non-linearity in the Vlasov equation (2.18). Thus,

the system of equations (2.18) and (2.22) can be combined to a non-linear partial differential

equation, the so-called Vlasov-Poisson equation.

2.3.1. Velocity moments of the Vlasov-Poisson hierarchy

Solving the Vlasov-Poisson equation analytically is a prohibitive task as it is a non-linear

differential equation with seven variables. Thus, we seek for approximate solutions.

Usually, one is not interested in solving the full phase-space dynamics, but to determine

the evolution of the spatial distribution. For this reason, a convenient way to solve the

Vlasov-Poisson equation is to integrate out the (unknown) momentum dependence by taking

an increasing number of ‘velocity moments’, and then close the infinite hierarchy of evolution

equations in a consistent but approximate way.

From the first three moments of the Vlasov-Poisson equation, we can derive the basic

conservation equations for the description of gravitational instabilities. Let us define the

zeroth, first and second velocity moments as follows.

The zeroth-order velocity moment simply relates the phase-space density f to the proper

mass density field according to the definition (2.17) in the previous section,

ρ(x, τ) ≡ m

a3

∫
d3p f(x,p, τ) . (2.23)

Subsequently, the first- and second-order moments define the peculiar velocity u(x, τ) (see
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2.4. Closing the infinite Vlasov-Poisson hierarchy

also (2.11)),

u(x, τ) ≡ 1∫
d3p f(x,p, τ)

∫
d3p

p

ma
f(x,p, τ) , (2.24)

and the velocity dispersion tensor σij(x, τ),

ui(x, τ)uj(x, τ) + σij(x, τ) =
1∫

d3p f(x,p, τ)

∫
d3p

pi
ma

pj
ma

f(x,p, τ) . (2.25)

The latter is related to the stress-energy tensor by Tij ≡ (1 + δ)σij [209] and describes

isotropic as well as anisotropic velocity dispersion.

The evolution equations for the matter density ρ(x, τ) or the density contrast δ(x, τ), as

well as for the peculiar velocity u(x, τ) and the velocity dispersion tensor σij(x, τ) follow then

from taking moments of the Vlasov equation (2.18). By this procedure, we finally arrive at

the fluid equations for large-scale structure allowing us to study the dynamics of dark matter

fluctuations on large distance scales purely in terms of these three quantities.

2.4. Closing the infinite Vlasov-Poisson hierarchy

2.4.1. Fluid equations

Taking the nth-order moment of the Vlasov equation yields the equation of motion of the

nth-order moment of the particle distribution function f(x,p, τ).

For the zeroth-order moment, the matter density ρ(x, τ), we get the following evolution

equation
∂ρ(x, τ)

∂τ
+ 3H ρ(x, τ) +∇ · {ρ(x, τ)u(x, τ)} = 0 , (2.26)

where we have integrated the Vlasov equation (2.18) over momentum and used the equa-

tions (2.23) and (2.24) defining ρ(x, τ) and u(x, τ). The last term of the Vlasov equation (2.18)

vanishes due to integration by parts, while the Poisson equation is not needed yet.

The equation above is referred to as continuity equation. Since the Vlasov equation describes

particle number conservation in phase-space, its integral over momentum simply leads to

the real space expression. In terms of the matter density it thus imposes conservation of

mass. Note the continuity equation corresponds exactly to the Navier-Stokes equation, for a

pressureless perfect fluid.5

Written in terms of the density contrast, defined in (2.20), and the peculiar velocity, the

continuity equation reads

∂δ(x, τ)

∂τ
+∇ · {[1 + δ(x, τ)]u(x, τ)} = 0 . (2.27)

5The Navier-Stokes equation describes the motion of viscous fluids with pressure. In general, it is not a

conservation equation, but rather describes a dissipative system [285].
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2. Eulerian Dynamics of Gravitational Instability

Thereby, we have used the fact that the mean density scales like ρ̄(τ) ∝ a−3. Notice moreover

that we have integrated out the phase-space information completely as well as eliminated the

particle masses m.

For convenience, it is useful to have quantities with a vanishing statistical average (in

particular for considering correlation functions). By construction of u as the peculiar velocity

field and of the cosmological gravitational potential φ as the source of the deviation from the

background density, these two fields have already zero mean. It is only natural to follow the

relative deviation of the density from the background field, namely the density contrast δ,

instead of the mass density itself. That is why we use u, φ and δ as variables in the equations

that follow.

From the next-order momentum of the Vlasov equation, we obtain the evolution equation

of the peculiar velocity u(x, τ). For this purpose, we take the first moment of (2.18) and

subtract u(x, τ) times the continuity equation (2.27). This gives us the Euler equation,

∂u(x, τ)

∂τ
+H(τ)u(x, τ) + [u(x, τ) · ∇]u(x, τ) = −∇φ(x, τ)− 1

ρ
ei∇j(ρ σij) (2.28)

with unit vector ei, which states conservation of momentum. The first term on the right-hand

side of this equation corresponds to a gravitational force, while the second one is due to a

pressure force which in general can be anisotropic.

Note that the continuity equation (2.27) couples the zeroth-order moment ρ to the first-

order moment u and the Euler equation in turn relates u to the second-order moment σij ,

and so on. By taking successively higher-order moments of the Vlasov equation, one hence

produces an infinite hierarchy of evolution equations describing physics on smaller and smaller

distance scales with increasing order.

2.4.2. Single-flow approximation

The next step to solve these evolution equations is then to close the hierarchy in a consistent

way. The hierarchy can be truncated from the Euler equation (2.28), either if the underlying

microphysics dictates a relation for the velocity dispersion tensor σij (the equation of state of

the cosmological fluid), or if the higher-order moments become negligible.

In standard fluid dynamics [286], for instance, the equation of state is given by

σij = −p δij + η

(
∇iuj +∇jui −

2

3
δij∇ · u

)
+ ζ δij∇ · u (2.29)

with pressure p and viscosity coefficients η and ζ, respectively. The equation of state basically

relies on the assumption that cosmological structure formation is driven by matter with neg-

ligible velocity dispersion or pressure, as for example cold dark matter (CDM). In the context
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2.4. Closing the infinite Vlasov-Poisson hierarchy

Fig. 2.2.: Schematic plot of the one-dimensional phase-space diagram depicting the first shell

crossings and the emergence of multi-flow regions (adapted and reprinted from [100]).

of gravitational instabilities we are interested in, this is indeed the case. In the early phase of

gravitational dynamics, until the formation of the first caustics, the velocity dispersion tensor

is negligible as we discuss next.

From its definition in (2.25), one can deduce that the velocity dispersion tensor σij char-

acterizes the deviation of particle motions from a single coherent flow (single stream), which

is described by the first term in this equation. In the early stages of gravitational instability,

before structures start to collapse and virialize, until the formation of the first caustics, the

velocity dispersion is negligible. Hence, the approximation to set

σij(x, τ) ' 0 (2.30)

holds with good accuracy, since the velocity dispersion is much smaller than the velocity

gradient induced by the density fluctuations. This is the single-flow approximation where

there are no deviations from a coherent fluid low. It simply assumes that all particles at a

given point x move together with the same velocity u(x, τ). This amounts to demanding that

f(x,p, τ) =
a3 ρ(x, τ)

m
δD(p−mau(x, τ)) , (2.31)

where δD(. . .) denotes the three-dimensional Dirac delta distribution. Note that by neglecting

the velocity dispersion σij , the Euler equation (2.28) describes a pressureless perfect fluid,

i.e., a dust universe [282]. Thus, the dynamics of gravitational instability in the single-

flow approximation simply reduce to the dynamics of a pressureless perfect fluid. Although,

the single-flow approximation breaks down on progressively larger distance scales as time

proceeds, it is still sufficient at present time on scales relevant to LSS to use this simple

approximation for investigating a great deal of effects. The breakdown of σij ' 0 implies

the generation of velocity dispersion due to multiple streams. The velocity dispersion is only
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different from zero in points where the trajectories of particles, pulled towards one-another by

gravity, cross each other. This process is known as caustics or shell-crossing (see Figure 2.2).

The name ‘shell-crossing’ originates from the analysis of spherical gravitational collapse where

the crossing of two particles implies entire shells to become congruent at the same time due to

spherical symmetry. During LSS formation, multi-streaming occurs first when large caustics

cross the first singularity, creating a three-flow region where vorticity can be generated (see

Figure 2.2) [287]. After shell-crossing in the multi-flow regions, only very few analytic results

exists and one should rely on N -body simulations.

Throughout this work, we study the Vlasov-Poisson equations in the single-flow approx-

imation describing the dynamics of gravitational instability by a pressureless perfect fluid.

As a next step, we investigate the solutions of the Poisson, continuity and Euler equations,

(2.22), (2.27) and (2.28), respectively, for vanishing velocity dispersion σij ' 0 in a systematic

way. These equations build the basis for our description of large-scale structure formation.
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In this chapter, our intention is to systematically investigate the analytic solutions for the

fluid equations of large-scale structure, namely the Poisson, continuity and Euler equation,

in the single-flow approximation. To solve these coupled non-linear differential equations,

one has to resort to perturbative methods. Here, we present the basic method within the

Eulerian framework of cosmological perturbation theory, the so-called standard perturbation

theory (SPT) approach [40, 92–102].

Following [40, 100], we discuss the concept of SPT and its fundamental assumptions that

lead to perturbative solutions of the non-linear fluid equations. We derive these solutions by

proceeding successively from linear order to non-linear higher orders in perturbation theory.

As a starting point, let us explore the linear solutions to the evolution equations of dark

matter clustering.

3.1. Linear perturbation theory

If we consider sufficiently large distance scales, the Universe becomes smooth. Then, the

fluctuation fields u(x, τ), φ(x, τ) and δ(x, τ) in (2.11), (2.14) and (2.20) can be assumed to
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3. Standard Cosmological Perturbation Theory

be small compared to the homogeneous contributions from the Hubble flow and the mean

density ρ̄(τ), respectively. Consequently, we can linearize the single-flow continuity and Euler

equations, (2.27) and (2.28), to study the evolution of gravitational instability in the linear

regime.

One linearizes the evolution equations (2.27) and (2.28) with respect to δ(x, τ) and u(x, τ)

by neglecting the terms ∇ · [δ(x, τ)u(x, τ)] and [u(x, τ) · ∇]u(x, τ) in the continuity and the

Euler equation, respectively. The linearized system of equations then reads

∂δ(x, τ)

∂τ
+∇ · u(x, τ) = 0 , (3.1)

∂u(x, τ)

∂τ
+H(τ)u(x, τ) = −∇φ(x, τ) . (3.2)

These equations are straightforward to solve. As follows from the Helmholtz decomposi-

tion [288], also known as the fundamental theorem of vector calculus, the peculiar veloc-

ity u(x, τ), as any vector field, can be completely (up to a constant) described by its divergence

and its vorticity, denoted here as

θ(x, τ) ≡ ∇ · u(x, τ) , w(x, τ) ≡ ∇× u(x, τ) . (3.3)

By taking the curl of the linearized equation (3.2), its right-hand side vanishes. Thus, we

directly obtain the linearized evolution equation for the vorticity,

∂w(x, τ)

∂τ
+H(τ)w(x, τ) = 0 . (3.4)

From the solution of this equation, scaling like w(τ) ∝ a−1, we deduce that in the linear

regime, any initial vorticity decays in time due to the expansion of the Universe.

Thus, we can neglect the contribution of the vorticity in the linearized evolution equa-

tions (3.1) and (3.2). As a consequence, this allows us to express them in terms of two scalar

quantities, namely the density contrast δ(x, τ) and the velocity divergence θ(x, τ), as defined

in (3.3). After taking the divergence of (3.2) and making use of the Poisson equation (2.22)

and the definition of the velocity divergence in (3.3), we obtain the following two evolution

equations for δ and θ,

∂δ(x, τ)

∂τ
+ θ(x, τ) = 0 , (3.5)

∂θ(x, τ)

∂τ
+H(τ) θ(x, τ) +

3

2
Ωm(τ)H2(τ)δ(x, τ) = 0 . (3.6)

In order to solve this system of differential equations, we use the first equation to express

the velocity divergence as a time derivative of the density contrast and then insert it into
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the second equation. Doing so, we eliminate the velocity divergence and get a second-order

differential equation for the density contrast,

∂2δ(x, τ)

∂τ2
+H(τ)

∂δ(x, τ)

∂τ
− 3

2
Ωm(τ)H2(τ)δ(x, τ) = 0 . (3.7)

Notice that no operator acting on the spatial coordinates, but only time derivatives enter in

this equation. This is a characteristic feature of the growth of instabilities in a pressureless fluid

which implies in particular that the linear growth rate of the fluctuations does not depend on

the scale. In other words, we can rewrite the density contrast as a product of a time-dependent

linear growth factor D1(τ) and a space-dependent initial density contrast δ0(x) ≡ δ(x, τ = 0)

so that δ(x, τ) = D1(τ) δ0(x). Inserting this relation in (3.7) yields a differential equation

for the linear growth factor D1(τ)

∂2D1(τ)

∂τ2
+H(τ)

∂D1(τ)

∂τ
+

3

2
Ωm(τ)H2(τ)D1(τ) = 0 . (3.8)

As it constitutes a second-order differential equation, it has two independent specific solutions,

one that is growing with time, denoted by D+
1 (τ), and a second one decaying in time, referred

to as D−1 (τ). The explicit solution for the growing mode D+
1 (τ) is given by an integral

representation as a function of Ωm and the conformal expansion rate H [289],

D+
1 (τ) =

5

2
ΩmH2

0

H
a

a∫
0

da′

[H(a′)]3
, (3.9)

where H0 ≡ H(a0) denotes the conformal expansion rate today and where we normalized the

scale factor such that a0 ≡ 1 at present time. For the decaying mode, on the other hand, a

simple analytic solution exists (see [289]),

D−1 (τ) =
H

H0
=

1

a

H
H0

. (3.10)

Consequently, the generic solution for the density contrast is given by the linear combination

of the growing and the decaying mode solution,

δL(x, τ) = D+
1 (τ) δ+

0 (x) +D−1 (τ) δ−0 (x) , (3.11)

where δ+
0 (x) and δ−0 (x) are two functions of space describing the initial field configuration.

Inserting this solution in the linearized continuity equation (3.5) allows in turn to solve this

equation for the velocity divergence θ. The resulting relation,

θL(x, τ) = −H(τ)
[
f(τ) δ+

0 (x) + g(τ) δ−0 (x)
]
, (3.12)
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can be expressed in terms of the growth rates

f(τ) ≡ 1

H(τ)

d lnD+
1 (τ)

dτ
=
d lnD+

1

d ln a
, g(τ) =

1

H(τ)

d lnD−1 (τ)

dτ
. (3.13)

The simple solution for the decaying mode D−1 (τ) even allows to derive a generally valid

explicit solution for the growth rate g(τ). By inserting the decaying-mode solution (3.10) in

the definition of the growth rate (3.13) and using the second Friedmann equation (2.9), we

deduce

g(τ) =
1

H2

dH
dτ
− 1 = ΩΛ −

Ωm

2
− 1 . (3.14)

Note that this result is valid for arbitrary Ωm and ΩΛ.

The specific solutions for the growth factors D±1 (τ) and subsequently for the growth func-

tions f(τ) and g(τ) depend on the background cosmology through the density parameters Ωm

and ΩΛ, the scale factor a and hence the conformal expansion rate H(a). The form of H(a) is

explicitly determined by the first Friedmann equation (2.9). Written in terms of the cosmo-

logical parameters at present time, which we denote by the subscript ‘0’, this equation reads

H(a) = H0

√
Ωm,0 a−1 + (1− Ωm,0 − ΩΛ,0) + ΩΛ,0 a2 , (3.15)

where we used the fact that the mean matter density scales like ρ̄(τ) ∝ a−3.

In the following, we discuss the form of the growth factors for those cosmological models

which are relevant for our further considerations. A detailed overview of the specific solutions

of D±1 (τ) in different cosmological models can be found in [40, 92].

3.1.1. Linear solutions for an Einstein–de Sitter cosmology

Let us first consider the case of an Einstein–de Sitter (EdS) cosmological model. An EdS

cosmology describes a flat (K = 0) universe containing matter only (Ωm = 1, ΩΛ = 0). It can

be considered as a good description of our Universe after matter-radiation equality with the

largest deviations arising at late times when dark energy starts to dominate. By solving the

Friedmann equations (2.9) for an EdS cosmology, the scale factor a(τ) in conformal time and

the conformal expansion rate H(τ), defined in (2.7), can be determined in this case as1

a(τ) =

(
H0

2
τ

)2

∝ τ2 , H = H0 a
−1/2 =

2

τ
. (3.16)

Note that at present time, H0 ≡ H0 since a0 ≡ 1.

1 In comparison, for an EdS cosmology, the scale factor a(t) and the Hubble parameter H(t) with respect to

physical time t, related to conformal time by (2.5), read a(t) =
(

3
2
H0 t

)2/3 ∝ t2/3 and H = H0 a
−3/2 = 2

3 t
.
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3.1. Linear perturbation theory

The equations (3.9), (3.10), (3.13) and (7.40) then yield the following simple solutions for

the growth factors and the growth rates in the EdS case,

D+
1 (τ) = a , D−1 (τ) = a−3/2 , f(τ) = 1 , g(τ) = −3

2
. (3.17)

Hence, for an EdS background cosmology, the growth rates are constant. Moreover, the

growing mode D+
1 (τ) is equal to the scale factor a so that the density contrast (3.11) grows

as a as well. This gives the time scale of LSS formation and allows to compare the amplitude

of the metric perturbations at recombination to the local density perturbations. Moreover, the

scaling δL(x, τ) ∝ a in the growing mode implies that the cosmological gravitational potential

in the Poisson equation (2.22) for the corresponding mode is constant in time, at least for an

EdS universe. This fact becomes important later on and we discuss its consequences in detail

in Section 6.3.

In contrast, the decaying mode D−1 (τ) scales like a−3/2 so that all density perturbations

which have initially been in the decaying mode disappear fast and become subdominant

after a short period of time. Hence, for an EdS cosmology, we can neglect the decaying mode

solution and consider only the growing-mode solution for the density contrast and the velocity

divergence.

3.1.2. Linear solutions for a ΛCDM cosmology

As a second example, we discuss the observationally favored case of a ΛCDM cosmological

model, corresponding to a (not necessarily flat) universe with (dark) matter (Ωm 6= 0), and

dark energy in form of a cosmological constant Λ, such that ΩΛ 6= 0. For a ΛCDM background

cosmology, the linear growth factor D+
1 (τ) cannot be determined exactly since solving the

integral (3.9) by use of the general expression for the conformal expansion rate H(a) in (3.15)

is not possible by analytic means. However, it is well approximated by the expression [290, 291]

D+
1 (τ) '

(
5

2

)
aΩm,0

Ω
4/7
m,0 − ΩΛ, + (1 + Ωm,0/2)(1 + ΩΛ,0/70)

, (3.18)

so that the growth rate f(τ) becomes approximately [281]

f(τ) '
[
1− (Ωm,0 + ΩΛ,0 − 1) a+ ΩΛ,0 a

3
]−4/7

. (3.19)

To calculate the decaying mode D−1 (τ) and the corresponding growth rate g(τ) in the case

of a ΛCDM universe, no approximation formulae are necessary since one just uses the simple

analytic solutions (3.10) with (3.15) and (3.14), respectively.
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3. Standard Cosmological Perturbation Theory

3.2. Non-linear perturbation theory

Proceeding from the linear approximation of the evolution equations for the density and

velocity fields, our next step consists in studying the full representation of the evolution

equations including the non-linear terms neglected so far.

In order to do so, we make the self-consistent approximation to characterize the velocity

field u(x, τ) by its divergence θ(x, τ) and neglect its vorticity component w(x, τ) (see (3.3)).

This approximation can be justified as follows. By taking the curl of the Euler equation

in (2.28), we obtain the non-linear evolution equation for the vorticity

∂w(x, τ)

∂τ
+H(τ)w(x, τ)−∇× [u(x, τ)×w(x, τ)] = ∇×

(
1

ρ
ei∇j σij

)
, (3.20)

where we have reintroduced the velocity dispersion tensor σij for the moment. The equation

above reveals that in the single-flow approximation and if the initial vorticity vanishes, the

vorticity remains zero at all times. On the other hand, if the initial vorticity is not equal to

zero, it decays at linear order due to the expansion of the Universe, as we deduced from (3.4).

However, it can be amplified in the non-linear regime through the third term on the left-hand

side in (3.20).

In our following considerations, we assume that the initial vorticity vanishes, i.e., that the

initial velocity field is irrotational. Then, the single-flow approximation σij ' 0 together with

the vorticity evolution equation (3.20) ensures that the vorticity remains zero throughout the

evolution. Note, however, that this assumption is only self-consistent as long as the single-flow

approximation is valid. In particular, on small enough distance scales (in the strongly non-

linear regime), multi-streaming and shocks can generate an anisotropic velocity dispersion

and in turn induce vorticity (see e.g., [129, 209, 287, 292]). We take this point up again in

Section 5.1.

Assuming the initial velocity field to be irrotational allows us in consequence to describe

the linear as well as non-linear evolution of gravitational instability purely in terms of the

density contrast δ(x, τ) and the velocity divergence θ(x, τ).

3.2.1. Non-linear evolution equations in Fourier space

In order to compute the non-linear corrections to the solutions of the linear evolution equa-

tions, let us study the two non-linear evolution equations in terms of the density contrast δ(x, τ)

and the velocity divergence θ(x, τ). While the first one is just given by the continuity equa-

tion (2.27), one obtains the second one by taking the divergence of the Euler equation (2.28)
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3.2. Non-linear perturbation theory

and inserting the Poisson equation (2.22) afterwards,

∂δ(x, τ)

∂τ
+ θ(x, τ) =−∇ · [δ(x, τ)u(x, τ)] ,

∂θ(x, τ)

∂τ
+H(τ)θ(x, τ) +

3

2
Ωm(τ)H(τ)2 δ(x, τ) =−∇ · {[u(x, τ) · ∇]u(x, τ)} .

(3.21)

The non-linear contributions to the evolution equations are given by the terms on the right-

hand side of the previous equations (see the linear equations (3.5) and (3.6)).

For studying the non-linearities in the evolution equations, it is convenient to work in Fourier

space. The reason for this is that on large distance scales in the linear regime, different Fourier

modes evolve independently and thus conserve the primordial statistics, whereas on small

distance scales non-linear corrections induce a coupling of different Fourier modes. Hence,

our next step consists in performing a Fourier transform of the non-linear evolution equa-

tions (3.21). Our conventions for the Fourier transform are given in (1.6). By using the relation

between the velocity and the velocity divergence in Fourier space, ũ(k, τ) = −ik θ̃(k, τ)/k2,

we obtain the Fourier transform of the non-linear contributions on the right-hand side of the

equations (3.21) as

∇ · [δ(x, τ)u(x, τ)] =

∫
d3q d3p ei(q+p)·x α(q,p) · θ̃(q, τ)δ̃(p, τ) ,

∇ · {[u(x, τ) · ∇]u(x, τ)} =

∫
d3q d3p ei(q+p)·x β(q,p) · θ̃(q, τ) θ̃(p, τ) ,

(3.22)

where the two time-independent functions

α(q,p) ≡ (q + p) · q
q2

, β(q,p) ≡ (q + p)2 q · p
2q2p2

(3.23)

encode the non-linearity of the evolution equations by coupling the different Fourier modes q

and p together. This mode-coupling in Fourier space is characteristic for non-linear theories.

Subsequently, we perform the Fourier transform of the non-linear evolution equations (3.21),

insert the relations (3.22) on the right-hand side and introduce a three-dimensional Dirac

delta distribution δD(. . .),

∂δ̃(k, τ)

∂τ
+ θ̃(k, τ) = −

∫
d3q d3p δD(k − q − p)α(q,p) · θ̃(q, τ)δ̃(p, τ) , (3.24)

∂θ̃(k, τ)

∂τ
+H(τ)θ̃(k, τ) +

3

2
ΩmH2(τ)δ̃(k, τ)

= −
∫
d3q d3p δD(k − q − p)β(q,p) · θ̃(q, τ)θ̃(p, τ) .

(3.25)

Notice that while the density contrast δ(x, τ) and the velocity divergence θ(x, τ) are real

variables, their Fourier transforms δ̃(k, τ) and θ̃(k, τ) are complex [40].
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3. Standard Cosmological Perturbation Theory

The previous equations show that the evolution of δ̃(k, τ) and θ̃(k, τ) is determined by

the mode coupling of these fields for all pairs of wavevectors q and p whose sum is k, as is

required by translation invariance in a spatially homogeneous Universe. Note that due to the

definition of the functions α and β in (3.23), the mode-coupling integrals vanish for k = 0 so

that the linear theory is always valid for momenta close to k = 0, even at late times.

In what follows, we omit the tilde symbol for the Fourier transform for better readability.

3.2.2. Standard formulation of perturbation theory

At this stage, we are able to investigate the solutions to the non-linear evolution equations in

Fourier space, (3.24) and (3.25). Due to the non-linearity, these equations cannot be solved

by analytic means so that we have to proceed with perturbative methods in the following. In

standard perturbation theory [40, 92–102], one assumes that the amplitude of the density and

velocity perturbations is small. In this case, it is possible to expand the density and velocity

fields about their linear solutions [40]. As we derived in Section 3.1, the linear solutions for the

density contrast and the velocity divergence correspond to simple time-dependent scalings of

the initial density contrast (see (3.11) and (3.12)). If we only take the growing-mode solution

D1(τ) ≡ D+
1 (τ) , δ+

0 (k) ≡ δ0(k) (3.26)

into account (the decaying mode solution becomes negligible after a short period of time), the

linear solutions for the density contrast and the velocity divergence read

δL(k, τ) = D1(τ) δ0(k) , θL(k, τ) = −H(τ)f(τ)D1(τ) δ0(k) . (3.27)

Consequently, the characteristic assumption of SPT implies that one can perform a series

expansion of the density contrast δ(k, τ) and the velocity divergence θ(k, τ),

δ(k, τ) =

∞∑
n=1

δ(n)(k, τ) , θ(k, τ) =

∞∑
n=1

θ(n)(k, τ) , (3.28)

in the nth-order perturbative contributions δ(n)(k, τ) and θ(n)(k, τ) scaling like the nth power

of the initial density contrast δ0(k), but evolving differently in time. Thereby, δ(1)(k, τ) ≡
δL(k, τ) and θ(1)(k, τ) ≡ θL(k, τ) correspond to the linear solutions in (3.27).

3.2.3. Non-linear solutions for an Einstein–de Sitter cosmology

As a first example, let us discuss the perturbative solutions to the non-linear evolution equa-

tions in the case of an EdS Universe. As we derived in Section 3.1, the linear growing mode in

38



3.2. Non-linear perturbation theory

EdS just equals the scale factor of the Universe, D1(τ) = a(τ), so that the linear growing-mode

solutions for the density contrast and the velocity divergence read (see (3.17)),

δL(k, τ) = a(τ) δ0(k) , θL(k, τ) = −H(τ) a(τ) δ0(k) . (3.29)

Based on the functional form of these equations, we make the following ansatz for the perturba-

tive expansion in (3.28) to solve the non-linear evolution equations for EdS cosmology [96–98],

δ(k, τ) =

∞∑
n=1

an(τ)δn(k) , θ(k, τ) = −H(τ)

∞∑
n=1

an(τ)θn(k) , (3.30)

where we only take the growing-mode solutions into account (see (3.26)). This perturbative

expansion corresponds to an expansion in terms of the linear solution ∝ a(τ) with time-

independent coefficients δn(k) and θn(k), respectively. Due to this, the perturbative solu-

tions to the non-linear evolution equations for an EdS cosmology are separable in their time

and momentum dependence. We can make use of this fact to determine the form of the

time-independent coefficients δn(k) and θn(k). For this purpose, we insert the perturbative

expansion (3.30) into the non-linear evolution equations (3.24) and (3.25). Then, we use

the relation (3.16) for the conformal expansion rate in an EdS cosmology, H = H0 a
−1/2, to

perform the derivatives with respect to conformal time. This allows us to scale out overall

factors of H and H2 in the evolution equations (3.24) and (3.25), respectively. Consequently,

these take a homogeneous form in a(τ) so that we obtain the governing equations for the

coefficients δn(k) and θn(k). These can be formally solved in terms of the initial density

contrast δ0(k) and constitute mode-coupling integrals over n powers of the initial density

contrast,

δn(k) =

∫
d3q1 . . .

∫
d3qn δ

D(k − q1...n)Fn(q1, . . . , qn) · δ0(q1) . . . δ0(qn) ,

θn(k) =

∫
d3q1 . . .

∫
d3qn δ

D(k − q1...n)Gn(q1, . . . , qn) · δ0(q1) . . . δ0(qn)

(3.31)

with q1...n ≡ q1+. . .+qn. These solution contain the kernels Fn(q1, . . . , qn) andGn(q1, . . . , qn)

which are dimensionless, scalar functions of the wave vectors q1, . . . , qn. They are constructed

recursively from the fundamental mode-coupling functions α(q,p) and β(q,p), as we discuss

now.

Since, for n = 1, the mode-coupling integrals have to reproduce the linear solution (3.29)

from the perturbative expansion (3.30), i.e., δ1(k) = θ1(k) = δ0(k), the first-order kernels

simply equal

F1(q1) = G1(q1) ≡ 1 . (3.32)
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3. Standard Cosmological Perturbation Theory

This means that at very early times, where the scale factor a(τ) was small and the linear

contribution dominates the perturbative expansion (3.30), δ0(k) completely characterizes the

linear fluctuations.

For the higher-order kernels n ≥ 2, one can derive recursion relations by using combina-

torics [96, 98],

Fn(q1, . . . , qn) =
n−1∑
m=1

Gm(q1, . . . , qm)

(2n+ 3)(n− 1)

[
(2n+ 1)α(k1,k2)Fn−m(qm+1, . . . , qn)

+ 2β(k1,k2)Gn−m(qm+1, . . . , qn)
]
,

(3.33)

Gn(q1, . . . , qn) =
n−1∑
m=1

Gm(q1, . . . , qm)

(2n+ 3)(n− 1)

[
3α(k1,k2)Fn−m(qm+1, . . . , qn)

+ 2nβ(k1,k2)Gn−m(qm+1, . . . , qn)
] (3.34)

with

k1 ≡
m∑
i=1

qi , k2 ≡
n∑

i=m+1

qi . (3.35)

Note that momentum conservation holds for the different modes q1, . . . , qn contributing to

the kernels Fn and Gn, enforced by the Dirac delta distribution in the mode-coupling in-

tegrals (3.31), such that k = k1 + k2 = q1 + . . . + qn . The explicit expressions for the

kernels up to order n = 4 can be found in [96]. In order to calculate correlation functions

of the density contrast, such as the power spectrum, later on, it is easier to symmetrize the

kernels Fn and Gn with respect to their momenta q1, . . . , qn. We obtain the symmetrized

kernels, denoted by F sn and Gsn, by performing the sum over Fn and Gn with all possible n!

permutations of their n momenta and diving by n! afterwards,

F
s
n (q1, . . . , qn) =

1

n!

∑
π

Fn(qπ(1), . . . , qπ(n)) ,

G
s
n(q1, . . . , qn) =

1

n!

∑
π

Gn(qπ(1), . . . , qπ(n)) ,
(3.36)

where π denotes the permutations of the set {1, . . . , n}. Note that one can use the sym-

metrized kernels F sn and Gsn instead of Fn and Gn in the mode-coupling integrals (3.31)

without changing the result since their arguments are dummy variables of integration. Due

to their symmetry properties, one usually uses the kernels F sn and Gsn for calculations of

large-scale structure observables (see 4.4).

As an example, the explicit symmetrized expressions for the second-order kernels are com-

puted by inserting the first-order kernels (3.32) and the definitions of the mode mode-coupling
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3.2. Non-linear perturbation theory

functions α and β (see (3.23)) in the recursion relations (3.33) and (3.34) and by symmetriz-

ing them according to (3.36) afterwards. The resulting equations for the symmetrized kernels

have a simple and intuitive form,

F
s
2 (q1, q2) =

5

7
+

1

2

(
q1 · q2

q2
1

+
q1 · q2

q2
2

)
+

2

7

(q1 · q2)2

q2
1q

2
2

,

G
s
2(q1, q2) =

3

7
+

1

2

(
q1 · q2

q2
1

+
q1 · q2

q2
2

)
+

4

7

(q1 · q2)2

q2
1q

2
2

.

(3.37)

From this we can see that the mode-coupling to second-order reaches its maximum if the

momenta q1 and q2 are aligned, whereas the kernels vanish in the case where the momenta

are anti-parallel.

In general, the symmetrized kernels F sn and Gsn have the following characteristic proper-

ties [96, 293, 294]. First, if the overall momentum k = q1 + . . .+qn is small, but the individual

momenta qi with i ∈ {1, . . . , n} are not, the symmetrized kernel grows as the second power

of the overall momentum k,

F
s
n (q1, . . . , qn)k→0 ∝ k2 . (3.38)

Second, if, in contrast, the overall momentum k stays fixed, but one argument of F sn , which

we call p, gets large, the symmetrized kernels scale as the inverse square of this momentum,

F
s
n (q1, . . . , qn−2,p,−p)p�qi ∝

k2

p2
. (3.39)

This behavior is equivalent for Gsn. Furthermore, if one of the arguments qi of the symmetrized

kernels F sn or Gsn goes to zero, one finds an infrared divergence ∝ qi/q
2
i , originating from the

infrared behavior of the mode-coupling functions α(q,p) and β(q,p). However, if the partial

sum of several momenta goes to zero, no infrared divergences occur. Finally, the kernels

are F sn and Gsn are symmetric under qi ↔ qj with i, j ∈ {1, . . . , n} so that

F
s
n (. . . , qi, . . . , qj , . . .) = F

s
n (. . . , qj , . . . , qi, . . .) , (3.40)

which is equivalently valid for Gsn. This property often allows to reduce analytic expressions

containing several kernels of different momentum structure to simpler relations. This be-

comes in particular important when calculating large-scale structure observables, as we show

explicitly in Section 4.4.

3.2.4. Approximate non-linear solutions for arbitrary cosmologies

In general, for cosmological models other than EdS, the perturbative expansion is more com-

plicated since the solutions at each order are functions whose dependence on conformal time τ
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3. Standard Cosmological Perturbation Theory

and momentum k is not separable and thus cannot be directly integrated [107, 295–297]. Fur-

thermore, the growing-mode solutions at order n are not proportional to [D1(τ)]n or an(τ),

respectively, as in the case of an EdS cosmology (see (3.30)). There exist no recursion relations

for the perturbative kernels as (3.33) and (3.34) for arbitrary Friedmann-Robertson-Walker

(FRW) cosmological models with Ωm 6= 1 and/or ΩΛ 6= 0. However, once the growth factors

have been scaled out, one finds that the perturbative solutions only depend extremely weak

on the cosmological parameters Ωm and ΩΛ [282, 295, 296]. Due to this very weak depen-

dence it is possible to apply a simple approximation to the non-linear evolution equations for

general Ωm and Λ which leads to separable solutions at each order in perturbation theory and

yields the same recursion relation as for an EdS Universe [298]. Hence, the dependence of the

perturbative solutions on the cosmological parameters Ωm and ΩΛ is completely encoded in

the linear growth factor D1(τ). Let us now consider this approximation in detail.

Our aim is to solve the non-linear evolution equations (3.24) and (3.25) in Fourier space

approximately for arbitrary cosmological models by imposing a perturbative expansion with

a separable time and momentum dependence. Since the growing-mode solutions of the linear

evolution equations (3.8) are in general of the form (3.27), our ansatz for the corresponding

separable perturbative expansion reads [298]

δ(k, τ) =

∞∑
n=1

Dn(τ)δn(k) , θ(k, τ) = −H(τ)f(τ)

∞∑
n=1

En(τ)θn(k) . (3.41)

This is a generalization of the perturbative expansions (3.30) in an EdS cosmology where we

have Dn(τ) = En(τ) = [D1(τ)]n with D1(τ) = a(τ) and f(τ) = 1.

If we insert the perturbative expansions (3.41) into the non-linear evolution equations (3.24)

and (3.25), we can use the definition of the linear growth rate f(τ) as well as the differen-

tial equation (3.8) for the linear growth factor D1(τ), to replace the time derivative by a

derivative with respect to D1. This allows to scale out an overall factor (Hf) in (3.24) and

a factor − (Hf)2 in (3.25). The resulting equations for the nth order of the perturbative

expansion then read

∂Dn(τ)

∂ lnD1
δn(k)− En(τ)θn(k)

=

∫
d3q d3p δD(k − q − p)α(q,p) ·

n−1∑
m=1

Em(τ)Dn−m(τ) θm(q)δn−m(p) ,

(3.42)

∂En(τ)

∂ lnD1
θn(k) +

(3

2

Ωm

f2
− 1
)
En(τ)θn(k)− 3

2

Ωm

f2
Dn(τ)δn(k)

=

∫
d3q d3p δD(k − q − p)β(q,p) ·

n−1∑
m=1

Em(τ)En−m(τ) θm(q)θn−m(p) .

(3.43)
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The time and momentum dependence of this system of evolution equations becomes separable

if we set

Dn(τ) = En(τ) = [D1(τ)]n , (3.44)

f(τ) = Ω1/2
m (3.45)

The latter condition, which has been first noted in the context of second-order perturbation

theory in [299] and was generalized in [298], leads indeed to separable solutions at any order

in perturbation theory. Furthermore, after scaling out an overall factor [D1(τ)]n, the purely

momentum-dependent evolution equations arising from (3.42) and (3.43) reduce to the same

equations as in the EdS case with Ωm = 1 and ΩΛ = 0. Consequently, their formal solution is

given by the mode-coupling integrals (3.31) and the corresponding recursion relations (3.32)

and (3.33).

This behavior makes the solution of the non-linear evolution equations for arbitrary cos-

mologies very convenient. Actually, it turns out that (3.45) is a highly accurate approxima-

tion to the exact solutions of the non-linear evolution equations for arbitrary cosmologies.

For instance, the precise solution for the second-order growth factor in cosmological models

with ΩΛ = 0 is given by D2(τ)/D1(τ)2 = 1+3/17
(
Ω
−2/63
m −1

)
and hence extremely insensitive

to Ωm [40].

3.3. Diagrammatic formulation of perturbation theory

In the standard formulation of perturbation theory that we discussed in the previous Sec-

tion 3.2, one describes the non-linear dynamics as a collection of linear waves which interact

through the mode-coupling functions α and β. Thus, even if one chooses growing-mode initial

conditions, after scattering due to non-linear interactions, the waves do not remain purely

in the growing mode but sub-dominant time dependencies arise. In the standard treatment

of perturbation theory, these are neglected and only the fastest growing mode, proportional

to [D1(τ)]n at the perturbative order n is taken into account. In this section, we introduce

the diagrammatic formulation of standard perturbation theory which generalizes the results

discussed in Section 3.2 by including the full time dependence of the non-linear solutions at

every order in perturbation theory [236, 300]. This formulation has the advantage that it

allows to write the non-linear evolution equations in a more compact form and that it allows

for an interpretation of the non-linear solutions in terms of diagrams.
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3.3.1. Fluid equations in a compact notation

Our aim is to express the non-linear evolution equations in Fourier space, (3.24) and (3.25),

in a compact, more symmetric form [40, 100, 142, 143, 236]. For this purpose, we replace

the time derivative in the non-linear evolution equations by a logarithmic derivative with

respect to the linear growth factor D1(τ). In order to do so, we follow the same procedure

as for deriving the equations (3.42) and (3.43), but do not perform a perturbative expansion

yet. Then, the non-linear evolution equations (3.24) and (3.25) can be recasted as follows

(see (3.42)-(3.43)),

∂δ(k, τ)

∂ lnD1
+ Θ(k, τ) =

∫
d3q d3p δD(k − q − p)α(q,p) ·Θ(q, τ) δ(p, τ) , (3.46)

∂Θ(k, τ)

∂ lnD1
+
(3

2

Ωm

f2
− 1
)

Θ(k, τ)− 3

2

Ωm

f2
δ(k, τ)

=

∫
d3q d3p δD(k − q − p)β(q,p) ·Θ(q, τ) Θ(p, τ) ,

(3.47)

where we have defined the quantity

Θ(k, η) ≡ −θ(k, η)

Hf . (3.48)

Note that this equation is valid for arbitrary cosmological models since we have not specified

the background evolution here.

For rewriting these equations in a compact form (see [236, 300]), we first replace the con-

formal time τ by introducing a new time variable η, which we define as the logarithm of the

linear growth factor D1(τ),

η ≡ lnD1(τ) . (3.49)

In terms of this new time variable, the growth rate f then reads (see (3.13))

f(η) ≡ 1

H
dη

dτ
=

dη

d ln a
. (3.50)

As a second step, we write the density contrast δ(k, η) and the velocity divergence θ(k, η),

contained in the definition of Θ(k, η) in (3.48), as a doublet ψa(k, η) with index a ∈ {1, 2},

ψa(k, η) ≡
(

δ(k, η)

Θ(k, η)

)
. (3.51)

Next, we encode the dependence of the non-linear equations (3.46) and (3.47) on the cosmo-

logical model, parametrized by the linear growth rate f(η) and the matter density parame-

ter Ωm(η), in a matrix [100]

Ωab(η) =

(
0 −1

−3
2

Ωm
f2

3
2

Ωm
f2 − 1

)
. (3.52)
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3.3. Diagrammatic formulation of perturbation theory

Note that the generalized, most generic form of this matrix [156] involves as well a momentum

dependence, Ωab(k, η).2 However, since our following considerations merely comprise cosmo-

logical models where the background-encoding matrix is momentum independent and thus of

the form (3.52), we omit the momentum dependence of the latter henceforth.

Proceeding from this, we finally summarize the non-linear terms on the right-hand side of the

equations (3.46) and (3.47), characterized by the mode-coupling functions α(q,p) and β(q,p)

(see (3.23)), by introducing a vertex function γabc(k, q,p) with a, b, c ∈ {1, 2}. The only

independent, non-vanishing elements of γabc are products of the Dirac delta distribution and

the mode-coupling functions α and β,

γ121(k, q,p) = γ112(k,p, q) =
1

2
δD(k − q − p) · α(q,p) ,

γ222(k, q,p) = δD(k − q − p) · β(q,p) .
(3.53)

All other elements of the vertex function γabc are equal to zero. Furthermore, it is symmetric

in the sense that γabc(k, q,p) = γacb(k,p, q). Note that γabc does not depend on time, but

only on momentum and encodes all non-linear couplings of the system of evolution equations.

At this point, we can rewrite the non-linear evolution equations (3.46) and (3.47) as compact

equations in matrix form. For this, we use the definitions of the doublet ψa(k, η), the ma-

trix Ωab(η) and the vertex functions γabc(k, q,p) in (3.51), (3.52) and (3.53), to combine (3.46)

and (3.47) into a compact expression for non-linear fluid equations [236, 300],

∂ηψa(k, η) + Ωab(η)ψb(k, η) = γabc(k, q,p)ψb(q, η)ψc(p, η) . (3.54)

Here and henceforth, we use the convention to sum repeated indices implicitly and integrate

over internal momenta whenever the vertex function γabc(k, q,p) appears.

3.3.2. Linear propagator

For solving the non-linear fluid equations (3.54), the basic assumption in the framework of SPT

is that the amplitude of the perturbations ψa is small (see Section 3.2.2). As a consequence,

one can solve the fluid equations perturbatively by treating the non-linear contribution on the

right-hand side of (3.54) as a perturbation to the linearized equations,

∂ηψ
L
a (k, η) + Ωab(η) ψLb (k, η) = 0 , (3.55)

where the index L indicates the linear approximation. The formal solution of the linearized

fluid equations is given in terms of a Green’s function gab(η, η0) and the initial conditions

2The momentum dependence of the background-encoding matrix Ωab(k, η) has to be taken into account

to treat, e.g., scalar-tensor modifications of gravity or cosmological models containing massive neutrinos

(see [301–303] as well as Section 5.5).
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3. Standard Cosmological Perturbation Theory

ψa(k, η0) [101]. It reads

ψLa (k, η) = exp

[∫ η

η0

dη′ Ωab(η
′)
]

ΘH(η − η0)ψb(k, η0) ≡ gab(η, η0)ψb(k, η0) . (3.56)

Here, we denoted the Heaviside step function by ΘH(η) to avoid confusion with the velocity

divergence field Θ(k, η), as defined in (3.48). Note that if the cosmology-encoding matrix Ωab is

momentum dependent, as it is the case in its most general form, the Green’s function involves

a momentum dependence as well, such that gab(k, η, η0). The explicit form of the momentum-

dependent linear propagator for generic cosmological models is given in the appendix of [156].

If the matrix Ωab is independent of k and η and thus constant, the Green’s function depends

on the difference η − η0 only. This is for instance the case for an EdS cosmology, as we show

explicitly in the next section.

The Green’s function gab(η, η0) is referred to as the linear retarded propagator [142, 143].

It gives the time evolution of the linear density or velocity perturbation ψLa from a point of

time η′, for example the initial time η0, to a later point of time η [148, 304],

ψLa (k, η) = gab(η, η
′)ψLb (k, η′) (3.57)

with η′ ≥ η. By inserting the linear solution above in the linearized fluid equations (3.55), we

derive that the linear propagator satisfies the differential equation

[δab∂η + Ωab(η)] gbc(η, η
′) = 0 (3.58)

with the causal boundary condition

gab(η, η) = δab , (3.59)

where δab represents the Kronecker delta symbol. Moreover, the linear propagator possess the

property

gab(η, η
′) gbc(η

′, η′′) = gac(η, η
′′) , (3.60)

which allows to decompose its time evolution.

Since the definition of the linear propagator via (3.56) constituted the last missing ingredient

for solving the non-linear fluid equations, we can now continue with deriving their solutions

for different cosmological models.

3.3.3. Approximate solutions of the fluid equations for arbitrary

cosmologies

In order to solve the non-linear fluid equations (3.54) explicitly, we have to specify the cosmo-

logical model determining the background evolution of the Universe. Since the complete de-

pendence on the background cosmology is encoded in the matrix Ωab(η), defined in (3.52), this
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3.3. Diagrammatic formulation of perturbation theory

amounts in determining the matter density parameter Ωm(η) and the linear growth rate f(η).

As discussed in Section 3.2.4, the condition (see (3.45))

f(η) ' Ω1/2
m , (3.61)

leading to separable solutions for the non-linear evolution equations, is a very good approxima-

tion to the exact numerical solutions. Due to this, one uses this approximation to determine

the matrix Ωab(η) in (3.52), which then just contains constant elements and coincides with

the one in the case of an EdS cosmology where Ωm = 1,

Ωab(η) ' ΩEdS
ab (η) . (3.62)

We discuss the explicit solution for an EdS cosmology below. The phenomenologically in-

teresting cases of a ΛCDM universe or a universe with (non-clustering) quintessence [142–

144, 148, 304] are then treated by using the matrix ΩEdS
ab (η), but taking the time depen-

dence η = lnD1(τ) in terms of the linear growth factor D1(τ) correctly into account, i.e.,

D1(τ) 6= a(τ). For a ΛCDM cosmology, the linear growth factor is explicitly given in (3.18).

If we approximate the dependence of the non-linear solutions on the underlying cosmolog-

ical model in this way, the growing mode of the perturbations ψa(k, η) is treated correctly.

However, the decaying mode arises with a wrong time dependence [156]. Since the growing

and decaying modes mix due to mode-coupling through the vertex functions γabc, this ap-

proximation works well in the linear regime, but breaks down when non-linearities become

important. A comparison of the non-linear solutions for general cosmological models obtained

with and without approximating the matrix Ωab(η) by the one in the EdS case, (3.62), can

be found in [156].

In this section, we discussed the solutions to the fluid equations (3.54) for different cosmo-

logical models. These correspond to generalizations of the results in Section 3.2 which yield

the growing-mode solutions. The matrix formulation of SPT, however, allows to include the

full time dependence of the non-linear solutions at each order in perturbation theory. As a

starting point, let us derive the solutions of the fluid equations for the simplest case of a flat,

matter-dominated EdS universe.

3.3.4. Solutions of the fluid equations for an Einstein–de Sitter cosmology

In an EdS cosmology, describing a flat (k = 0) universe with matter only (Ωm = 1,ΩΛ = 0),

the linear growth factor of density perturbations in the growing mode, D1(τ), equals the scale

factor a(τ) (see (3.17)) so that the time variable η of the fluid equations, as defined in (3.49),

simply reads

η = ln a(τ) . (3.63)
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3. Standard Cosmological Perturbation Theory

Moreover, the linear growth rate for an EdS universe, (3.17), is given by f(τ) = 1. By taking

this into account, using Ωtot = 1 as well as the second Friedmann equation with ΩΛ = 0

(see (2.9)-(2.10)), the cosmology-encoding matrix Ωab(η) in (3.52) reduces in the EdS case to

ΩEdS
ab (η) =

(
0 −1

−3
2 Ωm 1 + 1

H2
∂H
∂τ

)
=

(
0 −1

−3/2 1/2

)
(3.64)

with Ωm = 1. From the second equality, we see explicitly that this matrix contains in fact

constant elements only and hence is time independent, ΩEdS
ab (η) = ΩEdS

ab . Due to this time

independence of the matrix ΩEdS
ab , it is possible to derive an implicit integral solution of

the non-linear fluid equations (3.54). This solution is determined by performing a Laplace

transform of (3.54) with respect to the time variable η. We denote the Laplace transform of

the doublet (3.51) by ψ̂a(k, ω), where the new time variable ω constitutes the complex number

frequency. The definition of the Laplace transform, its inverse as well as its differentiation

property are given in the equations (1.7)-(1.8).

We evaluate the Laplace transform of the fluid equations by first using the differentiation

property (1.8) to eliminate the η-derivative on the left-hand side of (3.54). On the right-hand

side of the equations, we first perform the inverse Laplace transform of ψb(k1, η) in order to

evaluate the overall Laplace transform with respect to ψc(k2, η) afterwards. This allows us to

write the fluid equations purely in terms of Laplace-transformed quantities,

σ−1
ab (ω) ψ̂b(k, ω) = ψa(k, η0) + γabc(k, q,p)

c+i∞∮
c−i∞

dω1

2πi
ψ̂b(q, ω1) ψ̂c(p, ω − ω1) , (3.65)

where the initial time is denoted by η0. Notice that, due to the differentiation property (1.8),

the doublet ψa(k, η0), which sets the initial conditions, is not a Laplace-transformed quantity.

Furthermore, we have combined the second term we get from the differentiation equation and

the one containing the matrix ΩEdS
ab into the matrix σ−1

ab (ω) ≡ ω δab + ΩEdS
ab .

Next, we multiply the expression (3.65) by the inverse of the matrix σ−1
ab (ω), yielding

σab(ω) =
1

(2ω + 3)(ω − 1)

(
2ω + 1 2

3 2ω

)
. (3.66)

Then, we evaluate the inverse Laplace transformation with a similar procedure as before in

order to regain a relation solely in terms of the doublet (3.51). This finally yields the formal

integral solution of the non-linear fluid equations (3.54) [142, 236, 300]. In the case of an EdS

Universe, this solution can be expressed in terms of the linear propagator,

ψa(k, η) = gab(η, η0)ψb(k, η0) +

η∫
η0

dη′ gab(η, η
′)γbcd(k, q,p)ψc(q, η

′)ψd(p, η
′) , (3.67)
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3.3. Diagrammatic formulation of perturbation theory

by defining

gab(η, η
′) ≡

c+i∞∮
c−i∞

dω

2πi
σab(ω) eω(η−η′) =

[
B e(η−η′) +Ae−

3
2

(η−η′)
]
ab

ΘH(η − η′) (3.68)

with

B =
1

5

(
3 2

3 2

)
, A =

1

5

(
2 −2

−3 3

)
. (3.69)

Note that for an EdS universe, it is possible to derive an explicit solution for the linear

propagator. Thereby, one chooses c > 1 to pick out the standard retarded propagator [300].

The Heaviside step function ΘH(η−η′) ensures causality by requiring η ≥ η′ for gab(η, η
′) 6= 0,

whereas gab(η, η
′) = 0 for η < η′.

Up to this point, we have not specified any particular initial conditions. From a physical

point of view, the most interesting initial conditions are those where the initial density and

velocity perturbations ψa(k, η0) are not independent, but proportional to Gaussian random

fields. In this case, one can write the initial conditions as

ψa(k, η0) = ua δ0(k) , (3.70)

where ua denotes a constant two-component ‘vector’ and δ0(k) ≡ δ(k, η0) corresponds to a

Gaussian-distributed initial density field. Thus, we effectively reduce the non-Gaussianity

of the initial conditions to a Gaussian problem where the linear solutions are Gaussian ran-

dom fields. For the sake of simplicity, we consider only initial conditions of the form (3.70)

throughout this thesis.

From the time dependence of the linear propagator gab(η, η0) in (3.68) we can readily

identify the growing- and decaying-mode initial conditions. Since the first term in (3.68)

represents the propagation of linear growing-mode solutions and the second one corresponds

to linear decaying-mode propagation, the growing (ψa(k, η) ∝ exp(η − η0)) and the decaying

(ψa(k, η) ∝ exp[−3/2 (η − η0)]) modes can be selected by considering initial fields ψa(k, η0)

proportional to (see (3.70))

u+
a =

(
1

1

)
and u−a =

(
1

−3/2

)
. (3.71)

If we set the initial conditions in the growing mode, ψa(k, η0) = u+
a δ0(k) ∝ (1, 1), the lin-

ear solution of the fluid equations, ψLa (k, η) = gab(η, η0)ψb(k, η0) (see (3.67)) recovers the

standard time scaling. This is due to the fact that the second term of the linear propaga-

tor gab(η, η0) in (3.68) vanishes upon contraction with ψa(k, η0), while the first term reproduces

the usual growing-mode time dependence ψLa (k, η) = eηψa(k, 0) = D1(τ)ψa(k, 0) with η0 = 0

and D1(τ) = a(τ).
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3. Standard Cosmological Perturbation Theory

3.3.5. Perturbative solutions of the fluid equations

The formal integral solution (3.67) can be interpreted as an equation for ψa(k, η) in the

presence of an ‘external source’ ψb(k, η0) with prescribed statistics given by the initial con-

ditions [300]. It contains the full time dependence of the non-linear solutions. While the

first term in (3.67) describes the linear propagation from the initial conditions, the second

term contains information about the non-linear mode couplings. This non-linear contribu-

tion comes from the interaction of all pairs of waves q and p (whose sum is k = q + p due

to translation invariance) at all intermediate times η′ (with 0 ≤ η′ ≤ η). The interaction

is characterized by the matrix γabc and then linearly evolved in time from η′ to η by the

propagator gab(η, η
′). Even if growing-mode initial conditions are imposed, the waves do not

purely remain in the growing mode after the scattering, but there is also a contribution from

the decaying-mode propagation. Thus, at the time η, the non-linear contribution depends on

all scattering processes that happened between η′ = η0, where the initial conditions are set,

and η′ = η.

This interpretation of the solution (3.67) to the non-linear fluid equations is essentially a

field-theoretical description of gravitational instability [236]. One can understand the non-

linear corrections as loop corrections to the linear propagator and the matrix γabc as interaction

vertex. In Section 3.3.6, we see that this simple interpretation leads to a graphical represen-

tation in terms of diagrams if the solution ψa(k, η) is determined recursively by means of

perturbation theory.

Proceeding from the formal integral solution of the fluid equations (3.67), we seek for an

explicit perturbative solution for ψa(k, η) in form of a series expansion (see (3.28) and (3.31)),

ψa(k, η) =
∞∑
n=1

ψ(n)
a (k, η) , (3.72)

where [143]

ψ(n)
a (k, η) =

∫
d3q1 . . .

∫
d3qn δ

D(k − q1...n)

· F̄ (n)
aa1a2...an(q1, . . . , qn, η) · ψa1(q1, η0) . . . ψan(qn, η0)

(3.73)

with k1...n ≡ k1 +. . .+kn. Note that in contrast to (3.31), the kernels F (n)
aa1a2...an(q1, . . . , qn, η)

defined above depend on the time η. Moreover, their dependence on time is non-trivial

since it does not only include the fastest growing mode like the kernels Fn(q1, . . . , qn) and

Gn(q1, . . . , qn) but also sub-leading η-dependent terms.

However, the standard recursion relations for the kernels Fn(q1, . . . , qn) and Gn(q1, . . . , qn),

given in (3.33) and (3.34), can be easily derived in the diagrammatic formulation of SPT. For
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3.3. Diagrammatic formulation of perturbation theory

this purpose, we first assume Gaussian-distributed growing-mode initial conditions, ψa(k, η0) =

u+
a δ0(k) (see (3.70) and (3.71)) so that (3.73) reduces to

ψ(n)
a (k, η) =

∫
d3q1 . . .

∫
d3qn δ

D(k − q1...n)F (n)
a (q1, . . . , qn, η) · δ0(q1) . . . δ0(qn) (3.74)

with

F (n)
a (q1, . . . , qn, η) ≡ F̄ (n)

aa1...an(q1, . . . , qn, η)u+
a1
. . . u+

a2n
. (3.75)

Inserting the perturbative expansion (3.72) and the simplified expressions (3.74) into the

formal integral solution (3.67) allows us to determine the recursion relations satisfied by the

kernels F̄ (n)
a (q1, . . . , qn, η) at any order in perturbation theory. For the first-order kernel

at n = 1 we can read off the relation

F (1)
a (q1, η) δD(k − q1) = gab(η, η0)u+

b = e(η−η0) u+
a , (3.76)

where we used (3.68) and (3.71) for the last equality. Here, we see that the first-order kernel,

in contrast to the higher-order ones, does not depend on momentum, but only on time.

Furthermore, at order n with n > 1, we find the equality

ψ(n)
a (k, η) =

n−1∑
m=1

∫ η

η0

dη′ gab(η, η
′) γbcd(k, q,p)ψ(m)

c (q, η′)ψ(n−m)
d (p, η′) , (3.77)

which by comparison with (3.74) determines the recursion relation for the nth-order ker-

nel [300]

F (n)
a (q1, . . . , qn, η) δD(k − q1...n) =

n−1∑
m=1

∫ η

η0

dη′′ gab(η, η
′′) γbcd(k, q1...m, qm+1...n)

· F (m)
c (q1, . . . , qm, η

′′)F (n−m)
d (qm+1, . . . , qn, η

′′)
(3.78)

with k = q1...n due to translation invariance. Here, we have replaced the integration variable

by η′′ to distinguish the internal integration determining the kernels F (n)
a (q1, . . . , qn, η) from

the time integration over η′ in the perturbative solution (3.77). To compute the perturbative

solution (3.77) for higher and higher orders, one has to successively reinsert the doublet on

the left-hand side of the equation into the doublets within the integral on its right-hand side.

The recursion relations (3.78) in the diagrammatic formulation of SPT reduce to the stan-

dard recursion relations, given by (3.33) and (3.34), in the limit where the initial conditions

are imposed in the infinite past. This is realized by replacing the lower limit of integra-

tion, η′′ = η0, in (3.78) by η′′ = −∞. In this case, (3.78) yields the standard recursion

relations [300],

F (n)
a (q1, . . . , qn, η) = en(η−η0)

(
Fn(q1, . . . , qn)

Gn(q1, . . . , qn)

)
, (3.79)
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where only the fastest growing mode is taken into account at each order n in perturbation

theory.

If we are not imposing the initial conditions in the infinite past, the recursion relations (3.78)

and hence the perturbative expansion (3.72) with (3.74) preserves the full time dependence,

including all transients from initial conditions (see [142, 300]). This feature plays a key role in

allowing the process of resummation of the non-linear propagator. For a detailed discussion

of this point see e.g., [142].

3.3.6. Diagrammatic representation of the perturbative solution

Although the recursion relations for the kernels in (3.78) allow us to calculate an explicit

analytic expression for the perturbative solution ψ
(n)
a (k, η) of the non-linear fluid equations

by use of (3.74), the computational effort increases considerably with the perturbative order n.

However, since all perturbative solutions are derived successively from the recursion relations

and hence share the same building blocks, they have the characteristic features allowing

to construct a diagrammatic representation in a way similar to Feynman diagrams. This

graphical interpretation, based on ideas in [96, 236, 305, 306] and worked out in detail in [142]

(compare with [148] for an alternative formulation), helps in addition to understand the

physical meaning of the different contributions in the infinite perturbative series.

In the first approach to develop a diagrammatic representation of the perturbative solu-

tions [96, 305, 306], the diagrams are constructed from the kernels F (n)
a (q1, . . . , qn, η) as basic

objects. However, this has the disadvantage that, at order n of perturbation theory, the

diagrams possess a number of n lines representing the different momenta.

Compared to this, the graphical representation based on ideas in [236] and worked out in

detail in [142] (see also [148] for an alternative formulation) yields simpler diagrams. Since the

diagrams in this formulation are constructed from three basic building blocks rather than from

derived quantities such as the kernels, the non-linear interactions are represented by vertices

which always involve a fixed number of three lines. The complication in this formulation is,

however, that the time evolution has not been ‘integrated out’ as it is the case when using

the kernels (see (3.78)), but that one has to integrate over intermediate times η′′ whenever

non-linear interactions occur. Thus, one effectively sums over all possible interactions which

occur between the initial time η0 and the final time η. This procedure allows in fact the

resummation of diagrams in [142].

In the following, we discuss the diagrammatic formulation of [142, 236] by introducing the

three building blocks and explain the rules to combine them to diagrams (see e.g., [100]).

This allows us to build sets of diagrams for solutions ψ
(n)
a (k, η) at each order in perturbation
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ψa(k, η0)

(a,k)

gab(η, η
′)

(a, η) (b, η′) (a,k)

γabc(k, q,p)
(b, q)

(c,p)

k = q + p

Fig. 3.1.: Diagrammatic representation of the three basic building blocks to construct the

perturbative solutions of the non-linear fluid equations. These are the initial

field ψa(k, η0), the linear propagator gab(η, η
′) and the vertex γbcd(k, q,p).

theory.

From (3.74) and (3.78), it is obvious that the perturbative solutions ψ
(n)
a (k, η) are con-

structed from three basic building blocks, which have to be translated into the language of

Feynman diagrams, namely the initial field ψa(k, η0), the linear propagator gab(η, η
′) as well

as the vertex γabc(k, q,p).

The graphical representation of these three basic objects is shown in Figure 3.1. Therein,

the initial fields ψa(k, η0) are represented by an open circle with a line emerging from it that

carries a momentum k. Thus, each initial field is characterized by a momentum k. The lines

have a time direction, which is indicated by an arrow. Note that all arrows point away from

the initial fields and hence indicate the direction of an evolution forward in time. Furthermore,

the lines are labeled with different indices at both ends, e.g., with a and b as in the second

diagram in Figure 3.1. There, the line represents the linear evolution in time from η′ to η,

described by the linear propagator gab(η, η
′). Hence, the graphical representation of the linear

solution, ψ
(L)
a (k, η) = ψ

(1)
a (k, η) = gab(η, η0)ψb(k, η0) (see (3.67)), is given by the first diagram

shown in Figure 3.2.

Moreover, each non-linear interaction between modes is represented by a vertex γabc(k, q,p)

in form of a branching. Each vertex is the convergence point of two incoming lines with

momenta q and p which couple to one outgoing line that carries the momentum k = q+p (due

to the quadratic non-linearities in the fluid equations). Each interaction conserves momentum

and occurs at a time η′ with 0 ≤ η′ ≤ η (see (3.77)). Furthermore, the branches correspond

to linear propagators which represent the linear evolution of a given mode from the time η′

to the time η. Finally, one has to sum up the internal indices, integrate over the internal

momenta, e.g., q and p, as well as the intermediate interaction times η′, each over the full time

interval [η0, η]. Figure 3.2 shows the diagrams contributing up to order n = 4 in perturbation

theory.
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(a,k, η)

k k

η′

q

p

γbcd
2 2

2+

ψ
(4)
a (k, η)ψ

(3)
a (k, η)ψ

(2)
a (k, η)ψ

(1)
a (k, η)

Fig. 3.2.: Diagrams representing the solutions ψ
(n)
a (k, η) in (3.74) up to order n = 4 in per-

turbation theory.

To illustrate this procedure, let us consider Figure 3.2, where the diagrams contributing

up to order n = 4 in perturbation theory are shown. As an example, we can explicitly

deduce the second- and third-order perturbative solutions, ψ
(2)
a (k, η) and ψ

(3)
a (k, η), from the

corresponding diagrams in the figure. They are given by

ψ(2)
a (k, η) =

∫
d3q

∫
d3p

η∫
η0

dη′ gab(η, η
′)γbcd(k, q,p) gce(η

′, η0)ψe(q, η0) gdf (η, η0)ψf (p, η0) ,

ψ(3)
a (k, η) = 2

∫
d3q

∫
d3p

η∫
η0

dη′ gab(η, η
′)γbcd(k, q,p) gce(η

′, η0)ψe(q, η0)ψ
(2)
d (p, η) .

(3.80)

These equations read off from the diagrams in Figure 3.2 correspond exactly to the relations

we get by inserting the kernels (3.76) and (3.78) in the integral representation (3.74).

In order to construct the set of diagrams representing the nth-order solution ψ
(n)
a (k, η)

in (3.77), one has to all topologically different trees which possess n − 1 vertices in form of

branchings and n initial fields (circles). Each tree is constructed from the final time η by

drawing a line backwards up to a vertex. At the vertex, the line splits into two branches.

Subsequently, each of these two lines lines continues until the reach another vertex or an initial

field at η = 0. One has to repeat this procedure at each vertex until all branches end up in

initial fields. Note that if the branching is asymmetric, it is assigned a factor of 2. As we can

deduce from (3.77), all different diagrams with n− 1 vertices and n initial fields represent an

integral contribution and have to be summed up to obtain the perturbative solution ψ
(n)
a (k, η)

at order n.

Diagrammatic representations like the one we applied here to describe the non-linear evo-

lution in the growth of the large-scale structure can be derived for any field theory with

quadratic non-linearities. In particular, in the case of turbulence very similar methods ex-
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3.3. Diagrammatic formulation of perturbation theory

ist [147, 307, 308]. Besides, also path-integral methods have been applied to the dynamics of

gravitational clustering. For details, we refer to [148, 153, 154, 158].

In the following chapter, we use the perturbative solution ψ
(n)
a (k, η) of the non-linear fluid

equations and its diagrammatic representation to derive theoretical predictions for large-scale

structure observables, such as the power spectrum and the bispectrum, from perturbation

theory. Since the characteristic of large-scale structure observables is their statistical nature,

we first illustrate why a statistical approach is needed to model the cosmological evolution of

the large-scale structure.
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Statistical Large-Scale Structure
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4.1. The need for a statistical approach

According to the current physical explanation, the present large-scale structure arises from the

growth of primordial seed fluctuations in the matter density, which are amplified by gravita-

tional instability, in an otherwise homogeneous universe [40]. An attractive explanation of the

physical origin of these primordial fluctuations is the inflationary paradigm [24–26]. In models

of inflation, the primordial fluctuations originate from quantum fluctuations of a scalar field,

the so-called inflaton. Since it is beyond the scope of this thesis to discuss models of inflation

in any detail, we refer instead to the reviews [243, 309–311] for an overview on this topic.

However, it is worth recalling that the simplest single-field inflationary models predict, in

agreement with observations of the Planck satellite, that the primordial fluctuations originate

from scalar perturbations which are predominantly adiabatic, almost scale-invariant [17, 22],

and very close to Gaussian [23, 72]. For this reason, we assume in this work that the pri-

mordial (initial) fluctuations are Gaussian. In other words, our description of the evolution
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4. Statistical Large-Scale Structure Observables

in time of the density contrast and the velocity divergence fields will rely on Gaussian initial

conditions.

The primordial fluctuations cannot be probed directly by observations. This would in fact

provide definite initial conditions for the deterministic evolution equations. Moreover, the

time scale of the cosmological evolution is much bigger than any possible observation period

so that it is not possible to follow the complete evolution of a single system in time. Through

our past light cone, we observe instead various objects at different stages of their evolution.

As a consequence, it is only possible to describe and also probe the time evolution of the

perturbations, leading to the observed large-scale structure of the Universe, by a statistical

approach.

For statistically approaching the cosmological evolution of the large-scale structure, one

models the observable universe as a stochastic realization of a statistical ensemble of possi-

bilities. To probe this evolution, one then has to make theoretical predictions of statistical

quantities which in turn depend on the statistical properties of the primordial perturbations.

In general, the statistical characterization of the perturbations is done using joint ensem-

ble averages of a number N of fields in real or Fourier space, which we refer to as N -point

correlation functions or correlators. We will restrict our consideration to Fourier space by

considering correlation functions of the doublet field ψa(k, η). In case of Gaussian initial

conditions, this approach has the advantage that all information is encoded in the two-point

correlation function
〈
ψa(k, η)ψb(q, η)

〉
.

By the assumption of Gaussian initial conditions, all non-Gaussian features will be gener-

ated, gradually from small to larger momentum scales, only due to the subsequent non-linear

evolution of the system through gravitational clustering. In consequence, non-Gaussianities

are generated as a function of scale and time in all N -point correlation functions. However,

on small momentum scales on which perturbation theory applies, the N -point correlation

functions still scale as the power of the two-point correlation functions and hence can be used

to make theoretical predictions to constrain the cosmological evolution. In this thesis, we will

mainly focus on the power spectrum and the bispectrum which are closely related to the two-

and three-point correlation functions in Fourier space. Our intention in this chapter is to

make predictions for statistical quantities, such as the power spectrum and the bispectrum,

in the framework of SPT, introduced in Chapter 3.

4.2. Definition of the power spectrum

Based on the Cosmological Principle, we assume that the fluctuation fields (in real space) are

statistically homogeneous and isotropic. In general, one refers to a random field as statistically
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4.2. Definition of the power spectrum

homogeneous and isotropic if all ensemble averages of products of the field remain the same

under translations in space and spatial rotations [40]. However, the validity of this assumption

has to be tested against observations. Significant deviations from statistical homogeneity and

isotropy are, for instance, generated by redshift-space distortions in galaxy surveys (see [275,

276, 312] for details). Hence, the redshift-space density field is an example for a field where

the assumption of statistical homogeneity and isotropy is not valid. In this thesis, we will,

however, proceed on the assumption of statistically homogeneous and isotropic fields.

Statistical homogeneity and isotropy implies that the two-point correlation function of the

density contrast or the velocity divergence in real space, defined as the ensemble average of

the respective fields at two different locations x and x+r (in comoving coordinates), depends

on the separation r, only. As a consequence, its Fourier transform, the two-point correlation

in Fourier space, can be expressed in terms of a quantity Pab(k, η) which depends only on the

norm k [101], 〈
ψa(k, η)ψb(q, η)

〉
≡ δD(k + q)Pab(k, η) (4.1)

with the three-dimensional Dirac delta distribution δD(. . .). This quantity is the so-called

power spectrum. Note that there are basically two conventions in the literature to define the

power spectrum. Apart from the convention (4.1) which we use, it is also convenient to reverse

the role of the factors (2π)3 in the Fourier transforms (1.6) so that the definition of the power

spectrum (4.1) is consequently modified to
〈
ψa(k, η)ψb(q, η)

〉
≡ (2π)3δD(k + q)Pab(k, η).

To determine the general form of the power spectrum, we have to insert the formal integral

solution for ψa(k, η), given in (3.67), into the definition of the power spectrum (4.1). As we

discussed in 3.3.5, the formal integral solution can be interpreted as an equation for ψa(k, η)

in the presence of an ‘external source’ given by the initial conditions ψa(k, η0). Since we

assume Gaussian initial conditions, the statistical properties of the random variables ψa(k, η0)

in (3.70) are then completely characterized by its two-point correlator〈
ψa(k, η0)ψb(q, η0)

〉
≡ δD(k + q)Pab(k, η0) . (4.2)

Here, Pab(k, η0) ≡ Pab,0(k) denotes the initial power spectrum. Since all pairs of initial doublet

fields can be replaced by the initial power spectrum Pab,0(k), it constitutes one of the basic

building blocks for statistical calculations. Its diagrammatic representation, which arises from

‘gluing’ a pair of initial fields from Figure 3.1 together, is shown in Figure 4.1.

Furthermore, for Gaussian-distributed initial conditions (see (3.70)), the initial power spec-

trum

Pab,0(k) = uaubP0(k) (4.3)

can be expressed in terms of the initial power spectrum of density perturbations P0(k), which
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(a,k) (b,−k)

Pab,0(k)

Fig. 4.1.: Diagrammatic representation of the initial power spectrum Pab,0(k).

is defined as 〈
δ0(k) δ0(q)

〉
≡ δD(k + q)P0(k) . (4.4)

Note that the ‘initial’ power spectrum P0(k) derives from the linear evolution of the primordial

density fluctuations through the radiation-dominated era and the resulting decoupling of

matter from radiation in the cosmological evolution of the Universe. In general, one uses

numerical codes of the relativistic Boltzmann equation [284, 313–315] to model this evolution,

whereas analytic techniques allow to understand the results at least qualitatively (see e.g., [316,

317].) The initial power spectrum P0(k) then arises as [40]

P0(k) = kns T 2(k) , (4.5)

where ns denotes the primordial spectral index and T (k) corresponds to the transfer function

describing the evolution of density perturbation through decoupling (with T (k = 0) ≡ 1).

The transfer depends on the cosmological parameters in a complicated way. However, in

the simplest cases with negligible baryon contributions, it can be approximated by a fitting

formula [314, 318]. In the adiabatic CDM case, for instance, the transfer functions scales

like T 2(k) → ln2(k)/k4 as k → ∞, due to the suppression of the growth of perturbations

during the radiation-dominated era (see [319]).

4.3. Higher-order correlation functions

4.3.1. The Wick theorem for Gaussian random fields

Although the power spectrum is well defined for almost all homogeneous random fields, it

gains a fundamental role if we require the doublets ψa(k, η) to be Gaussian random fields. In

this case, we can apply the Wick theorem which is a fundamental theorem for classical and

quantum field theories [320]. It states that any ensemble average of Gaussian random variables

can be obtained by products of ensemble averages of pairs. Written explicitly in terms of the

fields ψa(k, η) and by omitting the η-dependence of the fields for better readability, the Wick
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4.3. Higher-order correlation functions

theorem reads〈
ψa1(k1) . . . ψa2p+1(k2p+1)

〉
= 0 ,〈

ψa1(k1) . . . ψa2p(k2p)
〉

=
∑

all pair associations

∏
p pairs (i,j)

〈
ψai(ki)ψaj (kj)

〉 (4.6)

with p ∈ N being an integer. Hence, all ensemble averages consisting of an odd number (2p+ 1)

of fields vanish, whereas correlators of an even number 2p of fields can always be decomposed

into (2p− 1)!! contributions corresponding to all different pairs p of the 2p fields. These

pairs can in turn be expressed in terms of the power spectrum (4.1). As a consequence,

this implies that for Gaussian random fields, one can construct all higher-order correlation

functions entirely from the power spectrum (4.1). Moreover, due to the fact that we assume

Gaussian initial conditions, the statistical characteristics of these correlation functions are

then completely determined by the initial power spectrum P0(k), defined in (4.2).

4.3.2. Connected parts of correlation functions

Apart from the power spectrum, it is generally possible to introduce higher-order correlators,

e.g., the so-called bispectrum and trispectrum. These higher-order correlation functions are

defined as the connected part (denoted with a subscript ‘c’) of the joint ensemble average of an

arbitrary number N of fields,
〈
ψa1(k1) . . . ψaN (kN )

〉
c
. They are of particular importance for a

statistical description since, in contrast to unconnected correlation functions, each connected

correlator provides independent information. Formally, the connected part of a correlation

function of N fields is defined as [40]

〈
ψa1(k1) . . . ψaN (kN )

〉
c
≡
〈
ψa1(k1) . . . ψaN (kN )

〉
−

∑
S∈P({k1,...,kN })

∏
si∈S

〈
ψasi(1)

(ksi(1)) . . . ψasi(#si)
(ksi(#si))

〉
c
, (4.7)

where the sum is taken over the proper partitions S of {k1, . . . ,kN }, that is, over any par-

tition except the set itself. Consequently, si indicates a subset of {k1, . . . ,kN } contained in

partition S. One can visualize this decomposition in an illustrative way by defining diagram-

matic representations of the connected parts as in Figure 4.2. From this one can directly

construct the decomposition of the connected correlation functions according to (4.7). This

is exemplarily shown for the three-point correlation function in Figure 4.3.

If the average of ψa(k, η) is equal to zero,
〈
ψa
〉

= 0, only partitions without singlets
〈
ψa
〉

contribute to the decomposition (4.7). In this case, the connected parts of the correlation
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〈ψa1〉c 〈ψa1ψa2〉c 〈ψa1ψa2ψa3〉c 〈ψa1ψa2ψa3ψa4〉c

Fig. 4.2.: Diagrammatic representation of the connected parts of the correlation functions of

up to N = 4 fields.

= + +++〈ψa1ψa2ψa3〉

Fig. 4.3.: Decomposition of the three-point correlation function into its connected parts.

functions of up to N = 4 fields simply read

〈
ψa
〉
c
= 0 ,〈

ψaψb
〉
c
=
〈
ψaψb

〉
,〈

ψaψbψc
〉
c
=
〈
ψaψbψc

〉
,〈

ψaψbψcψd
〉
c
=
〈
ψaψbψcψd

〉
−
〈
ψaψb

〉
c

〈
ψcψd

〉
c
−
〈
ψaψc

〉
c

〈
ψbψd

〉
c
−
〈
ψaψd

〉
c

〈
ψbψc

〉
c
,

(4.8)

where the correlation functions are symmetric under the exchange of the indices a, b, c, d, as

for instance
〈
ψaψb

〉
=
〈
ψbψa

〉
. Here, we omitted the momentum dependence of the doublet

fields to clarify the decomposition in connected and unconnected parts.

If we assume the doublets to be Gaussian fields, as it is the case for the initial fields ψa(k, η0),

we can apply the Wick theorem to (4.7) and decompose the unconnected correlation func-

tions into pairs associations of the doublet fields, i.e., in unconnected two-point correlation

functions. Since the connected and unconnected two-point correlation functions are equal

(see (4.8)), all higher-order connected correlation functions subsequently vanish. Thus, in

the case of Gaussian random fields, the two-point correlation function or equivalently the

power spectrum remains the only non-vanishing statistical quantity. For Gaussian initial

fields ψa(k, η0), this is then the initial power spectrum Pab(k, η0) in (4.3).

However, in the case where the doublet fields have non-Gaussian features, e.g., in the

non-linear regime, the fields ψa(k, η) exhibit non-trivial connected higher-order correlation

functions
〈
ψa1(k1) . . . ψaN (kN )

〉
c

which cannot be reconstructed by use of the Wick theo-

rem from the two-point correlators only. Due to statistical homogeneity and isotropy of the

fields ψa(k, η), these connected N -point functions are always proportional to δD(k1+· · ·+kN )
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(see (4.1)). Hence, we can redefine them by introducing the quantity PN (k1, . . . ,kN ),〈
ψa1(k1, η) . . . ψaN (kN , η)

〉
c

= δD(k1 + . . .+ kN )PNa1...aN (k1, . . . ,kN , η) . (4.9)

Here, all the fields are evaluated at the same time η. Note that this has not necessarily to

be the case. It is also possible to define unequal-time correlation functions. We consider

correlation functions at unequal times explicitly in Section 6.1.1. The equal-time correlation

function PNa1...aN (k1, . . . ,kN , η) corresponds to the power spectrum Pab(k, η), defined in (4.1),

for the case N = 2, since the connected and the unconnected two-point correlation function

are equal (see (4.8)). Furthermore, for N = 3 and N = 4 one refers to the correlation

functions PNa1...aN (k1, . . . ,kN , η) as bispectrum and trispectrum, respectively. Following [156],

we denote the bispectrum and the trispectrum by〈
ψa(k, η)ψb(q, η)ψc(p, η)

〉
c
≡ δD(k + q + p)Babc(k, q,p, η) ,〈

ψa(k, η)ψb(q, η)ψc(p, η)ψc(w, η)
〉
c
≡ δD(k + q + p + w)Qabcd(k, q,p,w, η) .

(4.10)

Proceeding from the definition of correlation functions, our goal is now to determine these

correlation functions explicitly by use of the perturbative solution for the doublet field ψa(k, η).

4.4. Power spectrum and bispectrum in SPT

In general, the perturbative solution for ψa(k, η) in (3.72) and (3.74) can be used to determine

(connected) N -point correlation functions for arbitrary numbers of fields N . In this thesis,

however, we focus on the computation of the connected two- and three-point correlation

functions, i.e., the power spectrum and the bispectrum (see (4.1) and (4.10)). We start with

the computation of the power spectrum within the perturbative framework of SPT.

4.4.1. Perturbative expansion of the power spectrum

Similar to the perturbative expansion for the doublet field ψa(k, η) in (3.72)-(3.74) in terms

of integrals of the initial field ψa(k, η0) (or the initial density contrast δ0(k) for growing-

mode initial conditions), our aim is to develop a perturbative expansion for the power spec-

trum Pab(k, η) in (4.1) in terms of integrals of the initial power spectrum P0(k) in (4.4).

For this purpose, we replace both doublet fields in the two-point function
〈
ψa(k, η)ψb(q, η)

〉
,

defining the power spectrum in (4.1), by their series expansions (3.72). According to (3.73),

the nth-order contribution of each series expansion contains n powers of initial fields. Since we

assume the initial fields to be Gaussian random fields, the Wick theorem (4.6) dictates that

only those correlation functions do not vanish for which the total number of initial fields from
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the series expansion of both fields is even. Thus, the perturbative expansion of the two-point

correlation function is given by〈
ψaψb

〉
c

=
〈
ψ(1)
a ψ

(1)
b

〉
c

+
〈
ψ(1)
a ψ

(3)
b

〉
c

+
〈
ψ(2)
a ψ

(2)
b

〉
c

+
〈
ψ(3)
a ψ

(1)
b

〉
c

+
〈
ψ(1)
a ψ

(5)
b

〉
c

+
〈
ψ(2)
a ψ

(4)
b

〉
c

+
〈
ψ(3)
a ψ

(3)
b

〉
c

+
〈
ψ(4)
a ψ

(2)
b

〉
c

+
〈
ψ(5)
a ψ

(1)
b

〉
c

+ . . . ,

(4.11)

where we omitted the time and momentum dependence of the doublet fields for better read-

ability. In general, for Gaussian initial conditions, the first non-vanishing perturbative con-

tribution to a connected N -point correlation function requires perturbation theory of or-

der n = N − 1 [95].

If we next expand the power spectrum in a perturbative series, a so-called loop expansion

in the diagrammatic language, of the form [40]

Pab(k, η) =

∞∑
`=0

P
(`)
ab (k, η) , (4.12)

and insert it into the power spectrum in (4.1), we can deduce by comparison with (4.11) that

the `th-order term (the `-loop contribution) in the series expansion of the power spectrum

satisfies the relation [142]

δD(k + q)P
(`)
ab (k, η) =

2`+1∑
m=1

〈
ψ(m)
a (k, η)ψ

(2`+2−m)
b (q, η)

〉
c
. (4.13)

Thus, the tree-level power spectrum indicating the loop order ` = 0, which is equivalent to

the linear power spectrum,

P
(0)
ab (k, η) ≡ PLab(k, η) , (4.14)

is given by the first contribution on the right-hand side of (4.11). Notice that we indicate the

loop order of correlation functions generally with a superscript ‘(l)’, such as P
(0)
ab (k, η) in the

equation above. In contrast to this, we denote initial configurations by a subscript ‘0’, like

the initial power spectrum Pab,0(k) in (4.3).

By assuming Gaussian-distributed growing-mode initial conditions, ψa(k, η0) = ua δ0(k),

and setting (see (3.70)-(3.71))

ua ≡ u+
a =

(
1

1

)
, (4.15)

we can use the series contributions ψ
(n)
a (k, η) in terms of the kernels F (n)

a (q1, . . . , qn, η)

(in (3.74), (3.76) and (3.78)) and the definition of the initial power spectrum P0(k) in (4.4)
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to determine the linear power spectrum explicitly,

PLab(k, η) = gac(η, η0)uc P0(k) gbd(η, η0)ud = e2(η−η0) uaubP0(k) . (4.16)

Note that for η0 = 0, the linear power spectrum scales like ∝ e2η = D1(τ)2 (see (3.49))

with D1(τ) being the growing mode of the linear growth factor and D1(τ) = a(τ) in the case

of an EdS universe (see (3.17)). Consequently, in the linear regime the power spectrum of the

density and velocity fields simply corresponds to a time-dependent scaling of the initial power

spectrum P0(k). For the discussion that follows, we introduce in addition the notation

PL11(k, η) ≡ PL(k, η) = e2(η−η0) P0(k) (4.17)

for the linear power spectrum of density fluctuations.

The next-to-leading order corrections in the perturbative expansion of the power spectrum

for ` = 1 yield the one-loop power spectrum. The one-loop contributions to the power

spectrum have been extensively studied in the literature, see e.g., [93, 94, 97, 306, 321–325].

As we can deduce from the perturbative expansion of the two-point correlation function

in (4.13), the one-loop power spectrum,

P
(1)
ab (k, η) ≡ P 1−loop

ab (k, η) , (4.18)

consists of three contributions. These correspond to the terms in the second line on the right-

hand side of (4.11). After substituting the perturbative solutions ψ
(n)
a (k, η) of (3.74) in (4.13)

and accounting for momentum conservation, we can summarizes the one-loop contributions

to the power spectrum as follows (see e.g., [326]),

P 1−loop
ab (k, η) = P

(13)
ab (k, η) + P

(22)
ab (k, η) , (4.19)

where

P
(13)
ab (k, η) ≡ 3P0(k)

[
Fs(1)

a (k, η)

∫
d3lFs(3)

b (k, l,−l, η)P0(l)

+ Fs(1)

b (k, η)

∫
d3lFs(3)

a (k, l,−l, η)P0(l)
] (4.20)

and

P
(22)
ab (k, η) ≡ 2

∫
d3lFs(2)

a (k − l, l, η)Fs(2)

b (k − l, l, η)P0(|k − l|)P0(l) . (4.21)

Here, we have renamed the internal momenta, which arise from the perturbative solutions

ψ
(n)
a (k, η) in (3.74) and remain after accounting for momentum conservation. We refer to

them as loop momenta l. Moreover, we have used the symmetrized form of the kernels, which
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we denote, in analogy to (3.36), by Fs(n)
a (q1, . . . , qn, η). The kernels Fs(n)

a (q1, . . . , qn, η)

have the advantage that their symmetry in qi ↔ −qi with i ∈ {1, . . . , n} (see (3.40)) can

be exploited to simplify the momentum dependence of the overall expression. Finally, the

prefactors 3 and 2 correspond to combinatorial factors counting the number of possibilities to

choose the internal momenta qi of the kernels.

Although the kernel Fs(1)
a (k, η) of (3.76) is momentum independent, it is needed in this

notation to account for the correct time dependence of the power spectrum. If we only

consider the growing-mode time dependence of the kernels, given in (3.79), we can easily

deduce that the one-loop power spectrum scales like ∝ e4η = D1(τ)4 with D1(τ) = a(τ) for

an EdS universe.

Note that the one-loop contributions P
(13)
ab (k, η) and P

(22)
ab (k, η) in (4.20) and (4.21) possess

a rather different structure with regard to the momentum dependence of their kernels. The

contribution P
(22)
ab (k, η), on the one hand, is in general positive definite [40]. It describes

the effects of mode-coupling between waves with momenta k − l and l, respectively. On the

other hand, P
(13)
ab (k, η) is always negative and describes the effect of previrialization which

slows down the growth of structure. The dependence of its kernels on momentum indicates

that this contribution to the one-loop power spectrum, in contrast to P
(22)
ab (k, η), does not

describe mode-coupling effects. However, since P
(13)
ab (k, η), is proportional to the initial power

spectrum P0(k) (see (4.20)), one can interpret this contribution as the one-loop correction to

the linear propagator in (4.16) [236], that is, the non-linear correction to the standard linear

growth ∝ e2η. This can in fact be interpreted as a sign of a resummable structure of the theory.

In Chapter 5, we address the resummation of perturbative corrections in approaches other

than SPT, for instance in the renormalized perturbation theory (RPT) approach [142–144],

in detail.

In Figure 4.4, the perturbative SPT contributions up to one-loop order for the power spec-

trum of density perturbations P11

(
k, z = 0

)
≡ P11

(
k, η(z = 0)

)
, at present time or equiv-

alently at redshift z = 0 (see (1.1)) and for a ΛCDM universe (see (3.49) and (3.18)), are

compared with results from numerical simulations (blue squares) [327].1 While positive con-

tributions of the linear power spectrum PL11(k, η) ≡ PL(k, η), as defined in (4.17), and the

one-loop correction P
(22)
11 (k, η) (see (4.21)) correspond to the solid red lines, the negative one-

loop correction P
(13)
11 (k, η) of (4.20) is displayed by the dashed red line. The figure shows

that a strong cancellation between the positive and negative one-loop correction occurs. Due

to this, the overall one-loop correction to the full non-linear (NL) density power spectrum

1The cosmological parameters used for the N -body simulations are the density parameters Ωm,0 = 0.27,

ΩΛ,0 = 0.73 and Ωb,0 = 0.046, a dimensionless Hubble parameter of h0 = 0.72 as well as the power

spectrum renormalization σ8 = 0.9 and the primordial spectral index ns = 1 [327].
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4.4. Power spectrum and bispectrum in SPT

Fig. 4.4.: Perturbative contributions to the power spectrum of density perturba-

tions P11

(
k, z = 0

)
≡ P11

(
k, η(z = 0)

)
, at present time (or equivalently at red-

shift z = 0) for a ΛCDM universe, up to one-loop order in SPT (adapted and

reprinted from [327]). Here, the contributions of the linear power spectrum PL11(k, η)

and the one-loop power spectrum correction P
(22)
11 (k, η) (in solid red lines each) are

positive, whereas the one-loop contribution P
(13)
11 (k, η) (dashed red line) to the den-

sity power spectrum is negative. Hence, a strong cancellation between P
(22)
11 (k, η)

and P
(13)
11 (k, η) occurs so that the overall one-loop correction to the full non-linear

(NL) power spectrum at this order PNL
11 (k, η) ≡ PL11(k, η) + P

(22)
11 (k, η) + P

(13)
11 (k, η)

(solid blue line) is small. However, in comparison to the results for the density power

spectrum obtained from numerical simulations (blue squares), the accuracy of this

non-linear SPT power spectrum is rather poor and becomes worse for increasing

wavenumbers k. To be precise, the SPT predictions overestimate the amount of

power at high wavenumber. For instance, at k ' 0.2h/Mpc this overestimation is

already of the order of ∼ 20% [327].

at this order, here denoted by PNL
11 (k, η), (solid blue line) is small. However, confronted

against the results from N -body simulations, the accuracy of the full one-loop power spec-

trum predictions PNL
11 (k, η) is rather poor. At k ' 0.2h/Mpc, e.g., it overestimates the power

67



4. Statistical Large-Scale Structure Observables

by about ∼ 20% [327]. This ‘overshoot phenomenon’ [294] is characteristic for perturbative

power spectrum predictions in SPT. We investigate the reasons behind it in Section 5.1.

Loop contributions higher than the one-loop corrections to the density power spectrum

have been, for instance, considered in [305], including the full contributions up to two loops

as well as the most important terms at three- and four-loop order in the case where the

momentum k is large. Moreover, explicit computations for the power spectrum of density

perturbations up to three-loop order have been performed and compared to the results from

numerical simulations in [102] (see also Figure 5.1).

To summarize the results of this section, we can write the loop expansion of the power

spectrum in SPT as (see (4.12), (4.16) and (4.20)-(4.21))

P SPT
ab (k, η) = PLab(k, η) + P

(13)
ab (k, η) + P

(22)
ab (k, η) + higher loop orders . (4.22)

Note that depending on the initial conditions (the form of the initial power spectrum), the

integrals in the loop expansion of the power spectrum can be divergent when the loop mo-

mentum l becomes large, that is, in the UV limit. Consequently, the loop expansion can

lead to divergent, non-physical results. This issue which constitutes one of the main draw-

backs of SPT has been addressed, for instance, in the framework of the effective field theory

of large-scale structure by implementing a renormalization procedure for the UV divergences

(for details see [63, 178, 208]). We take this point up again in the Section 5.1 (see in particular

in Section 5.1.2) where we discuss the shortcomings of SPT in detail.

Diagrammatic representation of the power spectrum

Based on the diagrammatic interpretation of the perturbative solution ψ
(n)
a (k, η) in Sec-

tion 3.3.6, we can now extend the graphical representation to describe the loop contributions

to the power spectrum in terms of diagrams (for details see e.g., [142]). In order to dia-

grammatically represent each term which contributes to the power spectrum P
(`)
ab of (4.13)

at loop-order `, we put one of the tree-like diagrams for ψ
(m)
a (k, η), depicted in Figure 3.2,

against one for ψ
(2`+2−m)
b (q, η) such that the initial fields, corresponding to open circles in

Figure 3.2, face each other. Then, we pair these initial fields in all possible ways and ‘glue’

them together afterwards. Like this, each pair of initial fields, e.g., ψai(qi, η0) and ψbj (qj , η0)

with i ∈ {1, . . . ,m} and j ∈ {1, . . . , 2`+ 2−m} (see (4.13) and (3.73)), is joined to an initial

power spectrum according to (4.2), i.e.,
〈
ψai(qi, η0)ψbj (qj , η0)

〉
≡ δD(qi + qj)uaiubj P0(qi).

In the following, we represent the initial power spectra diagrammatically in form of a filled

circle.

Notice that for perturbative solutions ψ
(n)
a (k, η) of order n > 3, we have to take into
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(b,−k, η)

k

PL
ab(k, η) P

(22)
ab (k, η) P

(13)
ab (k, η)

+
k − l

l −l

−k + l

(a,k, η)

−k

Fig. 4.5.: Diagrammatic representation of the tree-level contribution PLab(k, η) as well as the

one-loop corrections P
(22)
ab (k, η) and P

(13)
ab (k, η) to the power spectrum. The dashed

lines, which cut only through initial power spectra and indicate the points where

two tree-like diagrams of the perturbative solutions ψ
(n)
a (k, η) of Figure 3.2 have

been ‘glued’ together, define the so-called ‘principle cross section’.

account that more than one tree-like diagram exists (see for instance the diagrams for n = 4

in Figure 3.2). Thus, we have to perform the procedure described above for all combinations of

one tree-like diagram for ψ
(m)
a (k, η) with one for ψ

(2`+2−m)
b (q, η). Since this leads to a specific

number of equal diagrams, we assign to each independent type of diagram the corresponding

number as a weighing factor.

In Figure 4.5, we have depicted all diagrams contributing to the power spectrum Pab(k, η)

up to one-loop order. The first diagram on the left shows the linear power spectrum PLab(k, η).

According to its definition in (4.16), it is represented diagrammatically by a filled circle with

two external lines. Thereby, the arrows indicate the direction of the momenta. The other dia-

grams in Figure 4.5 depict the one-loop contributions to the power spectrum. While the second

diagram from left constitutes the diagrammatic interpretation of the contribution P
(22)
ab (k, η)

in (4.21), the remaining two diagrams correspond to the two terms summarized in P
(13)
ab (k, η)

(see (4.20)). In addition, we refer to [101, 142] where loop diagrams of the power spectrum

up to order ` = 4 can be found (see also [307] for a full account of loop diagrams in the case

of turbulence).

Finally, let us focus our attention on the dashed lines in Figure 4.5, which split each diagram

into two by cutting only through initial power spectra. They represent the points where

two tree-like diagrams of the perturbative solutions ψ
(n)
a (k, η) have been ‘glued’ together.

Moreover, these lines define the ‘principal cross section’ that plays an important role in the

process of resummation in RPT [142], as we discuss in Section 5.3 in further detail.

Since the diagrammatic representation of the loop contributions P
(`)
ab (k, η) to the power

spectrum is constructed from the perturbative solutions ψ
(n)
a (k, η), the loop diagrams of the

power spectrum are constructed of the same building blocks as the perturbative solutions.

These are the initial fields ψa(k, η0) which are correlated to initial power spectra P0(k) ac-
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cording to (4.2), the linear propagator gab(η, η
′) and the vertices γbcd(k, q,p). Thus, we read

off the form of the loop contribution to the power spectrum directly from the diagrams in

Figure 4.5 by using the same rules as described in Section 3.3.6. Each diagram in Figure 4.5

corresponds to a term
〈
ψ

(m)
a ψ

(2`+2−m)
b

〉
with m ∈ {1 . . . , 2`+ 1} in the sum of contributions

to the power spectrum at order ` (see (4.13)). While the first diagram in this figure yields

the linear power spectrum in (4.16), the second leads to the one-loop contribution P
(22)
ab (k, η)

in (4.21). The third and fourth diagram, on the other hand, correspond to the two terms

summarized in the remaining one-loop contribution P
(13)
ab (k, η) in (4.20).

As an example for deducing the form of the loop contributions to the power spectrum from

the diagrams in Figure 4.5 by application of the rules of Section 3.3.6, we consider the second

diagram in the figure above corresponding to P
(22)
ab (k, η). This gives the integral expression

P
(22)
ab (k, η) = 2

∫
d3l

∫ η

η0

dη′
∫ η

η0

dη′′
[
gac(η, η

′) γscde(k, l,k − l) gdf (η′, η0)uf geg(η
′, η0)ug

]
×P0(q)P0(|k − l|)

[
gbc(η, η

′′) γscde(−k,−l,−k + l) gdf (η′′, η0)uf geg(η
′′, η0)ug

]
,

(4.23)

which corresponds exactly to the relation we obtain by inserting the (symmetrized) ker-

nels (3.78) with (3.76) in the equation for P
(22)
ab (k, η) in (4.21). Thus, both expressions

for P
(22)
ab (k, η) are equivalent.

4.4.2. Perturbative expansion of the bispectrum

As the next step, we consider the series expansion of the connected three-point correlation

function, i.e., the bispectrum Babc(k, q,p, η) as defined in (4.10), in terms of loop contribu-

tions. In order to determine the loop contributions to the bispectrum, we proceed in the

same way as we did for deriving the loop expansion of the power spectrum in the previous

section. Thus, insert the series expansion for the doublet fields ψa(k, η) in (3.72) into the

connected three-point correlation function
〈
ψa(k, η)ψb(q, η)ψc(p, η)

〉
c

which defines the bis-

pectrum in (4.10). After applying the Wick theorem (4.6) under the assumption of Gaussian

initial conditions, we obtain the following perturbative expansion for the connected three-point
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correlation function〈
ψaψbψc

〉
c

=
〈
ψ(1)
a ψ

(1)
b ψ(2)

c

〉
c

+
〈
ψ(1)
a ψ

(2)
b ψ(1)

c

〉
c

+
〈
ψ(2)
a ψ

(1)
b ψ(1)

c

〉
c

+
〈
ψ(2)
a ψ

(2)
b ψ(2)

c

〉
c

+
〈
ψ(1)
a ψ

(2)
b ψ(3)

c

〉
c

+
〈
ψ(1)
a ψ

(3)
b ψ(2)

c

〉
c

+
〈
ψ(2)
a ψ

(1)
b ψ(3)

c

〉
c

+
〈
ψ(2)
a ψ

(3)
b ψ(1)

c

〉
c

+
〈
ψ(3)
a ψ

(1)
b ψ(2)

c

〉
c

+
〈
ψ(3)
a ψ

(2)
b ψ(1)

c

〉
c

+
〈
ψ(1)
a ψ

(1)
b ψ(4)

c

〉
c

+
〈
ψ(1)
a ψ

(4)
b ψ(1)

c

〉
c

+
〈
ψ(4)
a ψ

(1)
b ψ(1)

c

〉
c

+ . . . .

(4.24)

Here, we have again omitted the time and momentum dependence of the doublet fields for

reasons of clarity.

Next, we perform a perturbative expansion of the bispectrum in terms of loop orders `,

Babc(k, q,p, η) =

∞∑
`=0

B
(`)
abc(k, q,p, η) , (4.25)

which we insert into the definition of the bispectrum in (4.10). By comparison with the

perturbation series of the three-point correlation function in (4.24), we can infer that the `-

loop contribution of the bispectrum is determined by

δD(k + q + p)B
(`)
abc(k, q,p, η)

=

2`+2∑
m1=1

2`+3−m1∑
m2=1

〈
ψ(m1)
a (k, η)ψ

(m2)
b (q, η)ψ

(2`+4−m1−m2)
b (q, η)

〉
c
.

(4.26)

From this relation, we can directly derive the form of the bispectrum loop contributions. We

use the perturbative solutions ψ
(n)
a (k, η) of (3.74), depending on the kernels F (n)

a (q1, . . . , qn, η)

in (3.76) and (3.78), as well as the definition of the initial power spectrum P0(k) in (4.2).

Consequently, at loop order ` = 0 the tree-level bispectrum, which we also refer to as linear

bispectrum

B
(0)
abc(k, q,p, η) ≡ BL

abc(k, q,p, η) , (4.27)

arises as [328]

BL
abc(k, q,p, η) = 2Fs(1)

a (k, η)Fs(1)

b (q, η)Fs(2)

c (k, q, η)P0(k)P0(q)

+ 2Fs(1)

a (k, η)Fs(2)

b (k,p, η)Fs(1)

c (p, η)P0(k)P0(p)

+ 2Fs(2)

a (q,p, η)Fs(1)

b (q, η)Fs(1)

c (p, η)P0(q)P0(p) ,

(4.28)

and consequently corresponds to the contributions in the first line on the right-hand side

of (4.24).
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Note that due to the Dirac delta distribution in (4.26) arising from the definition of the

bispectrum (4.10), the tree-level bispectrum is not a function of three independent vectors k, q

and p. Instead, it is defined only for momentum configurations forming closed triangles,

i.e., k + q + p = 0. This is equivalently valid for the loop contributions of the bispectrum

(see (4.30)-(4.34)). In order to display analytic results, however, it is convenient to remove

the dependence on the third momentum by setting p = −k − q and express the bispectrum

in terms of the absolute values k, q of the remaining two momenta as well as their respective

angle θkq with cos θkq ≡ (k · q) / (kq) [298] (see e.g., Section 6.2.1). In comparison to the

power spectrum, that is a one-dimensional quantity because of statistical homogeneity and

isotropy (see Section 4.2), the bispectrum is, due to the same reason, a three-dimensional

quantity depending on two magnitudes and one angle.

In the case where we only take the growing-mode time dependence of the kernels into ac-

count (see (3.79)), the linear bispectrum scales like ∝ e4η = D1(τ)4 and hence like a4(τ) for an

EdS universe. If we use the diagrammatic representation of the perturbative solution ψna (k, η)

and transfer the techniques to construct loop diagrams which we discussed for the power spec-

trum to the case of the bispectrum, we can easily rederive the form of the tree-level bispectrum

in (4.28). From the diagrammatic point of view, there is no possibility to connect three exter-

nal points without invoking the three-point vertex of ψ
(2)
a (k, η). Consequently, the tree-level

bispectrum (4.28) is represented by the first diagram in Figure 4.6.

As we can see from (4.26), the next-to-leading order of the bispectrum, the one-loop bis-

pectrum,

B
(1)
abc(k, q,p, η) ≡ B1−loop

abc (k, q,p, η) , (4.29)

comprises several contributions. These originate from the remaining terms written down in

the perturbative expansion of the three-point correlation function in (4.24). For detailed

discussions of the one loop bispectrum in SPT see for instance [40, 298, 328]. The one-loop

contributions to the bispectrum can be summarized in the following way,

B1−loop
abc (k, q,p, η) = B

(222)
abc (k, q,p, η) +B

(321,I)
abc (k, q,p, η) +B

(321,II)
abc (k, q,p, η)

+B
(411)
abc (k, q,p, η) ,

(4.30)

where we have defined

B
(222)
abc (k, q,p, η) ≡ 8

∫
d3lFs(2)

a (−l, l + k, η)Fs(2)

b (l + k,p− l, η)Fs(2)

c (l,p− l, η)

×P0(l)P0(|l + k|)P0(|l− p|) , (4.31)
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BL
abc(k, q,p, η)

(a,k, η)

B
(411)
abc (k, q,p, η)

B
(222)
abc (k, q,p, η)

B
(231,II)
abc (k, q,p, η)

B
(231,I)
abc (k, q,p, η)

Fig. 4.6.: Diagrammatic representation of the tree-level contribution BL
abc(k, q,p, η) as well as

the one-loop corrections B
(222)
abc (k, q,p, η), B

(321,I)
abc (k, q,p, η), B

(321,II)
abc (k, q,p, η) and

B
(411)
abc (k, q,p, η), to the bispectrum. Performing permutations of the indices a, b, c

together with the associated momenta k, q, p for the individual diagrams yields the

diagrammatic representation of all terms contributing to the full one-loop bispec-

trum (see (4.28) and (4.31)-(4.34)).

B
(321,I)
abc (k, q,p, η) ≡ 6Fs(1)

a (k, η)P0(k)

×
∫
d3lFs(2)

b (l, q − l, η)Fs(3)

c (−l, l− q,−k, η)P0(l)P0(|l− q|)

+ 5 permutations , (4.32)

B
(321,II)
abc (k, q,p, η) ≡ 6Fs(1)

a (k, η)Fs(2)

b (k,p, η)P0(k)P0(p)

∫
d3lFs(3)

c (p, l,−l, η)P0(l)

+ 5 permutations , (4.33)

B
(411)
abc (k, q,p, η) ≡ 12Fs(1)

a (k, η)Fs(1)

b (q, η)P0(k)P0(q)

∫
d3lFs(4)

c (l,−l,−k,−q, η)P0(l)

+ 2 permutations . (4.34)
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Notice that in the case where a = b = c, the one-loop contribution B
(321,II)
abc (k, q,p, η) to the

bispectrum can be expressed in terms of the one-loop power spectrum contribution P
(13)
ab (k, η)

in (4.20),

B(321,II)
aaa (k, q,p, η) = Fs(2)

a (k,p, η)P0(k) P (13)
aa (p, η) + 5 permutations . (4.35)

By performing permutations of the indices a, b, c together with the momenta k , q ,p associ-

ated to them, we obtain the other terms of the one-loop contributions (4.31)-(4.34), which

are explicitly given in (4.24).

As an example, let us consider the one-loop contribution B
(321,I)
abc (k, q,p, η) in (4.32). The

term written down in this equation originates from the correlator
〈
ψ

(1)
a (k)ψ

(2)
b (q)ψ

(3)
c (p)

〉
c

in the perturbative expansion of the connected three-point correlation function in (4.24). To

derive the contribution to B
(321,I)
abc (k, q,p, η) which is generated by the correlation function〈

ψ
(1)
a (k)ψ

(3)
b (q)ψ

(2)
c (p)

〉
c
, we permute the indices b and c and simultaneously the momenta q

and p. Thus, in this equation we have to replace the momentum q by p. The other terms

contributing to B
(321,I)
abc (k, q,p, η) are obtained analogously.

Translated to the diagrammatic representation, the four one-loop contributions to the bis-

pectrum correspond to the diagrams shown in Figure 4.6. In accordance to the procedure

described above, permuting the indices a, b, c together with the respective momenta k , q ,p

of the four independent diagrams yields the other diagrammatic contributions to the one-loop

bispectrum.

Besides, we can see from the dependence of the bispectrum contributions (4.31)-(4.34)

on the kernels (see (3.79)) that the one-loop bispectrum in the growing mode scales like

∝ e6η = D1(τ)6, where D1(τ) = a(τ) in the EdS case.

In summary, we can write the loop expansion of the bispectrum in SPT as (see (4.26)

with (4.28) and (4.31)-(4.34))

Babc(k, q,p, η) =BL
abc(k, q,p, η)

+ B
(222)
abc (k, q,p, η) +B

(321,I)
abc (k, q,p, η)

+B
(321,II)
abc (k, q,p, η) +B

(411)
abc (k, q,p, η) + higher loop orders .

(4.36)

As it is the case for the power spectrum (see Section 4.4.1), the bispectrum in SPT also suffers

from the problem that the integrals in the loop expansion can become UV divergent. This

problem has been addressed, for instance, in the context of the effective field theory approach

of LSS in [186, 187]. Therein, the bispectrum up to one-loop order is studied and appropriate

counter-terms to cancel the possible UV divergences are introduced. Moreover, a comparison

of predictions for the one-loop bispectrum in different theoretical approaches, such as SPT,

RPT and EFT, with numerical simulations can be found in [294].
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Overview of Perturbative Approaches
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5.1. Shortcomings of standard perturbation theory

Standard perturbation theory (SPT) is by far the most studied analytic approach to describe

the dynamics of large-scale structure formation in the Universe [40, 92–102]. As we have

discussed in the Chapter 3 and 4, it is based on solving the non-linear pressureless and non-

viscous perfect fluid equations of the dark matter evolution by a perturbative expansion in

terms of the linearly evolved density field or equivalently the initial density contrast. This

perturbative ansatz holds as long as the real-space density contrast δ(x, τ) is very small

compared to unity, |δ| � 1, namely on large distance scales and at early times. However, since

the density contrast increases on smaller distance scales (corresponding to larger modes k in

Fourier space) and later points of time (or equivalently at smaller redshifts z), its validity as an

appropriate expansion parameter for a perturbative treatment of the dynamics of gravitational

instability becomes questionable.

Indeed, while at high redshift, the perturbative SPT corrections to the linear density power

spectrum yield already at one-loop order a very good agreement with numerical simulations
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for a ΛCDM model, at redshift z = 0, the one-loop density power spectrum deviates from

the N -body results up to ∼ 20% for k ≤ 0.2h/Mpc [142, 329] (see also Figure 4.4). A similar

behavior is observed for the bispectrum [329].

In general, the non-linear power spectrum corrections in SPT only extend the range of va-

lidity of the linear theory by a small amount at low redshifts, whereas they quickly overpredict

the amount of power on larger momentum scales. [294]. This overshoot phenomenon, which

is clearly visible in Figure 4.4, appears since the loop corrections to the power spectrum in

SPT are integrated over the entire range of momenta k and thus include the regime where

the density contrast is not small any more. In numerical simulations, the contributions from

this regime are actually strongly suppressed compared to SPT [137].

Moreover, the convergence properties of the SPT loop expansion for the power spectrum are

problematic. As we discussed in Section 4.4.1, the perturbative expansion relies on intricate

cancellations of large terms with opposite sign at the individual loop order. We have seen

the cancellation of the contributions P
(13)
11 (k, η) and P

(22)
11 (k, η) to the one-loop density power

spectrum explicitly in Figure 4.4. This behavior complicates not only the numerical evaluation

of the power spectrum [101, 102, 182, 306], but also implies that increasing the loop order does

not necessarily improve the accuracy of the perturbative predictions for the power spectrum,

in particular at small redshifts. At high loop orders, it becomes additionally apparent that

the perturbative SPT predictions are sensitive to UV modes. For particular sets of initial

conditions, the loop contributions to the power spectrum in SPT even show a UV-divergent

behavior. On top of that, for a ΛCDM cosmology, three-loop order computations indicate

that the density power spectrum at redshift z = 0 does not even converge for small momenta

(large distance scales) well within the linear regime (see Figure 5.1).

Based on these considerations, we conclude that SPT possesses a number of qualitative and

quantitative shortcomings that can be summarized as follows [40, 180, 215]:

• SPT does not have a clear expansion parameter for a perturbative treatment of large-

scale structure formation since the real-space density contrast is not small for all scales

and points of time.

• Loop integrals in SPT are sensitive to UV modes. For particular sets of initial conditions,

they even show a UV-divergent behavior.

• The perturbative expansion in SPT is plagued by the emergence of spurious IR enhanced

contributions (‘IR divergences’).

• SPT does not consistently account for deviations from the perfect fluid assumption on

short distance scales.
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Fig. 5.1.: Perturbative contributions to the power spectrum of density perturbations, P
(
k, z =

0
)
≡ P11

(
k, η(z = 0)

)
, at present time (or equivalently at redshift z = 0) and for

a ΛCDM universe up to three-loop order in SPT (reprinted from [102]). In [102], the

linear density power spectrum (see (4.17)) has been computed from the initial power

spectrum of the CAMB code [330] for a ΛCDM cosmological model with WMAP5

parameters [331]. Based on this, the power spectrum contributions up to three-loop

order in SPT, defined by (4.12)-(4.13), have been determined by numerical Monte

Carlo integration at z = 0. For the three-loop contribution, the black diamonds

and gray crosses correspond to two different parameterizations of the absolute loop

momenta, whereas the error bars show an estimate for the numerical error whose

relative size is ≤ 0.002 for k ≤ 0.55h/Mpc.

For very small momenta k, the three-loop contribution is bigger even than the one-

loop correction to the density power spectrum. Although the linear power spectrum

contribution dominates over the loop-corrections in this regime, this indicates that

at redshift z = 0 in the ΛCDM case, the loop expansion in SPT does not even

converge for very small modes k well within the linear regime. However, the loop

expansion exhibits properties compatible with an asymptotic series. Thus, in [102],

a Padé resummation [332] has been established to restore its convergence in the limit

of small momentum and improve it in the range of the baryon acoustic oscillations.

Moreover, the figure shows that for momenta k & 0.16h/Mpc, the overall sum of

the three-loop corrections, which is negative, becomes bigger than the linear power

spectrum. Hence, SPT clearly does not converge neither on these scales. Finally, for

even larger momentum k, the three-loop correction shows a logarithmic enhancement

compared to the linear power spectrum (see also [101]). The loop expansion of the

power spectrum shows a divergent behavior in this UV limit as well.
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In the following, we discuss these drawbacks of SPT in further detail and illustrate them by

giving examples.

5.1.1. Lack of a clear perturbative expansion parameter

Standard perturbation theory does not constitute a conventional perturbation theory in the

sense of having a small coupling constant. On the contrary, since the real-space density

contrast increases on smaller distance scales (for larger momenta k in Fourier space) and later

points of time η, the validity of the perturbative solution to non-linear fluid equations depends

– apart from the assumed underlying initial conditions – on the considered scale as well as on

the point of time in the dark matter evolution.

For our Universe today, at redshift z = 0, the dark matter distribution on very large

distance scales or equivalently in the regime of small momenta k is well modeled by the linear

density power spectrum in SPT (see Figure 4.4). On intermediate, quasi-linear scales, the

dark matter distribution may in principle be also described analytically by extending SPT

beyond linear order. This is of particular interest since an accurate modeling of the baryon

acoustic oscillations, which are imprinted on the power spectrum for small redshifts in the

quasi-linear regime at [131]

0.05h/Mpc . kBAO . 0.15h/Mpc (5.1)

(see Figure 4.4 and Figure 5.1), would allow to constrain the parameters of the cosmological

evolution and the nature of dark energy [333–335] (see also [142]).1 However, as discussed

before, the predictions for the one-loop density power spectrum in SPT at redshift z = 0

deviate from the numerical results up to ∼ 20% already at weakly non-linear scales k ≤
0.2h/Mpc. One obtains similar findings when considering the real-space two-point density

correlation function in dependence of the distance scale r. For instance, in comparison to

numerical simulations, the linear-order SPT predictions for the two-point density correlation

function in real space around the BAO scale r ' O(100) Mpc/h reveal only an accuracy

of ∼ 3% at redshift z ' 4 [140]. Thus, even in this regime in real space where SPT is expected

to be perturbative, one needs to include loop corrections for z . 4.

In [208], it has been shown using a simple toy model that at redshift z = 0, the one-loop SPT

corrections to the linear two-point density correlation function in real space around the BAO

peak are of the orderO(1). This is an indication that the validity of the perturbative expansion

1In the real-space analog to the density power spectrum, namely the two-point correlation function

depending on the comoving distance r, the baryon acoustic oscillations are imprinted on distance

scales of the order r ' O(100) Mpc/h [138]. To be precise, the characteristic BAO peak arises at the

scale rBAO ' 110 Mpc/h [216].

78



5.1. Shortcomings of standard perturbation theory

in SPT breaks down already at the weakly non-linear scale. Indeed, for a ΛCDM cosmology

at redshift z = 0, it stops converging in Fourier space roughly at k ' 0.1h/Mpc [183, 188]

As soon as the real-space density contrast becomes of the order δ ∼ O(1), perturbation

theory is not well-defined any longer. The characteristic scale at which this happens is referred

to as the non-linear scale [40]. This non-linear scale, which is usually identified in momentum

space with moments of the linear power spectrum of density perturbations [101],

k−2
NL ∼

∫
dq PL11(q, η) . (5.2)

separates the dynamics of gravitational instability into two regimes. For k < kNL, the linear

dynamics of large distance scales are dominant and its description by means of perturbation

theory is justified. For k ≥ kNL, on the other hand, the fully non-linear dynamics of small

distance scales makes perturbation theory inapplicable and it seems unavoidable to resort to

non-perturbative methods. For cosmological purposes, such as constraining the cosmological

parameters from the baryon acoustic oscillations, we are usually interested in the small-k

regime. Thus, the ultimate goal of perturbative approaches is to find an accurate analytic

description of the dynamics of gravitational instability in this mildly non-linear regime.

Treating the latter perturbatively requires caution since the two regimes separated by the

non-linear scale kNL are coupled by non-linearities. While at linear order in SPT, different

Fourier modes of the density contrast (and the velocity divergence) evolve independently

(see (3.56) with (3.51)), their evolution beyond linear order is not independent any more due

to the impact of the mode-coupling terms in the fluid equations (3.54) (see also (3.77)). This

implies that at the non-linear level, two hard, short-wavelength (UV) modes, can couple to

produce a long-wavelength (IR) mode. As a consequence, beyond linear perturbation theory,

UV modes can in principle affect the dynamics of the long-wavelength perturbations. In

conclusion, SPT is successful in extending the validity of linear perturbation theory in a

limited range, but does not constitute a perturbative approach yielding accurate predictions

even for mildly non-linear scales. Due to this apparent lack of SPT, a variety of perturbative

approaches aiming at a better control of perturbation theory in the mildly non-linear regime

have been developed. We give an overview of the different perturbative methods in Section 5.2.

5.1.2. UV divergence

An additional drawback of SPT arises from the UV sensitivity of the loop integrals in the

perturbative expansion [40, 102]. This UV sensitivity becomes apparent in the strong de-

pendence of the perturbative predictions, e.g., for the density power spectrum, at high loop

orders on the short-wavelength (UV) modes. For particular sets of initial conditions, these

even exhibit a UV-divergent behavior (see Figure 5.1).
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The emergence of UV divergences in SPT can be demonstrated by a illustrative exam-

ple [40]. Let us consider the simplest case of an EdS cosmology with scale-free power-low

initial conditions, P0(k) ∝ kns with ns denoting the primordial spectral index (see (4.5)).

In this case, already the one-loop density power spectrum shows a UV-divergent behavior

for k → ∞ if ns ≥ −1. In general, at one-loop order, the SPT loop integrals for these ini-

tial conditions are UV divergent if ns ≥ −3 + 2/l for k → ∞ [96, 100]. (Note that in case

of ns ≤ −1, IR divergences occur in the loop integrals for k → 0.) The UV divergence arises

even in the case of very soft external momenta where the perturbative expansion in SPT is in

principle expected to work. For obtaining finite predictions for the power spectrum beyond

linear order in SPT, it is then required to introduce an (arbitrary) UV cutoff scale. This

cutoff dependence of the perturbative predictions beyond leading order hence leads to a loss

of predictability of the SPT approach. Notice that the sensitivity of the SPT predictions

to the cutoff scale is also an indication that SPT fails to model the dynamics on the short

distance scales properly and highlights some inconsistency in the perturbative method.

Despite this, the UV sensitivity of SPT has not been considered rigorously, with a few

exceptions [336], until recently (see e.g., [101, 102]). The reason for this is that for the case

of the phenomenologically favored ΛCDM cosmology, the perturbative predictions of SPT

do not reveal a strong UV sensitivity. However, in the present era of precision cosmology,

the infinite error, produced in the simplest case of an EdS cosmology, indicates that (finite)

SPT predictions still do not correctly capture the imprint of non-linear hard modes in the

dynamics of large-scale structure formation, and thus highlights some inconsistency in the

perturbative approach [208]. This issues has been recently addressed by transferring concepts

of effective field theory (EFT) approaches to the dynamics of large-scale structure formation

(see e.g., [63, 178, 208]). However, the effective operators possess a non-local time dependence

which makes the renormalization at high loop order more complicated [202].

On the other hand, numerical simulations indicate the actual sensitivity of the power spec-

trum to UV modes is smaller than suggested by SPT predictions [209, 210], in accordance to

expectations from qualitative arguments in [92]. Thus, an accurate description of the dynam-

ics of gravitational instability may be possible even under rather broad assumptions about the

dynamics on short scales. This motivates the development of new perturbative approaches

which allow to consistently isolate the UV contributions and systematically study their sen-

sitivity to the underlying assumptions. As we discuss in Section 5.2, recent examples of such

kind of approaches include [211, 213, 214].

To go beyond that, we pursue a different road in Chapter 7. There, we develop non-

perturbative methods which allow us, among others, to further investigate the UV dependence

of SPT (see in particular Section 7.4).
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5.1.3. Spurious IR divergences

Apart from the sensitivity of its perturbative predictions to the impact of UV modes, SPT is

plagued by the emergence of spurious infrared enhanced contributions. Qualitatively, these

‘IR divergences’ in SPT originate from using the initial distribution to evaluate late-time

quantities. This generates a non-local time dependence to the large displacements of the fluid

particles due to large-scale bulk flows [215]. These spurious IR divergences in SPT significantly

complicate the computational performance, as well as the analysis of physical effects produced

by the large-scale bulk flows.

However, in equal-time correlation functions, as for instance the power spectrum and the

bispectrum, summing all diagrams contributing at a fixed loop order in perturbation the-

ory [94] leads to a cancellation of the IR divergences. To be precise, for the leading IR

divergences this cancellation has been formally proven to all perturbative orders in SPT [237]

and can be ascribed to the equivalence principle [169, 306]. Moreover, it has been demon-

strated that the subleading IR divergences which arise at two- and higher-loop orders cancel

out as well [101, 125, 167, 168, 182]. Potentially, it might also be possible to explain the

cancellation of the subleading IR effects by using symmetry arguments such as Galilean in-

variance [101, 167, 168, 306]. Furthermore, IR-safe integrands up to two-loop order and for

an arbitrary loop order have been constructed in [101, 182] and [102], respectively.

Particularly in [101], the effects of soft (IR) modes on hard modes have been studied sys-

tematically not only in SPT, but also by use of the so-called eikonal approximation [159].

Within the eikonal approximation, which we review in Section 5.4, one can explicitly show

that equal-time correlation functions, such as the power spectrum, on very large momentum

scales are not affected by the impact of soft modes [160]. This indicates that the effects in

the SPT power spectrum associated to the non-linear scale kNL are spurious.

Although the effect of soft (IR) modes on very large momentum scales is absent for equal-

time correlation functions, they can nevertheless affect the dynamics on intermediate scales,

being important for a description of the baryon acoustic oscillations [144, 337] (see also [176,

189]). To overcome this problem, there have been attempts for adopting Galilean-invariant

approaches, such as in [163]. Apart from this, it has been shown in [101] that the modification

of the SPT density power spectrum due to the impact of soft modes corresponds at most to

logarithmic corrections at any loop order.

Thus, although it is questionable if resummation techniques provide a systematic improve-

ment in the determination of equal-time correlation functions on large momentum scales,

they might resum the correct subdiagrams to treat soft-mode effects at intermediate scales

and hence to predict accurate results in this regime.
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We give an overview of different resummation schemes in Section 5.2, and subsequently

take the former point up again in Section 5.4.

5.1.4. Deviations from the perfect fluid approximation

On small distance scales, SPT possesses not only the shortcoming that the real-space density

contrast becomes large, but in addition that the perfect fluid approximation fails. Indeed,

as we discussed in Section 2.4, on sufficiently small distance scales shell-crossing and thus

multi-streaming occurs. Then, the single-flow approximation, on which the pressureless and

non-viscous perfect fluid equations are based, becomes invalid (see also Section 2.1.1). Due to

the non-linear nature of the dark matter evolution, the failure of the perfect fluid description

on small distance scales can have a sizeable effect on the dynamics on large distance scales.

Since SPT is based on solving the perfect fluid equations perturbatively, it does – a priori –

not account for deviations from the perfect fluid on small distance scales or equivalently for

large momenta k. Thus, calculating its impact on small momentum scales is not possible

within the framework of SPT.

To address this issue, two complementary strategies have been developed. The effective

field theory approach (see e.g., [63, 178, 208]) takes deviations from the perfect fluid assump-

tion into account by adding an effective pressure and effective viscosity coefficients to the

perfect fluid equations. These compose in turn an effective velocity dispersion tensor σij

contributing to the fluid equations (see (2.29) and (2.28)). The effective coefficients are split

into a counter-term to cancel possible UV divergences and a (physical) renormalized piece.

Then, the resulting renormalized coefficients capture, among others, the deviations from the

perfect fluid equations. They are inferred from observational data or numerical simulations.

A different direction has been followed by the development of perturbative approaches which

actually start from the viscous fluid dynamics [213, 214]. Thereby, the viscous fluid dynamics

accounts for the deviations from the perfect fluid description in terms of a gradient expansion

and shares some commonalities with the EFT approach (see for instance [214]).

To address the shortcomings of SPT discussed in this section and improve upon its per-

turbative predictions, a plethora of alternative perturbative approaches to LSS formation has

been developed. We have mentioned some of these already in our previous considerations. In

the following, we provide an overview of the different perturbative methods in the literature

by pointing out their characteristics, similarities and differences.
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5.2. Alternative perturbative approaches

The development of analytic approaches within cosmological perturbation theory to model

the formation of the large-scale structure in the Universe, both in Eulerian and in Lagrangian

space, dates back to the very early days of modern cosmology [40, 91, 92]. In the Eule-

rian description of cosmological perturbation theory, SPT constitutes by a good margin the

most common perturbative approach to investigate the dynamics of LSS formation. While

its perturbative solution of the non-linear fluid equations relies on the density contrast as

fundamental quantity, its Lagrangian-space equivalent, the so-called Lagrangian perturbation

theory (LPT), introduces a displacement vector field as central dynamical variable [103–127].

In turn, proceeding from the linear perturbative order of this displacement field, the so-called

Zel’dovich approximation (ZA) [91] deduces an approximate solution to the fluid equations

(see e.g., [105, 128–137]). However, since LPT does not only suffer from the same short-

comings as SPT, but has the additional drawback that the Lagrangian picture breaks down

once shell-crossing occurs, it has received less attention in the past than SPT as its Eulerian

counterpart [138].

Although SPT as a perturbative method provides valuable insights in the dynamics of LSS

formation (see e.g., [40]), the shortcomings it reveals lead to a fundamental limitation of its

predictive power. In particular, it possesses only a small range of validity at low redshifts (see

Section 5.1.1) and shows poor convergence properties due to the emergence of UV-divergent

loop integrals (see Section 5.1.2). This UV-divergent behavior of the perturbative expansion

in SPT has been confirmed to date by computations of the density power spectrum up to

three-loop order [102, 338].

Due to these drawbacks of SPT, a lot of effort has been devoted in the recent years to

the development of alternative perturbative LSS approaches with the aim to overcome the

fundamental shortcomings of SPT and extend the range of reliable perturbative predictions

from the weakly into the mildly non-linear regime. An accurate description of the dynamics in

the mildly non-linear regime is of particular importance as it encodes invaluable cosmological

information, provided for instance by the baryon acoustic oscillations [142, 334, 335] at low

redshifts (see (5.1)).

To address these issues of SPT, two different directions have been followed in the literature.

On the one hand, the results of [102, 209] suggest that the UV divergence of the perturbative

SPT expansion originates from an unphysical treatment of modes well inside the regime of

validity of the single-flow approximation in the framework of SPT [303]. Hence, one expects to

achieve progress from better understanding the perturbative expansion itself and identifying

the effects behind the failure of perturbation theory. Based on this motivation, a variety of
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resummation techniques for the perturbative expansion, as for example renormalized pertur-

bation theory (RPT) [142–144], have been developed. These focus on the resummation of

higher-order contributions in the perturbative expansion in order to improve its convergence

properties and extend its range of validity compared to SPT.

On the other hand, an alternative way to address the lack of convergence in SPT consists

in considering corrections to the single-flow assumption and thus the perfect fluid approxi-

mation arising from non-linear hard modes. For this purpose, one proceeds to an effective

fluid description which requires to extract information from observational data or numerical

simulations. This is the idea behind the effective field theory (EFT) of large-scale struc-

ture [49, 63, 178–207] and its formulation in Lagrangian space (LEFT) [89, 208]. It is beyond

the scope of this work to discuss the (semi-analytic) effective field theory approach in detail.

Instead, we refer to [63, 178, 208] where the basic aspects of the EFT approach and its La-

grangian space formulation LEFT are introduced, as well as to [89] for a review of the latter.

Other approaches using an effective description beyond the perfect fluid or accounting for de-

viations from the perfect fluid approximation (see Section 5.1.4) can be found in [209, 211, 212]

and [213, 214], respectively.

5.2.1. Resummation schemes

It was in particular the development of resummation techniques that has resurfaced a renewed

interest on analytic approaches in cosmological perturbation theory in the last decade. The

pioneering work in this line is the renormalized perturbation theory (RPT) approach [142–

144]. Based on the observation that large perturbative contributions arising from soft-mode

effects can be resummed in SPT, it reorganized the perturbative expansion in terms of a non-

linear propagator to improve its convergence. In the large-momentum limit, the non-linear

propagator subsequently allows to resum infinite classes of subdiagrams in the perturbative

expansion and leads to an exponential suppression of large soft-mode effects controlled by

the non-linear scale kNL. Remarkably, the result for the non-linear propagator fairs very

well against numerical simulations [339]. This resummation also leads to an improvement of

the convergence properties of the density power spectrum in comparison to SPT. A natural

extension of the non-linear RPT (two-point) propagator is provided by the concept of multi-

point propagators introduced in [339, 340]. We review the fundamental aspects of RPT and

the multi-point propagator formulation in Section 5.3.

Motivated by the success of RPT, a large variety of resummation schemes mostly intending

to resum large soft effects, has been developed (see e.g., [114, 116, 148–163]). Many of these

perturbative approaches implement concepts from other fields, such as quantum field theory
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(see Section 3.3.6) or the hydrodynamic theory of turbulence [147]. All of them provide

relatively accurate predictions for the density power spectrum on the onset of non-linearity,

but fail on sufficiently large momentum scales. In the following, we give an overview of a

number of specific resummation schemes by pointing out their commonalities and differences

and finally comparing their predictions for the density power spectrum. Detailed reviews of

the different resummation schemes can be found in [100, 138–141, 164]).

While the perturbative approaches of SPT and also RPT aim to solve the non-linear fluid

equations perturbatively with respect to the doublet field ψa(k, η) of density and velocity per-

turbations, an alternative strategy is to extend the fluid equations to an infinite hierarchy of

evolution equations directly in terms of the correlation functions, such as the power spectrum

and the bispectrum. In order to derive a perturbative solution for the correlation functions,

one then truncates the infinite hierarchy of evolution equations to a closed system of equa-

tions through an appropriate ‘closure approximation’. In the so-called closure theory [149],

the hierarchical system of evolution equations is truncated by approximating the three-point

correlation function by its leading-order expression in SPT. This allows in turn to explicitly

determine the non-linear propagator, defined as in RPT, in the small- and large-momentum

limit and to match it naturally in the intermediate regime. Proceeding from this, the power

spectrum is derived order-by-order via a Born-like series expansion [341]. Apart from this, an

attempt to solve the closure equations numerically without resorting to a Born-like expansion

has appeared in [116].

A variant of the closure theory is the time-flow approach [156], which is also referred to as

time-renormalization group approach since it can be interpreted as a specific formulation of

the Wilsonian renormalization group (RG) [342–346] with the time being the flow parameter.

Details about the time-flow approach can be found in Section 5.5. In the time-flow ap-

proach, the infinite hierarchy of evolution equations is truncating by neglecting the connected

part of the four-point correlation function, the trispectrum. In consequence, the time-flow

approach leads to formal integral solutions for the power spectrum Pab(k, η) and the bis-

pectrum Babc(k, q,p, η), which can then be evaluated successively by means of perturbation

theory. The time-flow approach has the particular advantage that it can be straightforwardly

applied to cosmological models other than EdS and ΛCDM, such as those containing massive

neutrinos or scalar-tensor modifications of gravity. Applications of the time-flow approach

can bee found in [301, 303, 347–350]. Beyond that, this approach can be considered as a gen-

eralization of the renormalization group perturbation theory (RGPT) [150] which constitutes

an attempt to regulate the UV divergence of the one-loop density power spectrum in SPT by

use of renormalization group methods.

In [151–153], different framework has been developed by implementing a path-integral for-
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mulation of the Vlasov equation (2.18) in terms of the distribution function f(x,p, τ) in (2.17).

A similar technique, which we here refer to as large-N theory, with N being a fictitious pa-

rameter, has been applied to the fluid equations in [154]. These two methods rely on taking

functional derivatives of an appropriately constructed path integral, the generating functional,

to derive correlation functions like the power spectrum. While the straightforward pertur-

bative evaluation of the generating functional reproduces the predictions of SPT, applying

large-N expansion techniques and truncating at a fixed order in 1/N leads to an approxi-

mate perturbative solution for the power spectrum. This coincides with the corresponding

SPT predictions up to a fixed order in the initial power spectrum. Beyond this order, it

includes additional non-perturbative contributions from infinite partial resummations of the

perturbative SPT expansion.

Furthermore, let us mention the Lagrangian resummation theory [114, 115], which has

been followed by a number of subsequent extensions [118, 120–122, 124, 126, 351]. The

Lagrangian resummation theory approach reproduces the density power spectrum of SPT

at the linear perturbative order, but additionally yields a non-perturbative prediction for the

power spectrum corresponding to a resummation of an infinite set of terms in the perturbative

SPT expansion. Thereby, the first term of the resummed power spectrum is identical to the

respective tree-level prediction of RPT in the large-momentum limit.

In order to compare the accuracy of the different resummation schemes discussed above,

we show in Figure 5.2 and Figure 5.3 their perturbative predictions for the power spectrum

of density perturbations, P
(
k, z = 0

)
≡ P11

(
k, η(z = 0)

)
, at present time, or equivalently

redshift z = 0 (see (1.1)), for a ΛCDM universe in comparison to results of tree-level SPT

and N -body simulations performed in [138].2 Thereby, each power spectrum contribution

has been divided by the ‘no-wiggle’ Eisenstein-Hu fit Pnw,0(k) of the density power spectrum

(see [352]) for illustrating the accuracy of the perturbative predictions around the baryon

acoustic oscillations.

In detail, Figure 5.2 shows the perturbative contributions to the density power spectrum

at tree-level, one-loop and two-loop order in RPT and closure theory, respectively. In both

approaches, the higher loop corrections improve upon the tree-level contribution. For RPT,

the one-loop results performs rather well for momenta k . 0.15h/Mpc, whereas the two-loop

contribution, similar as in SPT, systematically overpredicts the density power spectrum com-

pared to the results from numerical simulations. In contrast to RPT, closure theory appears

to improve by going from one-loop to two-loop order. It extends the range of agreement with

2The cosmological parameters which have been used to perform the numerical simulations for the flat ΛCDM

model are the density parameters Ωm,0 = 0.25, Ωb,0 h
2 = 0.0224, the dimensionless Hubble parameter h =

0.72, the power spectrum renormalization σ8 = 0.8 and the primordial spectral index ns = 0.97 [138].
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Fig. 5.2.: Comparison of perturbative contributions to the power spectrum of density per-

turbations, P
(
k, z = 0

)
≡ P11

(
k, η(z = 0)

)
, at present time (or equivalently at

redshift z = 0) and for a ΛCDM universe at tree-level, one- and two-loop order in

RPT and closure theory, respectively (adapted and reprinted from [120]). Each

power spectrum contribution has been divided by the ‘no-wiggle’ Eisenstein-Hu

fit Pnw,0(k) of the initial density power spectrum [352] for highlighting the accu-

racy of the perturbative predictions around the baryon acoustic oscillations. Here,

the black squares and the black dotted line indicate the results for the density power

spectrum from numerical simulations and tree-level SPT for reference. The red solid

line represents the corresponding predictions of tree-level RPT, the green dashed line

of one-loop RPT and the blue long-dashed line of two-loop RPT, whereas the yellow

short-long-dashed line shows the predictions of tree-level closure theory, the ma-

genta dot-long-dashed line of one-loop closure theory and the cyan dot-dashed line

of two-loop closure theory.

the N -body simulation data significantly at two-loop order.

Moreover, in Figure 5.3, the one-loop contributions to the density power spectrum in SPT as

well as the remaining resummation schemes introduced before, namely the time-flow approach,

RGPT, large-N theory and Lagrangian resummation theory, are presented. Therein, the one-

loop SPT contribution, always over-predicting the power spectrum compared to numerical

simulations, clearly reveals the overshooting phenomenon of SPT. Besides, the one-loop pre-

diction of large-N theory roughly follows that of SPT before turning over at high momenta.
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Fig. 5.3.: Comparison of the one-loop predictions for the power spectrum of density perturba-

tions, P
(
k, z = 0

)
≡ P11

(
k, η(z = 0)

)
, at present time (i.e., at redshift z = 0) and for

a ΛCDM universe, in SPT, the time-flow approach, RGPT, large-N theory and La-

grangian resummation theory, respectively (adapted and reprinted from [120]). As

in Figure 5.2, each power spectrum contribution has been divided by the ‘no-wiggle’

Eisenstein-Hu fit Pnw

(
k, z = 0

)
of the initial density power spectrum (see [352]),

whereas the black squares and the black dotted line represent the results for density

power spectrum from numerical simulations and tree-level SPT for comparison. In

this figure, the red solid line shows the one-loop contribution to the density power

spectrum in SPT, the yellow short-long-dashed line the respective one in the time-

flow approach and the cyan dot-dashed line the one in RGPT, whereas the magenta

dot-long-dashed line represents the one-loop power spectrum correction in large-N

theory and the green dashed lined the one in Lagrangian resummation theory.

Lagrangian resummation theory, on the other hand, is much too strongly damped beyond the

first oscillation. Apart from this, the time-flow approach as well as RGPT follow the general

behavior of the numerical simulations, but without fitting any of its characteristics precisely.

In summary, Figure 5.2 and Figure 5.3 reveal that in comparison to the results from nu-

merical simulations, the power spectrum of density perturbations is well modeled by the

theoretical predictions of the discussed resummation schemes (as well as SPT) in comparison

up to k ' 0.1h/Mpc at redshift z = 0 for a ΛCDM universe [138]. Note that for higher

redshifts, the performance of the perturbative methods improves, as expected. Although
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the resummation techniques lead to a slight improvement of power spectrum predictions in

the weakly non-linear regime compared to SPT, non of these methods provides sufficiently

accurate predictions beyond it.

5.2.2. Current focus of analytic studies

Currently, the main focus of analytic studies in the field of LSS formation can be broadly

classified in two categories [89, 100]. First, the impact of soft, long-wavelength (IR) pertur-

bations on modes around the BAO scale (see (5.1)) has been studied from different points

of view, e.g., by exploiting symmetry arguments such as (extended) Galilean invariance and

the equivalence principle [165–177], or using the eikonal approximation [101, 159, 160]. We

discuss the latter in detail in Section 5.4 and apply explicitly in Section 6.1.1.

Second, a lot of effort has been devoted to understanding the influence of hard, short-

wavelength (UV) perturbations. Due to the non-linear dynamics of dark matter clustering

on short momentum scales, their treatment is more complicated. Thereby, the effective field

theory approach (see for instance [63, 178, 208]) has emerged as a useful tool to parameterize

the imprint of UV modes on long-distance observables. Furthermore, motivated by various

results from numerical simulations [209, 210], complementary approaches have been developed

which aim at addressing the intrinsic limitations of SPT from first principles, such as [102,

215, 216] (see also [211–214] in this context).

For future progress in cosmological perturbation theory, it is still of major importance to

assess and analyze the impact of UV modes on small momentum scales in further detail. We

present an effort in this direction in Chapter 7. Therein, we develop methods to deduce a non-

perturbative equation for the power spectrum in the soft limit which in turn allows us to draw

conclusions about the UV divergence in perturbation theory. In general, the efforts of studying

the UV effects should be regarded as part of a grander program with the ultimate goal to

develop efficient analytic methods to accurately predict the large-scale structure observables

in the cosmologically interesting intermediate regime.

After this overview of the various existing analytic approaches in the field of large-scale

structure formation, we present a selection of analytic methods in further detail in the next

sections. Apart from the pioneering work of RPT discussed in what follows, we focus on those

methods which we need for further perturbative investigations in Chapter 6. We consider the

eikonal approximation and the time-flow approach in Section 5.4 and Section 5.5, respectively.
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5.3. Renormalized perturbation theory

To overcome the shortcomings of SPT, discussed in Section 5.1, and to improve upon its

perturbative predictions in the weakly non-linear regime, a lot of effort has been devoted to

the development of alternative approaches in cosmological perturbation theory in the last

decade. The first significant progress in this direction was made by the introduction of the

renormalized perturbation theory (RPT) in [142–144], which transfers techniques developed

in quantum field theory as well as in the theory of turbulence in the context of hydrodynamics

(see e.g., [147]) to the field of large-scale structure formation.

The development of RPT was driven by the observation that large perturbative contribu-

tions arising from soft-mode effects can be resummed in perturbation theory. This result

leads to a reorganization of the perturbative expansion compared to SPT. Thereby, the linear

propagator gab(η, η0) and the vertex function γabc(k, q,p), constituting together with initial

power spectrum the fundamental building blocks of the diagrammatic formulation in SPT,

are replaced by a generalized non-linear propagator Gab(k, η, η0) and a non-linear vertex func-

tion Γabc(k, q,p, η, η
′, η′′) in RPT. Based on this, the RPT approach implements, to an even

higher degree than SPT, standard tools of quantum field theory. Besides the diagrammatic

representation of the basic building blocks, it expresses the non-linear propagator Gab(k, η, η0)

in form of a Dyson equation for the renormalized Green’s function [353]. As mentioned before,

in the limit of large momentum, it is then possible to resum infinite classes of subdiagrams in

the perturbative expansion yielding an exponential suppression of large soft-mode effects in

terms of the non-linear scale kNL. If the non-linear vertex function is in turn approximated

by its tree-level form (being essentially γabc(k, q,p)), the power spectrum can be written as as

expansion in the non-linear propagator. Then, the resulting perturbative series for the power

spectrum does not constitute an expansion in power of the initial density contrast δ0(k) any

more, but rather corresponds to an ‘expansion in orders of the complexity of the interac-

tion’ [147].

While in the initially developed RPT approach in [142–144], it is only made use of the

non-linear two-point propagator Gab(k, η, η0) to rewrite the resummation series of the power

spectrum, in [339, 340], the concept of multi-point propagators G
(n)
ab1...bn

(q1, . . . , qn, η, η0)

with k = |q1 + . . .+ qn| has been introduced as an alternative scheme to evaluate the pertur-

bative expansion of the power spectrum in RPT. Moreover, the concept of multi-point propa-

gators has led to effective implementations of RPT, namely MPTbreeze [145] and RegPT [146],

which significantly simplify the computationally demanding evaluation procedure of the power

spectrum in RPT.
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In the following, we review the fundamental aspects of the perturbative RPT approach and

give explicit expressions of the most important quantities it introduces, such as the non-linear

propagator, and the results, as for instance for the power spectrum, derived thereof.

5.3.1. Non-linear propagator

A possible way to account for the non-linearities in the perturbative treatment of large-

scale structure formation consists in interpreting them as modifications to the linear propa-

gator gab(η, η0) (see (3.68)). This idea, which leads to a renormalization of the propagator

and allows in turn a partial resummation of the perturbative series for correlation functions,

is the key aspect at the heart of RPT [142–144].

In the framework of RPT, the linear propagator gab(η, η0) is consequently generalized to a

fully non-linear one, denoted by Gab(k, η, η0), which effectively describes the time evolution

in the presence of mode-coupling. This non-linear propagator is formally defined as [142]

Gab(k, η, η0) δD(k − k′) ≡
〈
δψa(k, η)

δψb(k
′, η0)

〉
, (5.3)

where δψa(k, η) denote variations with respect to the doublet fields. Note that in contrast to

the linear propagator gab(η, η0), the non-linear propagator Gab(k, η, η0) is momentum depen-

dent, even in the case of an EdS cosmological model. Hence, the Dirac delta distribution in

the definition above is necessary to ensure translation invariance, that is, k′ = k.

To be precise, Gab(k, η, η0) is not a true propagator since it does not lead to a relation

ψa(k, η) = Gab(k, η, η0)ψb(k, η0), analogous to (3.56) for the linear propagator, for the non-

linear case. (For Gaussian initial conditions, it leads instead to a relation of the form (5.5)).

It rather has to be considered as a generalization of the linear propagator in the sense that

it can be diagrammatically represented with one incoming and one outgoing arrow, analo-

gously to the linear propagator in Figure 3.1. Explicit diagrams including the non-linear

propagator Gab(k, η, η0) can be found in [142].

By using the perturbative solution for the doublet fields ψa(k, η) in (3.72) with (3.73), we

can recast the definition of the non-linear propagator in (5.3) as a correction to the linear

propagator in terms of a series expansion,

Gab(k, η, η0) = gab(η, η0) +
∞∑
n=2

〈
δψ

(n)
a (k, η)

δψb(k, η0)

〉
. (5.4)

Here, we have explicitly separated the linear from the non-linear contributions. Notice that for

Gaussian initial conditions, the non-linear contributions are only composed by the odd terms of

the perturbative expansion. The series expansion of the non-linear propagator in the equation
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above can be represented diagrammatically by interpreting the linear propagator gab(η, η0) as

the tree-level contribution and consequently the higher-order contributions as loop corrections

to the non-linear propagator Gab(k, η, η0). Thereby, the non-linear contribution at order n

constitutes the nth-order loop correction. Explicit diagrams for the non-linear propagator up

to the two-loop level can be found in [142].

As we can see from the series expansion in (5.4), the non-linear propagator represents the

ensemble-averaged response of the fields ψ
(n)
a (k, η) at the time η to variations in the initial

conditions ψb(k, η0) set up at some initial time η0. In other words, it quantifies how much

information of the initial distribution of a k-mode remains in the final state at the same k in

terms of an ensemble average [142]. In this sense, the non-linear propagator can be thought

of as measuring the ‘memory of initial conditions’ [143]. For Gaussian initial conditions, the

non-linear propagator fulfills the relation〈
ψa(k, η)ψb(k

′, η0)
〉

= Gac(k, η, η0)
〈
ψc(k, η0)ψb(k

′, η0)
〉
, . (5.5)

Thus, In case of Gaussian initial conditions, we can interpret it as a measure of the cross-

correlation between the initial and the final state of the doublet fields or indeed as a genuine

propagator (Greens function) in terms of two-point cross-correlation functions.

By using the diagrammatic representation of perturbation theory, it is possible to refor-

mulate the perturbative expansion (5.4) as a formal integral solution for the non-linear prop-

agator. This integral solution has the form of a Dyson equation [353] with the non-linear

propagator Gab(k, η, η0) corresponding to the renormalized Green’s function [142],

Gab(k, η, η0) = gab(η, η0) +

η∫
η0

dη′
η′∫
η0

dη′′ gac(η, η′) Σcd(k, η
′, η′′)Gdb(k, η

′′, η0) (5.6)

with time ordering η ≥ η′ ≥ η′′ ≥ 0 to ensure causality. Here, Σab(k, η, η
′) is defined as the

sum of the perturbative contributions to the non-linear propagator consisting of ‘principle

path irreducible diagrams’, i.e., the diagrams which cannot be disconnected by removing a

linear propagator from the principal path. Thereby, the principal path constitutes the chain of

linear propagators that runs through the diagram without intersecting the initial conditions.

Rewriting the non-linear propagator Gab(k, η, η0) as a Dyson equation can be seen as a first

step leading to a resummation of the perturbative expansion for the non-linear propagator

in (5.4). However, in order to derive an explicit expression for the resummed propagator in

the framework of RPT, a considerable conceptual and computational effort is required. This

can be avoided by resorting to the so-called eikonal approximation. As we review in the

next section, the eikonal approximation provides a transparent and straightforward way to
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derive the resummed non-linear RPT propagator (see Section 6.1.1). Beyond that, it allows

for a generalization of this results and thus also indicates its limitations. We give a detailed

derivation of the resummed propagator in Section 6.1.1 and concentrate here on the discussion

of its characteristic properties.

Resummation in the limit of large momentum

If we consider very large distance scales, i.e., small momenta k, the dynamics of gravita-

tional instability are dominated by the linear evolution. Hence, the non-linear contributions

to Gab(k, η, η0) in the perturbative series (5.4) vanish for k → 0 so that [144]

Gab(k → 0, η, η0) = gab(η, η0) . (5.7)

On the other hand, if we approach small distance scales, corresponding to large momenta k,

where the dynamics are dominated by the non-linear evolution, the mode-coupling interactions

gradually ‘erase’ the initial distribution. Hence, we expect the non-linear propagator to decay

for k →∞, that is,

Gab(k →∞, η, η0) = 0 . (5.8)

Indeed, if we assume Gaussian initial conditions (see (3.70)) and consider the limit of large

momentum k, the series expansion of the non-linear propagator in (5.4) can be resummed.

The non-linear propagator Gab(k, η, η0) then follows a Gaussian decay with respect to k in

the limit of large momentum [143]

Gab(k, η, η0) = gab(η, η0) exp

[
−1

2
k2σ2

d (eη − eη0)2

]
, (5.9)

where the dimensionful quantity σ2
d is the so-called variance of the initial ‘displacement field’,

given by [142, 143]

σ2
d =

4π

3

∫
dq P0(q) . (5.10)

In general, the variance of the displacement fields is defined as

σ2
ab(η) ≡ 1

k2

∫
d3q

(k · q)2

q4
Pab(q, η) =

4π

3

∫
dq Pab(q, η) . (5.11)

At the initial time η0 and for the correlation of density perturbations with a = b = 1, the

previous equation includes the initial density power spectrum. By assuming growing-mode

Gaussian initial conditions (see (3.70) and (4.15)), it then reduces to σ2
d ≡ σ2

11(η0).

Recalling the form of the linear power spectrum of density perturbations PL11(k, η) for

growing-mode initial conditions, (4.17), we find that the variance σ2
d is directly related to
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the non-linear scale kNL in (5.2). In fact, the non-linear scale kNL represents the charac-

teristic decay scale of the non-linear RPT propagator in (5.9), indicating the breakdown of

perturbation theory. However, the form of the propagator in (5.9) suggests that the impact

of modes from the highly non-linear regime k � kNL on the dynamics of the long-wavelength

modes is exponentially small. Thus, as a result of the resummation of the non-linear prop-

agator according to (5.9) in RPT, the long-distance scales are effectively ‘shielded’ from the

short-distance scales. This property draws a distinction between the perturbative frameworks

of RPT and SPT since the latter suffers from the lack of being highly sensitive to the influence

of the UV modes (see Section 5.1).

The relation for the non-linear propagator Gab(k, η, η0) in (5.9) has been compared with

respective predictions from numerical simulations in [339]. Therein, it has been found that the

functional behavior of the non-linear propagator in the limit of large momentum k is indeed

very well described by a Gaussian decay with respect to k.

5.3.2. Power Spectrum

The non-linear power spectrum Pab(k, η), which is expressed in SPT by a characteristic loop

expansion of the form (4.12) with (4.13), can be effectively reformulated in RPT. In particular,

if the non-linear vertex function is approximated by its tree-level form, the power spectrum

can be recasted as an expansion in the non-linear propagator Gab(k, η, η0) of the form [142,

144, 339],

Pab(k, η) = Gac(k, η, η0)Pcd,0(k)Gbd(k, η, η0) + PMC
ab (k, η) , (5.12)

where Pab,0(k) = uaubP0(k) for Gaussian-distributed growing-mode initial conditions, (4.3)

and (4.15). Note that the non-linear propagator does only depend on the magnitude of the

momentum k, as we show explicitly later on (see (5.17)). Here, the first contribution sums

up the diagrams to all loop orders that contain only one initial power spectrum P0(k) at

the ‘principal cross section’. We have introduced the latter in Section 4.4.1 and indicated

it in Figure 4.5 by the dotted line. In Figure 4.5, examples of diagrams with only one

initial power spectrum at the principal cross section are those for the SPT tree-level power

spectrum PLab(k, η) and the one-loop contribution P
(13)
ab (k, η). In contrast to this, the diagram

for the SPT one-loop contribution P
(22)
ab (k, η) involves two initial power spectra at the principal

cross section. Diagrams of this type form a special class since they cannot be split in two

parts by cutting one linear propagator. They are characterized by an irreducible structure

enclosing the principal cross section that ends with two vertices. We denote the sum of all

these irreducible structures by the quantity Ψcd(k, η, η
′). The sum of all diagrams, containing

more than one initial power spectrum P0(k) at the principal cross section and thus including
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such an irreducible structure, comprises the second contribution PMC
ab (k, η) of the previous

equation. Its explicit form reads [142]

PMC
ab (k, η) =

η∫
η0

dη′
η∫

η0

dη′′Gac(k, η, η′) Ψcd(k, η
′, η′′)Gbd(k, η, η

′′) . (5.13)

If we assume Gaussian-distributed growing-mode initial conditions so that P 0
ab(k) = uaubP0(k)

and introduce a simplified notation with regard to the non-linear propagator of density pertur-

bations, G1b ub = G11 +G12 ≡ G, the RPT power spectrum in (5.12) for density fluctuations

reduces to the exact and simple form [144]

P11(k, η) = G2(k, η, η0)P0(k) + PMC
11 (k, η) . (5.14)

A completely equivalent equation holds for the power spectrum of the velocity fields P22(k, η).

By rewriting the density power spectrum in this form, we can easily deduce the meaning of the

two different contributions to the power spectrum that we have formally introduced in (5.12).

The first term in (5.12) and (5.14), respectively, includes all contributions of the perturbative

expansion (in SPT) being proportional to the initial power spectrum P0(k) at the same scale k.

Due to this, it contains the most direct information about the initial power spectrum. One

can probe P0(k) by varying k, as long as the first term in (5.14) (and equivalently in (5.12)) is

dominant, i.e., for small values of k where the non-linear propagator has not yet significantly

decayed (see (5.9)). Due to the decay of the non-linear propagator, the first term represents

how much of the initial conditions remains at a given scale k and a certain point in time η. As

the non-linear propagator decays, a given mode looses memory about its initial value. Then,

an important fraction to the power spectrum is contributed by non-linear effects through the

second term in (5.14). This second term PMC
11 (k, η) in (5.14), which is given in its general

form in (5.12) and (5.13), constitutes the so-called mode-coupling term. At the scale k,

it comprises all non-linear contributions to the power spectrum which have been generated

by mode-coupling on smaller momentum scales. Hence, this term depends on the initial

(linear) power P0(q) spectrum from a wide range of scales q, other than k, weighted by rather

complicated convolution kernels.

In [339, 340], it has been shown that these kernels can be expressed in terms of so-called

multi-point propagators, which we denote here by G
(n)
ab1...bn

. These constitute a natural exten-

sion of the non-linear RPT propagator Gab(k, η, η0) in (5.3) and are defined as [339]

G
(n)
ab1...bn

(q1, . . . , qn, η, η0) δD(k − q1...n) ≡ 1

n!

〈
δnψa(k, η)

δψb1(q1, η0) · · · δψbn(qn, η0)

〉
(5.15)

with q1...n ≡ q1 + . . .+ qn. Notice that G
(n)
ab1...bn

(q1, . . . , qn, η, η0) corresponds to the (n+ 1)-

point propagator, though it depends, due to translation invariance ensured by the Dirac delta
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distribution, only on n wavenumbers in Fourier space. Besides, it possesses the property [337]

G
(n)
ab1...bn

(−q1, . . . ,−qn, η, η0) = G
(n)
ab1...bn

(q1, . . . , qn, η, η0) . (5.16)

For n = 1, the definition (5.15) reduces to the familiar non-linear two-point propagator in

RPT in (5.3),

G
(1)
ab (k, η, η0) ≡ Gab(k, η, η0) , (5.17)

depending as a consequence of the property (5.16) only on the magnitude of the momen-

tum k. From the formal definition in (5.15), the multi-point propagators G
(n)
ab1...bn

can be

computed order-by-order in a field expansion. Thus, they can be represented diagrammati-

cally. Thereby, G
(n)
ab1...bn

corresponds to the sum of all diagrams with n incoming lines and one

outgoing line (see [339]).

G
(n)
ab1...bn

(q1, . . . , qn, η, η0) = G
(n)
ab1...bn,tree(q1, . . . , qn, η, η0) exp

[
−1

2
k2σ2

d (eη − eη0)2

]
, (5.18)

generating an exponential suppression with respect to σ2
d and thus the non-linear scale kNL

(see (5.10) and (5.2)). Note that the multi-point propagators at tree-level can be identified

with the SPT kernels defined in (3.73),

G
(n)
ab1...bn,tree(q1, . . . , qn, η, η0) = F̄ (n)

aa1a2...an(q1, . . . , qn, η) , (5.19)

which are for Gaussian-distributed growing-mode initial conditions related to the usual ker-

nels F (n)
a (q1, . . . , qn, η) in SPT (see (3.75)).

The implementation of the concept of the multi-point propagators according to (5.15) then

allows to rewrite the RPT relation for the non-linear power spectrum in (5.12) as follows [337],

Pab(k, η) =

∞∑
n=1

n!

∫
d3q1 . . . d

3qn δ
D(k − q1...n)

×G(n)
aa1...an(q1, . . . , qn, η, η0)Pa1b1,0(q1) · · ·Panbn,0(qn)G

(n)
bb1...bn

(−q1, . . . ,−qn, η, η0)

(5.20)

with (5.16). If we compare this expression with the RPT relation for the power spectrum

in (5.12), we see that the contribution n = 1 coincides with the first term in (5.12). Thus,

we can identify the contributions for n ≥ 2 in the previous equation with the second term

in the RPT power spectrum relation, i.e., the mode-coupling term PMC
ab (k, η). Similar to the

perturbative expansion of the power spectrum in terms of loop orders in SPT (see (4.12)), we

can then perform a loop expansion of the mode-coupling term,

PMC
ab (k, η) =

∞∑
`=1

P
MC,(`)
ab (k, η) , (5.21)
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where ` = n− 1 for n ≥ 2 so that P
MC,(`)
ab (k, η) denotes the `-loop contribution to the mode-

coupling term. Due to the exponential suppression of the n-point propagators G
(n)
ab1...bn

for

large external momentum k according to (5.18), we expect the individual power spectrum con-

tributions and thus their overall sum in (5.20) to converge in the UV limit. As a consequence,

we also presume the RPT loop expansion of the mode-coupling term PMC
ab (k, η) in (5.21) to

have better convergence properties than the loop expansion (4.12) in SPT.

On the one hand, the resummation method of RPT indeed improves upon the SPT approach

in the sense that all loop contributions of (5.21) to the resummed power spectrum in (5.20)

are positive and well-defined in the non-linear regime by dominating at some characteristic

scale each and being subdominant otherwise. In this regard, the RPT approach constitutes in

fact an improvement over SPT, where the loop expansion, depending on the initial conditions,

does not necessarily converge (see Figure 5.1). Moreover, the resummation technique of RPT

leads to more accurate predictions than SPT for the power spectrum at the onset of non-

linearity [138, 144].

On the other hand, the RPT approach has a number of computational disadvantages and

conceptual drawbacks. Concerning the former, it is, for instance, necessary to include per-

turbative corrections beyond one-loop order to obtain an accurate predictions for the power

spectrum in the mildly non-linear regime [294]. This is additionally complicates by the fact

that the evaluating the power spectrum Pab(k, η) in (5.20) is a cumbersome and computation-

ally demanding procedure (see e.g., [339]). Due to this, the multi-point propagator concept

has been used to formulate effective implementations of RPT, called MPTbreeze [145] and

RegPT [146], which significantly simplify the evaluation procedure of the RPT power spec-

trum. These effective propositions incorporate calculations of the power spectrum in RPT up

to two-loop order and are accompanied by publicly released codes (see [145, 146]).

Apart from the computational effort, RPT possesses a number of conceptual shortcomings

as well. Although the resummation scheme of RPT leads to an improved convergence of the

power spectrum at intermediate scales compared to SPT, it resums an only a specific subset

of the SPT diagrams. Due to this, one may doubt whether this technique can give rise to a

systematic improvement of the predictions for the power spectrum on large momentum scales

(for similar conclusions see [101, 354]). In detail, the method of RPT relies on the assumption

that the exponential suppression associated to the non-linear scale (see (5.18) and (5.20))

constitutes the leading soft-mode effect in the power spectrum. However, it has been proven

that the leading contributions from soft modes cancel at arbitrary loop order in perturbation

theory [237, 306], as we discussed in Section 5.1.3, whereas this cancellation is not explicit

in the RPT approach (see also [101]). Moreover, it has been shown by use of the eikonal

approximation [159, 160] that the exponential suppression indeed occurs for the non-linear
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propagator, but is absent in the power spectrum. In consequence, this suggests that the effects

associated to the non-linear scale in the resummed RPT power spectrum are spurious.

In order to address the conceptual issues of RPT in further detail as well as to study

soft-mode effects greater generality, we introduce the eikonal approximation in what follows.

5.4. Eikonal approximation

Compared to the techniques developed in the framework of RPT [142–144], there exists a

direct and more efficient approach to (re-)derive the resummation of the non-linear propa-

gator Gab(k, η, η0) in the limit of large momentum k in (5.9). As mentioned in [355] and

explicitly demonstrated in [157, 237, 340], it is possible to resum the same class of contribu-

tions to the non-linear propagator in the large-k limit by using a single or finite number of

random variables, whose statistical properties can be determined from the initial conditions,

to describe the effect of long-wavelength (soft) fluctuations on the dynamics of the short-

wavelength (hard) modes. Later on, in [159, 160], this method has then been successfully

applied to recover the resummed non-linear RPT propagator as well as to extend the RPT

approach to arbitrary cosmological models. There, it has been named the ‘eikonal approxima-

tion’, borrowing the terminology of quantum field theory where related techniques are used.

In quantum field theory, the eikonal approximation is, for instance, applied to exponentiate

the effect of soft photon modes on the propagator of electrons [356, 357], in a manner similar

to the way we will implement it. While the eikonal approximation is used in various areas

of physics, it has been originally developed as an approximation in the equations of wave

propagation which leads to the laws of geometric optics [358].3

The essence of the eikonal approximation is that it allows to account for the impact of long-

wavelength modes on the development of the small-scale perturbations in a non-perturbative

way, based on a separation of these scales. Indeed, if the long wavelengths are much longer

than the short ones, their effect can be interpreted as a redefinition of the background for the

small scales. We take this point up again and proceed in a similar direction in Chapter 6 and

Chapter 7 (see in particular Section 6.1.1). In the eikonal approximation, the separation of

scales is used to introduce a redefined set of fluid equations for the hard modes embedded in

an external random medium incorporating the impact of the soft modes. The eikonal approxi-

mation is based on the same motivation as RPT which consists in addressing the convergence

problems of SPT related to the enhancement of the vertex function through the coupling

between soft and hard modes. However, in contrast to RPT, the eikonal approximation does

3The word ‘eikonal’ can be retraced to the ancient Greek word ‘εικών’, meaning icon or image [359].
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not only provide a partial resummation of the effects of soft modes, but has the purpose to

deal with all soft corrections to the hard-mode observables [159]. Hence, applications of the

eikonal approximation in [159] have comprised both the recovering of the large-momentum

resummation of the non-linear two-point propagator in RPT as well as the derivation of the

respective resummation properties of the multi-point propagators [339, 340], introduced in the

previous section, which can been see as the building blocks for constructing next-to-leading

order perturbative predictions. Moreover, in [101, 160], the eikonal approximation has been

used to investigate the impact of long-wavelength modes on correlation functions, such as the

power spectrum or the bispectrum, on short distance scales. Therein, it has been shown that

equal-time correlation functions do not depend on the impact of soft modes on these scales.

Moreover, it constitutes an extension of the findings in [237] where the absence of soft-mode

effects has been demonstrated for the power spectrum only, though for all loop orders. In

[306], this has been interpreted as consequence of Galilean invariance (see also [167])

Furthermore, in contrast to most other approaches in cosmological perturbation theory,

especially also RPT, the eikonal approximation is not restricted to the treatment of a single

pressureless CDM fluid. Hence, it can also be applied to treat systems of multiple (pressure-

less) fluids with non-adiabatic, isodensity soft modes, including for instance CDM and baryons

(see also [360]). In such a case, the eikonal approximation provides an effective formalism to

derive the resummed non-linear propagators in the presence of isodensity soft modes. This has

been done in [159, 160]. Another perturbative formalism that is not limited to the single-fluid

case is, the time-flow formalism, introduced in [156] and applied to case of massive neutrinos

in [303]. We give an overview of the time-flow approach in Section 5.5.

In the following, we review the basic aspects of the eikonal approximation. Thereby, we

decompose the fluid equations by introducing a separation of long and short distance scales.

This decomposition allows us to encode the impact of the soft modes in the fluid equations

in a resummed eikonal propagator. Subsequently, we use the latter to show how the non-

linear RPT propagator in the limit of large-momentum can be recovered with the eikonal

approximation.

5.4.1. Decomposition of the fluid equations

In [340], it has been shown that the RPT expression for the non-linear propagator Gab(k, η, η0)

in the limit of large momentum k in (5.9) contain non-linear terms that couple different modes,

they directly allow to study the effect of long-wavelength (soft) modes q on the dynamics of

a given short-wavelength (hard) mode k in the limit where k � q. This is done in the eikonal

approximation [160, 340]. In this limit, spatial variations of the long-wavelength modes are
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small with respect to the modes k. Hence, the long-wavelength modes can be treated as an

external random background. If we neglect the mode couplings on short momentum scales,

the non-linear fluid equations can be rewritten as linear equations embedded in an external

medium.

In the fluid equations (3.54), the non-linear mode-coupling terms are characterized by the

vertex function γabc(k,p1,p2), defined in (3.53). Here, the internal mode-coupling of the

vertex function are denoted by p1 and p2, such that k = p1 + p2, to avoid confusion with

the soft mode q. We can split the non-linear mode-coupling terms in two different contribu-

tions by drawing a distinction between couplings where the internal modes have comparable

amplitudes, p1 ' p2, and couplings where they possess very different amplitudes, p1 � p2

or p1 � p2. If we indicate the soft modes in the latter case by q and assume them to be much

smaller than the momentum k itself, we can decompose the fluid equations in (3.54) as [340]

∂ηψa(k, η) + Ωab(η)ψb(k, η)− Ξab(k, η)ψb(k, η)

' [γabc(k,p1,p2)ψb(p1, η)ψc(p2, η)]S ,
(5.22)

where we can interpret Ξab(k, η) as a corrective term to the linear evolution of the mode k.

It is given by

Ξab(k, η) ≡ 2

q�k∫
d3q γabc(k,k − q, q)ψc(q, η) . (5.23)

In the previous definition of the matrix function Ξab(k, η), we have explicitly written down

the internal momentum integration to emphasize that the domain of integration is restricted

to soft momenta q � k. Conversely, the non-linear mode-coupling contribution on the right-

hand side of (5.22), containing the vertex function γabc(k,p1,p2), excludes the soft domain by

comprising only hard modes or modes of comparable size. This domain of short-wavelength

modes is indicated by the subscript ‘S’ in (5.22).

In this limit of separation of scales, q � k, the matrix function Ξab(k, η) in (5.23) consti-

tutes a random variable. It depends on the initial conditions, imposed through the doublet

field ψc(q, η), but is (assumed to be) independent of the evolution of the soft mode q. Conse-

quently, the decomposed fluid equations (5.22) can be interpreted as the equations of motions

of cosmological modes in a random medium with long-wavelength modes. Thus, they allow

us to compute how the presence of long-wavelength modes influences the growth of structures

(see also our considerations in Chapter 6 and Chapter 7).

According to the definition of the vertex function in (3.53) and the mode-coupling functions

therein (see (3.23)), the leading-order expression of the vertex γabc(k,k − q, q) in (5.23)

for q � k reads

γabc(k,k − q, q) ' 1

2

k · q
q2

δab δc2 (5.24)
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with δab corresponding to the Kronecker delta. By inserting this relation in the definition of

the matrix function Ξab(k, η) in (5.23), the latter becomes proportional to the identity matrix,

Ξab(k, η) ' Ξ(k, η) δab , (5.25)

where we introduced the function

Ξ(k, η) ≡
q�k∫
d3q

k · q
q2

ψ2(q, η) . (5.26)

Due to the form of the vertex function (5.24), Ξ(k, η) only contains the velocity divergence

field ψ2(q, η) ≡ Θ(q, η), as defined in (3.51), but not the density field δ(q, η). Since the doublet

field ψa(x, η) is a real variable and its Fourier transform ψa(k, η) in turn a complex quantity,

i.e., ψa(k, η) = ψ∗a(−k, η) with ‘∗’ being the complex conjugate [40], the function Ξ(k, η) is

purely imaginary.

In the decomposed fluid equations in (5.22), we have absorbed the non-linear coupling to

the soft modes in the linear term Ξab(k, η) Ψb(k, η). Thus, the impact of the soft modes is

completely encoded in the linearized (homogeneous) evolution equation, neglecting the non-

linear mode-coupling terms [. . .]S on the right-hand side of (5.22). The eikonal approximation

then consists in deriving a solution for this linearized evolution equations by neglecting the

terms [. . .]S in the hard domain. Due to this, we can proceed analogously as for solving the

linear fluid equations in (3.55) in terms of the linear propagator gab(η, η
′) (see our derivations

in Section 3.3.2 and Section 3.3.3). This means a new propagator ξab(k, η, η
′) is introduced

which satisfies the equation (see (3.58))

[
δab [∂η − Ξ(k, η)] + Ωab(η)

]
ξbc(k, η, η

′) = 0 , (5.27)

so that we can determine the formal solution of the decomposed fluid equations in (5.22) in

terms of this propagator as (see (3.67))

ψa(k, η) = ξab(k, η, η0)ψb(k, η0)

+

η∫
η0

dη′ ξab(k, η, η
′)
[
γbcd(k,p1,p2)ψc(p1, η

′)ψd(p2, η
′)
]
S
,

(5.28)

where the last line of the equation above includes the contributions of hard-mode domain. The

propagator ξab(k, η, η
′) can be explicitly determined from the relation (5.27). By accounting

for causal boundary conditions,

ξab(k, η, η) = δab , (5.29)
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in analogy to (3.59), we can express it in terms of the linear propagator gab(η, η
′) (see (3.56))

as

ξab(k, η, η
′) = gab(η, η

′) exp

[∫ η

η′
dη′′ Ξ(k, η′′)

]
. (5.30)

Thus, similarly as in RPT (see (5.9)), the eikonal approximation leads to the emergence of a

resummed propagator. As we can see from the definition of Ξ(k, η) in (5.26), the argument

of the exponential function in the equation above corresponds to the time integral of the

velocity divergence ψ2(q, η) ≡ Θ(q, η) projected along the direction of the momentum k, that

is, the displacement component along k. Note that in RPT, the derivation of the non-linear

propagator Gab(k, η, η0) in the limit of large momentum k in (5.9) relies on the assump-

tion that the soft modes are in the linear and growing-mode regime, ψa(q, η) ' ψLa (q, η)

with ψLa (q, η) ' e(η−η0) ua δ0(q) (see (3.74) and (3.76)) [143]. In contrast to this, the equation

for the propagator ξab(k, η, η
′) in (5.30) does not require to make any assumptions on the

form of the soft mode Θ(q, η). In particular, it is valid irrespective of the initial conditions

imposed on the soft mode.

Besides, there is another aspect of (5.30) which is worth mentioning. In (5.30), the depen-

dence of the propagator ξab(k, η, η
′) on the soft modes is encoded in the function Ξ(k, η)

of (5.26), which is purely imaginary. Thus, if we contract this propagator with a hard

mode ψa(k, η), as for instance in (5.28), the impact of the soft modes only gives rise to a

change of the phase of the hard mode, but not of its amplitude. Consequently, it does not

cause a modification of the equal-time correlation functions (see also [101, 160]). However,

the soft modes have an effect on the amplitudes of the propagators. Indeed, the change of

the phase leads to a damping of correlation functions including modes at unequal times. This

effect is the key point of the regularization scheme implemented in perturbative approaches

such as RPT.

5.4.2. Propagator resummation

To gain a detailed understanding of these considerations, let us explore how one can recover

the expression for the non-linear RPT propagator Gab(k, η, η0) in (5.9) using the formal so-

lution (5.28) and the resummed propagator (5.30) in the eikonal approximation. If we define

the resummed propagator ξab(k, η, η0) formally with respect to an initial field Ψb(k
′, η0) in

analogy to (5.3), we can derive its form from the formal solution (5.28). After taking the

ensemble average, we derive the relation

Gab(k, η, η0) =
〈
ξab(k, η, η0)

〉
Ξ
. (5.31)
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Hence, the ensemble average of the resummed eikonal propagator ξab(k, η, η0) over the possible

realizations of Ξ(k) equals the non-linear propagator Gab(k, η, η0) in RPT. According to the

explicit expression for the propagator ξab(k, η, η0) in (5.30), its ensemble average reads

〈
ξab(k, η, η0)

〉
Ξ

= gab(η, η0)

〈
exp

[∫ η

η0

dη′ Ξ(k, η′)
]〉

. (5.32)

As discussed before, the matrix function Ξab(k, η) in (5.25) and thus also the function Ξ(k, η)

arising from it constitute random variables. Hence, we can evaluate the ensemble average of

the exponential function above, including Ξ(k, η), by use of the cumulant expansion theorem

for random variables [361]. Applying the cumulant expansion theorem yields

〈
exp

[∫ η

η0

dη′ Ξ(k, η′)
]〉

= exp

[ ∞∑
p=2

cp(k, η, η0)

p!

]
, (5.33)

where cp(k, η, η0) denotes the pth-order cumulant of the random field
∫ η
η0
dη′ Ξ(k, η′). It is

given by

cp(k, η, η0) =

η∫
η0

dη1 . . . dηp
〈
Ξ(k, η1) · · ·Ξ(k, ηp)

〉
c
. (5.34)

To ensure that the non-linear propagator Gab(k, η, η0) in (5.31) and thus the ensemble av-

erage
〈
ξab(k, η, η0)

〉
Ξ

in (5.32) is real (non-imaginary), the relation (5.33) requires that the

cumulants cp(k, η, η0) have to be real as well. From the previous equation and by taking

into account that the function Ξ(k, η) is imaginary, we see that the sum over the cumulants

in (5.33) is restricted to even values of p. Moreover, for Gaussian initial conditions, the cu-

mulants with p > 2 in (5.34) vanish in consequence of the Wick theorem (4.6), as discussed in

Section 4.3. Hence, the only remaining contribution to the sum in (5.33) is the second-order

cumulant c2(k, η, η0). Note that due to the form of the function Ξ(k, η) (see (5.26)) entering

in (5.34), the second-order cumulant does not depend on the momentum k, but only on its

absolute value k. If we then approximate the soft mode incorporated in the function Ξ(k, η) by

its linear contribution, ψ2(q, η) ' ψL2 (q, η) with ψL2 (q, η) = g2a(η, ηin)ψa(q, ηin) (see (3.56)),

the function Ξ(k, η) in (5.26) becomes

Ξ(k, η) = g2a(η, η0)

q�k∫
d3q

k · q
q2

ψa(q, η0) . (5.35)

By inserting this expression in definition of the cumulants in (5.34), we can determine the

second-order cumulant c2(k, η, η0) in terms of the initial power spectrum P 0
ab(k) defined (4.2).
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As a result, we obtain the relation [101]

c2(k, η, η0) =

η∫
η0

dη′ dη′′
〈
Ξ(k, η′) Ξ(k, η′′)

〉
c

' −
η∫

η0

dη′dη′′ g2a(η
′, ηin) g2b(η

′′, ηin)

q�k∫
d3q

(k · q)2

q4
Pab,0(q) .

(5.36)

Next, we assume Gaussian-distributed growing-mode initial conditions so that the initial

power spectrum equals Pab,0(k) = uaubP0(k) (see (4.3) with (3.71)). If we in addition

specify the underlying cosmological model, what has not been necessary so far, to be an

EdS cosmology and consider only the growing mode of the linear propagator in EdS, i.e.,

gab(η, ηin) = e(η−ηin) uaub (see (3.68)), the previous relation simplifies to

c2(k, η, η0) = −k2σ2
d

(
eη−ηin − eη0−ηin

)2
. (5.37)

Here, we have encoded the dependence on the initial power spectrum in the variance of the

initial displacement field σ2
d, introduced in (5.10).

σ2
d =

4π

3

q�k∫
dq P0(q) , (5.38)

which at this stage depends on the domain of integration and hence on k. However, by

taking the value of σ2
d in the large-k limit and setting ηin ≡ 0 for convenience, we recover

the result for the non-linear RPT propagator Gab(k, η, η0) in the limit of large momentum

in (5.9). Besides, the eikonal approximation gives a possible physical interpretation of the

propagator Gab(k, η, η0) in the large-k limit. In fact, one can imagine the hard modes to be

scattered by the background of soft modes, leading to a decorrelation of the hard modes and

thus to an exponential decay of the non-linear propagator over time [101]. The fact that the

large-momentum expression for the non-linear RPT propagator in (5.9) can be rederived in

the eikonal approximation shows that the latter can be indeed used to resum the leading-order

soft mode effects.

To go beyond that, another advantage of the eikonal approximation is that it allows not

only to compute the impact of the soft modes on the propagator but also on equal- and

unequal-time correlation functions, as we discussed before. In particular, it reveals that a

suppression of the propagator arises due to effects of the soft modes. However, the equal-time

correlators, such as the power spectrum or the bispectrum, remain unchanged [101, 159]. This

means in particular with regard to the power spectrum that the complete resummation of the

leading effect of the soft modes does not result in an expression of the from (5.14) as in RPT.
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The reason for this is that in RPT, only a partial resummation of the effects of the soft modes

is performed, whereas the eikonal approximations provides a consistent framework to resum

the impact of all soft corrections.

Moreover, the cancellation of the soft-mode effects in the power spectrum, derived from

the eikonal approximation, suggests resumming the impact of soft modes does not lead to an

improvement of the convergence properties of SPT. On top of that, it even indicates that the

enhancement of the non-linear corrections to the power spectrum in SPT, due to the impact

of the soft modes, is spurious. In particular, in [101], it has been shown that at any loop

order in SPT, the effects of soft modes produce at most a logarithmic enhancement of the

non-linear corrections to the power spectrum in comparison to the linear contribution.

All perturbative approaches in the literature providing a resummation scheme for the soft

modes only resum certain subsets of diagrams that arise in the perturbative expansion in SPT.

As we have explicitly seen in the case of RPT, these subsets do not necessarily reproduce

the cancellation of the soft-mode effects for the equal-time correlators proven by the eikonal

approximation. Although these resummation schemes may accomplish to resum the necessary

subdiagrams to provide relative accurate results on intermediate scales (see e.g., [337]) and

are also useful to describe unequal-time correlation functions, it is questionable if these lead

to a systematic improvement in the determination of equal-time correlation functions for large

momenta. For a detailed discussion in this direction, we refer to [101].

To go beyond that, we proceed in Chapter 6 and Chapter 7 to non-perturbative methods to

investigate soft mode effects in further detail. In particular, these non-perturbative derivations

allow us to draw conclusions about different perturbative approaches. Apart from SPT, we

consider the so-called ‘time-flow approach’ in this context. Since the time-flow approach

implements a different method for solving the fluid equations perturbatively, compared to

SPT and RPT, we review its crucial aspects in the next section.

5.5. Time-flow approach

In the following, we give an overview of another approach to describe the non-linear large-

scale structure formation in the Universe by means of perturbation theory. We refer to this

perturbative scheme, which has been introduced in [156] and found applications in [301, 303,

347–350], as the time-flow approach. However, its is also referred to as time-renormalization

group (TRG) approach since it can be interpreted as particular formulation of the Wilsonian

renormalization group (RG), applied in quantum field theory and statistical physics [342–346],

with the time constituting the flow parameter in this context (see [148, 304]).

The time-flow approach differs from the perturbative approaches considered in detail before,
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namely SPT, RPT and the eikonal approximation, by its strategy to derive a perturbative so-

lutions for the correlation functions, such as the power spectrum or the bispectrum. While the

previously discussed approaches intend to solve the non-linear fluid equations (3.54) pertur-

batively with respect to the doublet fields ψa(k, η), defined in (3.51), the time-flow approach

extend the fluid equations to an hierarchical system of (integro-)differential evolution equa-

tions directly in terms of the correlations functions, such as the power spectrum and the

bispectrum.

By applying an appropriate approximation to close the infinite hierarchical system, the

integration of the differential evolution equations then allows to determine the correlation

functions for all combinations of density and velocity perturbations at any point of time and

any momentum scale. Thus, one of the advantages of the time-flow approach is that it provides

expressions for the correlation functions in a compact diagrammatic formulation. Thereby,

the method applied in the time-flow approach to close the infinite hierarchy of differential

equations resembles the one for solving the BBGKY hierarchy [362].4

If the infinite hierarchy of evolution equations in the time-flow approach is, for instance,

truncated at the level of the trispectrum, the solutions of the equations for the correlation

functions correspond to the summation of an infinite class of perturbative corrections. In

this sense, the time-flow formalism is comparable to resummation schemes such as RPT [142–

144] or [148, 304]. However, as opposed to the latter, it possesses a clear and systematic

way to impose the approximation on which it relies. This fact or clearness consists in the

same time a limitation of the time-flow approach. In fact, one always needs to implement

a (not physically motivated) approximation at a certain level of the infinite hierarchy of

evolution equations to obtain a closed, solvable system of equations. Based on [156], the

‘closure approximation’, which we apply in the following, relies on neglecting the trispectrum.

However, as we demonstrate explicitly in Section 6.2.2, this closure approximations deviates

from the SPT predictions for the bispectrum already at next-to-leading order. Due to this, it

is not clear whether it constitutes a reasonable approximation.

To go beyond that, the next step consists in including the tree-level trispectrum in the

evolution equation for the bispectrum (see [349]). Although, in comparison to numerical sim-

ulations, the predictions for the bispectrum including the linear trispectrum contributions

improve in the mildly non-linear regime (up to k ' 0.25h/Mpc), their performance becomes

worse than without the trispectrum contribution beyond the non-linear regime and the pertur-

bative description fails [349]. In addition, it has been shown in [348] that the power spectrum,

4 The so-called Bogoliubov–Born–Green–Kirkwood–Yvon (BBGKY) hierarchy represents a hierarchically cou-

pled set of differential equations that describes the dynamics of a system with a large number of interacting

particles (for details see e.g., [92]).
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which arises in dependence of the bispectrum in the time-flow approach, strongly depends

on the initial conditions chosen for the bispectrum. Due to these issues, the advantage of

the time-flow approach is more a conceptual one. In fact, the formulation of the time-flow

approach is particularly suited to treat general cosmological models, other then the usually

considered EdS and ΛCDM cosmology.

Most perturbative approaches, in particular SPT and RPT, are formulated for an EdS

background cosmology and further extended to more general cosmologies, such as the ΛCDM

model, by keeping the EdS expression for the background-dependent matrix Ωab(η) (see (3.62)

with (3.64)) and taking only the time dependence η = lnD1(τ) via the linear growth fac-

tor D1(τ)) in (3.9) correctly into account. As we discussed in Section (3.3.3), this gen-

eralization procedure is exact at linear order, but introduces inaccuracies at higher orders,

though these are actually very small (see Section 3.2.4). In the perturbative approaches which

implement this generalization, the validity of this approximation cannot be assessed indepen-

dently. Moreover, they can also not be trivially extended to cosmological models involving a

scale-dependent linear growth factor, as it is for instance the case if contributions of massive

neutrinos are included in the fluid equations [363–365].

In contrast to this, the formulation of the time-flow approach does not require an a pri-

ori specification of the background cosmology encoded in the matrix Ωab (and thus in the

linear propagator of (3.56)) to derive the governing equations for the correlation functions.

Hence, the advantage of the time-flow approach is that it provides a formalism which can

be straightforwardly applied to cosmological models more general than EdS and ΛCDM cos-

mologies, e.g., those containing massive neutrinos [301–303] or scalar-tensor modifications of

gravity [366]. However, to derive tight upper bounds on the neutrino mass scale, perturbative

approaches providing accurate predictions for the non-linear corrections (from the neutrino

fluid component) to the power spectrum are needed. For a treatment of the non-linear power

spectrum corrections from massive neutrinos within the framework of the time-flow approach,

see e.g., [303].

In the following, we introduce the time-flow approach by concentrating on flat cosmological

models, as for instance EdS or ΛCDM cosmologies. In this case, the background-encoding

matrix in the fluid equations and hence the linear propagator in (3.56) are momentum inde-

pendent, Ωab(η) and gab(η, η
′). However, since the explicit form of Ωab(η) and gab(η, η

′) is not

needed to derive the time-flow relations for the correlation functions, a generalization to more

complicated cosmologies can be straightforwardly obtained by replacing Ωab(η) and gab(η, η
′)

by the corresponding scale-dependent quantities. The general scale-dependent form of the

matrix Ωab(k, η) and the respective linear propagator gab(k, η, η
′) is explicitly given in [156].
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5.5.1. Infinite hierarchy of differential evolution equations

While in SPT one aims to solve the evolution equations of the fields ψa(k, η) themselves (see

Section 3.3.5), in the time-flow approach one formulates the evolution equations directly in

terms of the final quantities of interest, namely the correlation functions such as the power

spectrum Pab(k, η) and the bispectrum Babc(k, q,p, η).

For this purpose, one multiplies the non-linear fluid equations (3.54) by an increasing

number of additional fluctuation fields and takes the statistical average afterwards. The

η-evolution of the correlation functions can then be written as

∂η〈ψaψb〉 = −Ωac〈ψcψb〉 − Ωbc〈ψaψc〉
+ γacd〈ψcψdψb〉+ γbcd〈ψaψcψd〉 ,

∂η〈ψaψbψc〉 = −Ωad〈ψdψbψc〉 − Ωbd〈ψaψdψc〉 − Ωcd〈ψaψbψd〉
+ γade〈ψdψeψbψc〉+ γbde〈ψaψdψeψc〉+ γcde〈ψaψbψdψe〉 ,

∂η〈ψaψbψcψd〉 = . . . .

(5.39)

We refer to this infinite hierarchy of evolution equations as flow equations. For better read-

ability, we have omitted the momentum and time dependence of the correlation functions

here. All fields are evaluated at the same time η. Note that in contrast to the flow equations

in [156], the equations (5.39) do not contain explicit factors eη. This is due to the fact that

the convention we use for defining the fields ψa(k, η) (see (3.51)) differs from the one in [156]

by a factor e−η.

The procedure above generates an infinite hierarchy of evolution equations corresponding to

an infinite system of coupled differential equations. To determine the evolution of a correlation

function of order N from this hierarchy, the correlation function of the next higher order N+1

needs to be known. Hence, it is required to truncate the infinite hierarchy at a certain order

of correlation functions to obtain a closed set of equations. Consequently, the usefulness of

the time-flow approach relies on finding a suitable closure approximation.

5.5.2. Closure approximation

In order to close the infinite hierarchy of evolution equations (5.39), we first decompose the

two-, three- and four-point correlation functions in their connected parts by using (4.7).

According to (4.8), the decomposition of the four-point correlation function, for instance,
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yields

〈
ψaψbψcψd

〉
=
〈
ψaψbψcψd

〉
c

+
〈
ψaψb

〉
c

〈
ψcψd

〉
c

+
〈
ψaψc

〉
c

〈
ψbψd

〉
c

+
〈
ψaψd

〉
c

〈
ψbψc

〉
c
. (5.40)

Next, we express the connected correlators via the definition (4.9) in terms of the power spec-

trum Pab(k, η), the bispectrum Babc(k, q,p, η) and the trispectrum Qabc(k, q,p, r, η). This

allows us finally to rewrite the (unconnected) two-, three- and four-point correlations func-

tions as (see (4.10))

〈ψa(k, η)ψb(q, η)〉 = δD(k + q)Pab(k, η),

〈ψa(k, η)ψb(q, η)ψc(p, η)〉 = δD(k + q + p)Babc(k, q,p, η),

〈ψa(k, η)ψb(q, η)ψc(p, η)ψd(w, η)〉 = δD(k + q)δD(p + w)Pab(k, η)Pcd(p, η)

+ δD(k + p)δD(q + w)Pac(k, η)Pbd(q, η)

+ δD(k + w)δD(q + p)Pad(k, η)Pbc(q, η)

+ δD(k + q + p + w)Qabcd(k, q,p,w, η) .

(5.41)

Following [156], we can close the infinite set of evolution equations at this level by neglecting

the trispectrum, namely setting

Qabcd(k, q,p,w, η) ≡ 0 . (5.42)

This closure approximation allows us to express the four-point correlation function in terms of

power spectra. Consequently, the first two equations of the hierarchy (5.39) form a simplified

system which is completely determined only by the corresponding power spectra and bispectra.

Note that the closure approximation (5.42), which allows us to split the four-point cor-

relation function in terms of two-point ones, yields the same result as applying the Wick

theorem for Gaussian random fields in (4.6). However, it does not imply that we assume the

fields ψa(k, η) to be Gaussian. This can be directly seen from the fact that the three-point

function in (5.41) (or equivalently the bispectrum Babc(k, q,p, η)) does not vanish as it would

be the case for Gaussian fields due to the Wick theorem (4.6), but is fully taken into account

instead.

If we apply the closure approximation (5.42) to the correlation functions (5.41) and insert

these into the flow equations in (5.39) afterwards, we truncate the infinite hierarchy so that

the first two flow equations now constitute a closed system in terms of the power spectrum and

the bispectrum. By restoring the momentum dependencies and writing down the integration
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over internal momenta explicitly, the closed system is formed by the relations

∂η Pab(k, η) =− Ωac(η)Pcb(k, η)− Ωbc(η)Pac(k, η)

+

∫
d3q

[
γacd(−k,−q, q − k)Bbcd(k,−q, q − k, η)

+ γbcd(−k,−q, q − k)Bacd(k,−q, q − k, η)
]
,

(5.43)

∂η Babc(k,−q, q − k, η) =− Ωad(η)Bdbc(k,−q, q − k, η)− Ωbd(η)Badc(k,−q, q − k, η)

− Ωcd(η)Babd(k,−q, q − k, η)

+ 2
[
γade(−k,−q, q − k)Pdb(q, η)Pec(|q − k|, η)

+ γbde(−q, q − k,−k)Pdc(|q − k|, η)Pea(k, η)

+ γcde(q − k,−k,−q)Pda(k, η)Peb(q, η)
]
.

(5.44)

Here, we have reintroduced the dependence of the power spectrum and bispectrum on the

momenta k and q such that momentum conservation according to (5.41) is fulfilled. Note

that our convention for the momentum dependence of the vertex function γabc (see (3.53))

differs from the one used in the original work [156]. Besides, notice that the only momentum

integration in the equations above is the one which is indicated in (5.43).

Moreover, it is worth mentioning that the closure approximation (5.42) does only affect

the hierarchy of flow equations in (5.39) at the level of the second evolution equation for the

bispectrum and at the subsequent higher orders. As a consequence, the differential evolution

equation for the power spectrum Pab(k, η) in (5.43) is an exact solution for the power spec-

trum. However, since it depends on the bispectrum Babc(k,−q, q − k), it is influenced by

the closure approximation as soon as we insert a relation for the bispectrum based on the

differential equation (5.44). Thus, we can benefit from the exactness of the solution for the

power spectrum only in the case where we additionally find a non-perturbative solution for

the bispectrum, as we show in Chapter 7.

5.5.3. Analytical solutions

Analogously to the formal integral solution of the non-linear fluid equations we derived in

terms of the doublet field ψa(k, η) in (3.67), we can formally solve the closed system of dif-

ferential equations in (5.43) and (5.44) in terms of the power spectrum Pab(k, η) and the

bispectrum Babc(k,−q, q − k, η) by integrating over the time variable η. If we use the prop-

erties (3.58) and (3.59) of the linear propagator to simplify (5.43) and (5.44) after time
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integration, the formal integral solution of the closed system reads

Pab(k, η) = gac(η, η0) gbd(η, η0)P 0
cd(k)

+

∫ η

η0

dη′
∫
d3q gae(η, η

′) gbf (η, η′)

×
[
γecd(−k,−q, q − k)Bfcd(k,−q, q − k, η′)

+ γfcd(−k,−q, q − k)Becd(k,−q, q − k, η′)
]
,

(5.45)

Babc(k,−q, q − k, η) = gad(η, η0) gbe(η, η0) gcf (η, η0)Bdef,0(k,−q, q − k)

+ 2

∫ η

η0

dη′ gad(η, η
′) gbe(η, η

′) gcf (η, η′)

×
[
γdgh(−k,−q, q − k)Peg(q, η

′)Pfh
(
|q − k| , η′

)
+ γegh(−q, q − k,−k)Pfg(|q − k| , η′)Pdh(q, η′)

+ γfgh(q − k,−k,−q)Pdg(k, η
′)Peh(q, η′)

]
,

(5.46)

where Pab,0(k) ≡ Pab(k, η0) and Bdef,0(k,−q, q − k) ≡ Bdef (k,−q, q − k, η0) denote the

power spectrum and the bispectrum evaluated at the initial time η0 (see also (4.2)). Notice

that as a consequence of the exactness of the differential evolution equation for the power

spectrum in (5.43), the analytic solution for Pab(k, η) in (5.45) is also not affected by the

closure approximation. However, the solution for the bispectrum in (5.46) relies on the closure

approximation.

In order to understand which classes of perturbative corrections are maintained and which

are neglected by performing the closure approximation (5.42), we expand the formal integral

solutions for the power spectrum and the bispectrum in (5.45) and (5.46) in power of the

interaction vertex γabc. By setting the vertices on the right-hand side of (5.45) to zero,

we obtain the linear solution (of the order O(γ0)) for the power spectrum in the time-flow

approach,

PLab(k, η) = gac(η, η0) gbd(η, η0)Pcd,0(k) . (5.47)

If we compare this relation for the linear power spectrum with the one we derived in SPT

in (4.16), taking into account the definition of the initial power spectrum Pcd,0(k) for Gaussian-

distributed initial conditions in (4.3), it is obvious that at lowest order in perturbation theory

the power spectrum in the time-flow approach and in SPT coincide. Its diagrammatic repre-

sentation is shown in Figure 4.5.

Next, let us determine the linear-order relation for the bispectrum in the time-flow approach

from it formal integral solution in (5.46). By assuming Gaussian initial conditions further on,
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we notice that the initial bispectrum in (5.46) under this assumption vanishes due to the Wick

theorem in (4.6), Bdef,0(k,−q, q − k) = 0. For Gaussian initial conditions, we thus obtain

the lowest perturbative order for the bispectrum in the time-flow approach, i.e., the O(γ1)-

contribution, by using the linear power spectrum in (5.47) to approximate the power spectra

on the right-hand side of the formal integral solution for the bispectrum in (5.46). The

resultingO(γ1)-contribution in terms of the linear power spectrum yields the linear bispectrum

relation in the time-flow approach. From the structure of this contribution outlined in (5.46),

we deduce by comparison with the tree-level bispectrum for Gaussian (growing-mode) initial

conditions in SPT, given in (4.28) with the kernels defined in (3.76) and (3.78), that also

the linear bispectrum in the time-flow approach is identical to the one in SPT. Thus, it is

graphically represented by the first diagram on the left-hand side in Figure 4.6.

Continuing this iteration procedure, we insert the linear bispectrum relation of the or-

der O(γ1) into the bispectra on the right-hand side of the formal solution for the power

spectrum in (5.45). These O(γ2)-contributions to the power spectrum determine the one-loop

power spectrum correction in the time-flow approach. They receive contributions from the

(linear) power spectra in the O(γ1)-contribution to the bispectrum in (5.46). If we only com-

pare the momentum dependence of the power spectra arising from (5.46) and of the (initial)

power spectra contributing to the one-loop power spectrum in SPT (see (4.19)-(4.21)), we

see that the structure of momentum dependence is equivalent. This is a hint that also the

one-loop contributions to the power spectrum in the time-flow approach and in SPT coin-

cide. Indeed, by using the decomposition rule for the linear propagator in (3.60) the SPT

one-loop power spectrum contribution in (4.19)-(4.21) with the kernels in (3.78) and (3.76)

can be transformed in the corresponding time-flow expression for Gaussian growing-mode ini-

tial conditions [156]. In conclusion, up to one-loop order the power spectrum in SPT and

in the time-flow approach coincide. Consequently, the one-loop power spectrum contribution

derived from the time-flow approach can be separated three one-loop diagrams presented in

Figure 4.5.

Iterating the procedure once more, the first differences between the perturbative predictions

of the time-flow approach and SPT arise. By substituting the power spectra on the right-hand

side of the formal integral solution for the bispectrum in (5.46) with the one-loop time-flow

power spectrum contribution of the order O(γ2), we obtain the O(γ3)-contribution to the

bispectrum, that is, the one-loop correction to the bispectrum, in the time-flow approach.

However, compared to SPT, there are other one-loop corrections to the bispectrum of the

order O(γ3) which are not generated by this iteration procedure. These omitted corrections

to the one-loop bispectrum correspond exactly to the contributions which are neglected by

setting the trispectrum in the closure approximation to zero (see (5.41) and (5.42)). Hence,
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imposing the closure approximation at the level of the trispectrum leads to differences between

the time-flow approach and SPT at first at one-loop order for the bispectrum and thus at

two-loop order for the power spectrum. We investigate these deviations of the perturbative

predictions between the time-flow formalism and SPT for the case of the one-loop bispectrum

in further detail in Section 6.2.

In a field theoretical language, as a consequence of applying the closure approximation (5.42),

the vertex renormalization is neglected in the time-flow approach, whereas the renormalization

of the power spectrum is taken into account. This finding generalizes to any order in perturba-

tion theory. It can be directly understood by considering the formal integral solutions for the

power spectrum in (5.45). Therein, the non-linear power spectrum formally corresponds to a

one-loop expression where the linear power spectrum contributions are replaced by non-linear

ones, while the vertices are left untouched. Furthermore, the non-linear bispectrum in (5.46)

is formally a tree-level expression since it involves no momentum integration.

As the time-flow approach resums the perturbative corrections where the interaction vertex

is kept at its tree-level form, it performs a resummation of the same class of perturbations as

the renormalization group (RG) approach of [148]. Therein, renormalization group equations

are solved under the approximation of keeping the tree-level expression for the vertex. Indeed,

the perturbative predictions of the time-flow approach and the results presented in [148] agree

very well [156]. However, there are some differences between the time-flow formalism and the

RG approach in [148] which are worth mentioning.

First, in the RG approach in [148] as well as in RPT (see Section 5.3), the computation

of the power spectrum is performed in two steps. However, each step involves further ap-

proximations apart from keeping the vertex at tree-level. Thereby, the first step consists in

computing the non-linear propagator. In the limit of large external momentum, the non-

linear propagator is given by a simple analytic expression at any order in perturbation theory

(see (5.9)). However, it turns out that the use of the resummed non-linear propagator in

the large-momentum limit yields inaccurate results so that it is necessary to take sublead-

ing corrections into account [144]. In the second step, the resummed propagator is used to

compute the power spectrum (see (5.12)). The calculation of the power spectrum is then

performed by applying additional approximations either to the relevant RG equations [148]

or at finite loop order in RPT [144]. In contrast to this two-step computation procedure

for the power spectrum in the RG approach in [148] and in RPT, the remarkable feature of

the time-flow approach is that it is not necessary to calculate the propagator first to arrive

at an expression for the power spectrum, and equivalently the bispectrum as well as higher-

order correlation functions. The reason for this is that the time-flow formalism treats the

information on the time evolution, which is contained in the non-linear propagator in the

113



5. Overview of Perturbative Approaches

RG approach of [148] and in RPT, exactly by the structure of the differential time-evolution

equations, the flow equations, in (5.39). After the closure approximation at the level of the

trispectrum (see (5.42)) is applied, the closed system of flow equations is solved without any

further approximation.

Building up on this, the next level of imposing the closure approximation then consists in

keeping the contributions of the trispectrum Qabcd(k, q,p,w, η), but truncating the infinite

hierarchy of flow equations at the level of the connected five-point correlation function. This

truncation procedure can be continued up to arbitrary order in the correlation functions. Due

to this, the time-flow approach provides a transparent and systematic way of imposing the

approximations necessary to determine the correlation functions by means of perturbation

theory. However, since the closure approximation does not constitute a physically motivated

approximation, the perturbative predictions of the time-flow approach have to be investigated

with respect to their reasonability and accuracy, as we do explicitly in Section 6.2.2.

The second important difference between the time-flow approach and other perturbative

approaches, such as SPT, RPT or the afore mentioned RG approach (see also [304]), con-

sists in the treatment of the dependence on the background cosmology, encoded in the fluid

equations. The time-flow approach does not require a specification of the cosmological model

to predict relations for the correlation functions. Thus, it is applicable for arbitrary cosmo-

logical models, in particular other ones than EdS or ΛCDM, e.g., models containing massive

neutrinos or modifications of gravity [301–303, 366]. Unlike this, the other perturbative ap-

proaches considered so far are only exact in the EdS case where the matrix Ωab(η), appearing

in the fluid equations (3.54), equals (3.64). Other cosmological models, such as the phe-

nomenologically interesting cases of ΛCDM and (non-clustering) quintessence, are in these

approaches accounted for by keeping the EdS expression for the Ωab(η) and adapting only the

time dependence via the proper linear growth factor D1(τ) in (3.9).

Since the time-flow approach does not rely on this approximation for treating the back-

ground dependence, one can use it to estimate the error made by applying this approximation.

We expect the error of this background approximation to increase for lower redshifts. How-

ever, the comparison with the time-flow approach reveals that the error of the background

approximation in the BAO regime (5.1) is below the O(10−3)-level at redshift z = 1. and not

even of the order O(10−2) at present time, i.e., at redshift z = 0 [156]. Consequently, we con-

clude that the approximate treatment of the background dependence of the fluid equations,

which is implemented in most perturbative approaches other than the time-flow approach,

but in particular in SPT and RPT, constitute indeed a well motivated approximation. Hence,

this conclusion derived from the time-flow approach can be understood as an independent

probe of this approximations. Thereby, the findings of [156] confirm the extremely reliable
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accuracy of this approximation, as pointed out in Section 3.2.4.

In the following chapter, we use the perturbative frameworks of SPT, the time-flow approach

and the eikonal approximation – as well as a non-perturbative background method – to study

large-scale structure correlation functions in the soft limit. This allows us to set up so-called

consistency conditions for the correlation functions, for example for the bispectrum.
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Bispectrum Consistency Conditions
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Our intention in this chapter is to study large-scale structure correlation functions, such as

the bispectrum, in the limit where one wavenumber becomes small, that is, in the squeezed

or soft limit. In the soft limit, (N + 1)-point and N -point correlators of density and velocity

perturbations can be linked to so-called ‘consistency conditions’. These have recently received

significant attention [167–171, 173–176, 228–234]. In the following, we derive and discuss

consistency conditions for correlation functions both at equal and at unequal times.

For unequal-time correlators, the main appeal of the consistency conditions lies in the

fact that they can be deduced solely from symmetry arguments. The only assumption on

which the unequal-time consistency relations are based is single-field inflation providing the

initial conditions for the seeds of structure, as discussed in Section 4.1, together with the

diffeomorphism invariance (general covariance) of general relativity. Due to the universality

of these underlying assumptions, the unequal-time consistency relations yield fairly generic,

non-perturbative predictions about the dynamics of the system on short distance scales, which

can serve as a probe of the basic aspects of theory [165–171, 228, 235]. This becomes a powerful

tool, in particular with regard to upcoming large-scale structure surveys, since it would allow
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to test the assumption of single-field inflation, providing the initial seed fluctuations, as well

as the equivalence principle in gravitational theories.1

The consistency conditions are most meaningful at unequal times. However, for the obser-

vationally most interesting equal-time correlation functions these consistency conditions be-

come degenerate, i.e., they vanish at leading order in the soft momentum (the long-wavelength

mode) q. The reason for this is that, when dealing with the density and velocity fields (as

opposite to the potential), the leading-order term scales like q−1. In order to deduce informa-

tion about equal-time correlators, one thus has to investigate next-to-leading order effects. At

next-to leading order, the equal-time correlation functions depend on the interplay between

soft and hard modes so that dynamical information, as opposed to gauge artifacts in general

relativity, starts to become relevant [165, 166, 224]. Hence, it is important to investigate the

existence and validity of equal-time consistency conditions even when the short-wavelength

modes are deep in the non-linear regime. In fact, (angular-averaged) equal-time consistency

conditions that are allegedly non-perturbative relations have been advocated in the recent

literature [173, 174].

For assessing these equal-time consistency conditions, we use two different approaches,

namely the time-flow formalism, that we introduced in Section 5.5, as well as a background

method, which was first discussed in [165, 166] and is referred to as so-called ‘separate universe’

approach in the context of N -body simulations [238–241]. In this background method, one

can absorb the influence of a soft, long-wavelength perturbation within a flat FRW metric, by

implementation of a map, into a locally curved FRW background. It is exactly this equivalence

between a soft perturbation in a flat universe and a locally curved background which has

inspired angular-averaged equal-time consistency relations in [173, 174]. In the following,

we investigate the accuracy and validity of these consistency conditions within and beyond

perturbation theory.

6.1. Correlation functions at unequal times in the soft limit

In this section, we (re-)derive the large-scale structure consistency conditions for density and

velocity correlation functions at unequal times in the soft limit. We work in the Eulerian rep-

resentation of cosmological perturbation theory and use the compact notation of Section 3.3.1

in terms of the doublet field ψa(k, η) (see (3.51)), which simultaneously includes the density

contrast and the velocity divergence. We neglect deviations from the perfect-fluid approxima-

tion, which would in principle be required to account for the imprint of hard modes on the long

1Soft limits of inflationary correlation functions have also been extensively studied in the literature, see for

instance [33, 217–227].
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distance scales [63, 178], so that the non-linear fluid equations for the doublet field ψa(k, η)

are given by (3.54). Moreover, we assume a flat, matter-dominated EdS cosmology if not

mentioned otherwise.

One crucial aspect in the derivation of consistency conditions at unequal times is the fac-

torization of soft and hard modes. Due to this, we can resum the soft effects into a so-called

eikonal phase. Thereby, we make use of the eikonal approximation [159, 160, 237], which we

introduced in Section 5.4. This allow us not only to (re-)derive the unequal-time consistency

conditions of density perturbations in a straightforward way, but in addition, by relying on

the doublet field notation, to naturally extend the consistency conditions at unequal times to

the velocity perturbation fields.

6.1.1. Eikonal approximation

The derivation of consistency conditions for large-scale structure correlation functions in the

soft limit is relatively straightforward for unequal times. The reason for this is that soft and

hard modes evolve independently at leading order in the soft momentum q. Consequently, the

soft effect can be resummed yielding an eikonal phase [159, 160, 237] (see also [101, 125] in this

context). Hence, we can directly build upon our considerations of the eikonal approximation

in Section 5.4 and make use of the relations (5.28) and (5.30) with (5.26) to express the

fluctuations of the hard modes k, with k � q, as

ψa(k, η) ' exp

[ ∫ η

dη′
∫ ΛL

d3p
k · p
p2

ψL2 (p, η′)
]
× ψSa (k, η) , (6.1)

where we have denoted the internal momentum by p. We introduced a cutoff ΛL to em-

phasize that the momentum integral is performed over soft momenta (see (5.26)). More-

over, ψSa (k, η) denotes the fluctuations on short scales, including interactions of the short-short

type, whereas ψL2 (p, η) ≡ ΘL(p, η) are linear long-wavelength perturbations of the velocity

field. Note that according to the definition of the velocity perturbation field in (3.48), the

(growing-mode) solutions for the density and velocity perturbations at leading order are equal

(see also (3.11) and (3.12)), ΘL(p, η) = δL(p, η). Thus, the impact of the long-wavelength

modes in (6.1) arises in form of an exponential function involving the linear density field.

Moreover, notice that the effect of soft physics completely factorizes at this order.

Proceeding from this, the expression (6.1) allows to derive the large-scale structure consis-

tency conditions at unequal times in a straightforward manner. By using it, we can directly

determine the form of unequal-time correlation functions in the soft limit q → 0, as for instance
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〈
ψLa (q, ηq)ψb1(k1, η1) · · ·ψbN (kN , ηN )

〉′
q→0−−−→

〈
ψLa (q, ηq) exp

[∑
i

∫ ηi

dη′i

∫ ΛL

d3p
k · p
p2

δL(p, η′i)

]〉′
×
〈
ψSb1(k1, η1) · · ·ψSbN (kN , ηN )

〉′
,

(6.2)

and〈
ψb1(k1, η1) · · ·ψbN (kN , ηN )

〉′
q→0−−−→

〈
exp

[∑
i

∫ ηi

dη′i

∫ ΛL

d3p
k · p
p2

δL(p, η′i)

]〉′
×
〈
ψSb1(k1, η1) · · ·ψSbN (kN , ηN )

〉′
,

(6.3)

where the prime 〈 . . . 〉′ indicates that the momentum conserving Dirac delta distribution has

been removed. By assuming Gaussian-distributed growing-mode initial conditions (see (3.70)-

(3.71)) and subsequently evaluating the correlation functions, we obtain〈
ψLa (q, ηq) exp

[∑
i

∫ ηidη′i ∫ ΛLd3p ki·p
p2 δL(p, η′i)

]〉′
〈

exp
[∑

i

∫ ηidη′i ∫ ΛLd3p ki·p
p2 δL(p, η′i)

]〉′ = −uaPL(q, ηq)
∑
i

D1(ηi)

D1(ηq)

ki · q
q2

. (6.4)

Here, the linear power spectrum PL(q, η) is defined as in (4.17) and its time-dependence is

expressed in terms of the linear growth factor D1(η), given in (3.49).

If we finally relate the equations (6.2) and (6.3) via (6.4), we can determine the consistency

conditions for unequal-time correlation functions in the soft limit,〈
ψLa (q, ηq)ψb1(k1, η1) · · ·ψbN (kN , ηN )

〉′ q→0−−−→ −uaPL(q, ηq)
∑
i

D1(ηi)

D1(ηq)

ki · q
q2

×
〈
ψb1(k1, η1) · · ·ψbN (kN , ηN )

〉′
.

(6.5)

This result reproduces the unequal-time consistency conditions for the density perturbation

fields which have been recently derived in the literature, see e.g., [167, 169–171, 228–230].

At the same time, it constitutes a generalization of the results in the literature by including

not only the density perturbations but also the velocity fluctuations. Besides, the derivation

by use of the eikonal approximation we presented here has the advantage of leading to the

unequal-time consistency conditions in a straightforward and transparent way. For this reason,

it can be easily generalized to account for different background cosmologies.

Notice that the determination of the unequal-time consistency conditions in (6.5) did not

require more than the leading-order factorization of long-wavelength modes in the squeezed

limit. However, if we evaluate the right-hand side of (6.5) at ηq = ηi for all i ∈ {1, . . . N}, it

vanishes at leading order in q due to momentum conservation. This is nothing but a reflection
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6.2. Correlation functions at equal times in the soft limit

of the equivalence principle (see e.g., [171]). Consequently, a calculation at next-to-leading

order is necessary to study the existence and the validity of consistency conditions for equal-

time correlations functions in the soft limit.

6.2. Correlation functions at equal times in the soft limit

In the following, we direct our attention to correlation functions at equal times in the soft

limit. Thereby, our aim is to explore the circumstances under which equal-time consistency

conditions may exist beyond a perturbative treatment of the hard modes, i.e., when the

coupling between long- and short-wavelength fluctuations becomes important.

In order to access the validity of consistency relations between correlation functions at equal

times, we compute the soft limit of the equal-time connected three-point correlation function,

the bispectrum, up to next-to-leading order with different perturbative and non-perturbative

methods. In this way, we can use the soft limit of the bispectrum to compare the predictions

of the individual methods.

6.2.1. Soft limit of the bispectrum in SPT

To explore the existence of a soft-limit connection between the bispectrum and the power

spectrum beyond leading order, let us, as a first example, compute the soft limit of the

bispectrum up to one-loop order in dependence of the linear power spectrum in SPT (see

Section 4.4).

Although, depending on the form of the initial power spectrum, the loop integrals of the

bispectrum (and also of the power spectrum) can be divergent in the UV limit of large loop

momentum, the SPT predictions for the bispectrum consistency relations should agree with

the exact, non-perturbative solution within their realm of validity. In other words, by ju-

diciously choosing the initial conditions for the power spectrum in SPT, the arising loop

integrals are always dominated by modes well within the perturbative regime so that SPT

converges quickly. Thus, the comparison of the one-loop bispectrum in the soft limit in SPT

with other perturbative and non-perturbative methods has to be interpreted in the sense of

a mathematical statement at the level of the integrands. Note, however, that in order to

account properly for the imprint of the short-distance UV physics, methods other than SPT

are required. One approach in this direction is the effective field theory framework of LSS.

Therein, the loop integrals of SPT are regularized by introducing counter-terms that cancel

the possible non-physical UV divergences [49, 63, 89, 178–208] An appropriate regularization

becomes even more relevant when considering correlation functions of the velocity divergence

field, which constitutes a composite operator [63, 181, 208].
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6. Bispectrum Consistency Conditions

Leading order

Proceeding from these considerations, let us explicitly derive the soft limit of the bispectrum

at leading order in SPT and determine an angular-averaged consistency relation from it. For

the moment, we base our calculation on the assumptions of an EdS background cosmology and

Gaussian-distributed growing-mode initial conditions. We discussed the implications of these

assumptions in detail in Section 3.3.3. In the calculation, we use the definition of the power

spectrum and the bispectrum in (4.1) and (4.10). For reasons of clarity and comprehensibility,

we only consider the bispectrum of density perturbations, i.e., B111(k,−q, q − k, η) at first.

Here, we have chosen the momenta such that momentum conservation, required by the Dirac

delta distribution in the definition of the bispectrum (4.10), is fulfilled.

From the perturbative expansion of the bispectrum in terms of loop orders in Section 4.4,

we have deduced that the bispectrum at leading order (at loop order ` = 0) in SPT is given

by the relation (4.27) with (4.28). In case of growing-mode initial conditions, the kernels have

the simple form (3.76) and (3.78). Consequently, the leading-order bispectrum of density

perturbations reduces to (see [40])

BL
111(k,−q, q − k, η) = 2F

s
2(k,−q)PL(k, η)PL(q, η)

+ 2F
s
2(k, q − k)PL(k, η)PL(|q − k|, η)

+ 2F
s
2(−q, q − k)PL(q, η)PL(|q − k|, η) ,

(6.6)

where the symmetrized kernels are explicitly given in (3.37). Moreover, we have absorbed the

time dependence of the linear bispectrum into the linear power spectrum of density fluctua-

tions, PL(k, η) ≡ PL11(k, η), defined in (4.17).

To determine the soft limit of the linear bispectrum in (6.6), we assume that one of its

momenta, say q, is soft. This implies for the absolute values of the momenta that q � k.

Consequently, we can expand all quantities in (6.6) which depend on the difference between

the soft and the hard mode,
∣∣q − k

∣∣, in a perturbative series about the soft mode q. For

this purpose, we express the linear bispectrum as a function of the magnitudes k, q and the

parameter

µ ≡ cos θkq =
k · q
kq

, (6.7)

characterizing the angle between the momenta k and q. In the series expansion, that we

perform afterwards, up to the first order in the soft mode q, we do not only have to include

the kernels entering in the linear bispectrum (6.6), but the linear power spectra as well,

PL(|q − k|, η) ' PL(k, η)− q µ ∂kPL(k, η) +O
(
q2
)
. (6.8)

Since the series expansion of the kernel F s2(k, q−k) yields a term linear in q, it adds up with

the power spectra in the second line of (6.6) to a contribution that vanishes in the squeezed
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6.2. Correlation functions at equal times in the soft limit

limit q → 0. This is different for the other two kernels in (6.6). The series expansion of these

kernels about q generates not only a term linear in q, but also a constant term and a term

proportional to 1/q. Multiplying the series expansion of the kernels and the one of the power

spectrum in (6.21), these terms proportional to 1/q that cancel the linear q-dependence of

the derivative term with respect to the power spectrum, ∂kP
L(k, η). As a result, the series

expansion of the bispectrum does generate not only constant terms, but also a characteristic

derivative term with respect to the linear power spectrum, which is not even canceled when

finally taking the soft limit q → 0.

The resulting equation we obtain from taking q → 0 yields the linear bispectrum in the soft

limit, BL
111(k,−q, q − k, η)q→0. However, this relation still depends on the angle between the

soft and the hard mode via the parameter µ. To remove the angular dependence, we take the

angular average, (. . .)av ≡
∫
dΩ/ (4π) . . ., where the solid angle is dΩ = 2π dµ in our case. In

the end, this yields a relation between the angular-averaged leading-order bispectrum in the

soft limit and the linear power spectrum,

BL
111(k,−q, q − k, η)av q→0−−−→ PL(q, η)

(
47

21
− 1

3
k ∂k

)
PL(k, η) , (6.9)

and thus an angular-averaged consistency relation for the linear bispectrum in the soft limit.

In the context of SPT, this bispectrum consistency relation was first derived (in real space)

in [166].

Next-to-leading order

Next, our intention is to derive an angular-averaged soft-limit consistency relation for the

bispectrum of density perturbations at next-to-leading order, i.e., B1−loop
111 (k,−q, q−k, η)av

q→0.

In SPT, the one-loop correction to the bispectrum of density perturbations arises as the sum

of four contributions (see (4.30)),

B1−loop
111 (k,−q, q − k, η) = B

(222)
111 (k,−q, q − k, η) +B

(321,I)
111 (k,−q, q − k, η)

+B
(321,II)
111 (k,−q, q − k, η) +B

(411)
111 (k,−q, q − k, η) ,

(6.10)

which are graphically represented by four independent diagrams involving different correla-

tions of density fields (see Figure 4.6). According to (4.31)-(4.34), the mathematical expres-

sions for these one-loop contributions read

B
(222)
111 (k,−q, q − k, η) ≡ 8

∫
d3l F

s
2(−l, l + k)F

s
2(l + k, q − k − l)F

s
2(l, q − k − l)

×PL(l)PL(|l + k|)PL(|l− q − k|) , (6.11)
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6. Bispectrum Consistency Conditions

B
(321,I)
111 (k,−q, q − k, η) ≡ 6PL(k)

×
∫
d3l F

s
2(l,−q − l)F

s
3(−l, l + q,−k)PL(l)PL(|l + q|)

+ 5 permutations , (6.12)

B
(321,II)
111 (k,−q, q − k, η) ≡ 6F

s
2(k, q − k)PL(k)PL(|q − k|)

∫
d3l F

s
3(q − k, l,−l)PL(l)

+ 5 permutations

≡ F
s
2(k, q − k)PL(k)P

(13)
11 (q − k, η)

+ 5 permutations , (6.13)

B
(411)
111 (k,−q, q − k, η) ≡ 12PL(k)PL(q)

∫
d3l F

s
4(l,−l,−k, q)PL(l)

+ 2 cyclic permutations . (6.14)

Here, the symmetrized kernels can be computed by using the recursion relation (3.33) (or

equivalently from (3.78) with (3.79)) and symmetrizing with respect to their momenta (see

(3.36)) afterwards. The permutations have to be taken with respect to the external momenta.

As in the case of the linear bispectrum in (6.6), we have incorporated the time dependence of

the one-loop bispectrum in the linear power spectra.

In order to determine an angular-averaged consistency relation for the one-loop bispec-

trum (6.10), we have to proceed in the same way as we did in the case of the linear bispec-

trum. In turns out, however, that the resulting expression is too cumbersome to allow for a

meaningful analytic comparison with other methods. For practical reasons, we thus restrict

our considerations to the limit where the loop momentum l is much larger than the external

momenta k and q, i.e., l� k, q. Note that this is exactly the UV limit of loop integrals in SPT

which requires a judicious choice of initial conditions to avoid divergences, as we discussed

before. To derive the UV limit of the loop integrals which appear in the next-to-leading order

bispectrum, we first rewrite the one-loop contributions (6.10)-(6.14) in terms of the absolute

values of the external momenta and the loop momentum k, q and l, the parameter µ as well as

the angles spanned between the external momenta k, q and the loop momentum l. Then, we

take the large l-limit and remove the angular dependence with respect to the loop momentum

by averaging over the respective angles afterwards. The resulting expressions for the one-loop

bispectrum contributions are given in Appendix A.1.

Based on the one-loop bispectrum contributions involving the UV limit of the loop integrals,

which possess a structure that allows for comparison with other methods, we can now deduce

an angular-averaged consistency relation for the one-loop bispectrum in the soft limit. For
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6.2. Correlation functions at equal times in the soft limit

this purpose, we perform a series expansion of the expressions (A.2)-(A.5) about the soft

mode q, take the squeezed limit q → 0 and finally perform the angular average with respect

to µ. As a result, we obtain four angular-averaged expressions for the one-loop contributions

in the soft limit (see (A.7)-(A.8)),2

B
(222)
111 (k,−q, q − k, η)av q→0−−−→ 0 ,

B
(321,I)
111 (k,−q, q − k, η)av q→0−−−→PL(q, η) (2π)3 k

4

π2
γSPT

∫
dl l2

(
PL(l, η)2

l4

)
,

B
(321,II)
111 (k,−q, q − k, η)av q→0−−−→PL(q, η) (2π)3 k

2

π2

(
αSPT

1 k ∂k +βSPT
1

)
PL(k, η)

∫
dl l2

(
PL(l, η)

l2

)
,

B
(411)
111 (k,−q, q − k, η)av q→0−−−→PL(q, η) (2π)3 k

2

π2

(
αSPT

2 k ∂k +βSPT
2

)
PL(k, η)

∫
dl l2

(
PL(l, η)

l2

)
,

(6.15)

where we have defined the coefficients

γSPT =
515

5292
, αSPT

1 = αSPT
2 =

61

3780
, βSPT

1 = − 671

8820
, βSPT

2 = −155

756
. (6.16)

According to (6.10), the sum of these contributions gives the angular-averaged soft-limit

consistency relation for the next-to-leading order bispectrum in SPT (see (A.9)-(A.10)),

B1-loop
111 (k,−q, q − k, η)av q→0−−−→ PL(q, η) (2π)3 k

2

π2

[(
αSPTk ∂k + βSPT

)
PL(k, η)

∫
dl l2

(
PL(l, η)

l2

)
+ γSPTk2

∫
dl l2

(
PL(l, η)2

l4

)]
,

(6.17)

where we defined αSPT ≡ αSPT
1 +αSPT

2 and βSPT ≡ βSPT
1 +βSPT

2 . Hence, the three character-

istic coefficients parameterizing the bispectrum consistency relation at one-loop order in SPT

are

αSPT =
61

1890
' 0.032 , βSPT = − 3719

13230
' −0.281 , γSPT =

515

5292
' 0.097 . (6.18)

In the following, we use the values of these coefficients as a benchmark for comparing predic-

tions of different methods for the soft limit of the bispectrum at next-to-leading order. This

will allow us to evaluate the validity of each attempt to extend the equal-time bispectrum

consistency relation (6.9) beyond linear order.

2Note that in this work, the Fourier conventions we use, as given in (1.6), differ from those applied in [1]. In

comparison to [1], the results presented here contain an additional factor (2π)3.
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6. Bispectrum Consistency Conditions

For later use, let us in addition calculate the next-to-leading order contribution to the

power spectrum of density as well as velocity fluctuations, P 1−loop
ab (k, η), in SPT in the limit

of large loop momentum. The one-loop contribution to the power spectrum, given in (4.19)-

(4.21), consists of two terms which are graphically represented by the diagrams in Figure 4.5.

To compute the UV limit of the loop integrals entering in these terms, we assume the loop

momentum l to be much larger than the external momentum k, i.e., l� k, remove the angular

dependence of the two momenta by angular averaging and finally take the limit of large loop

momentum. The resulting expression for the one-loop power spectrum in the limit of large

loop momentum reads

P 1−loop
ab (k, η) =

(
9

196
19
588

19
588

61
980

)
(2π)3 k

4

π2

∫
dl l2

(
PL(l, η)2

l4

)

−
(

61
630

25
126

25
126

3
10

)
(2π)3 k

2 PL(k, η)

π2

∫
dl l2

(
PL(l, η)

l2

)
. (6.19)

We can use this expression as a direct probe to explore the existence and the validity of

equal-time bispectrum consistency relations at next-to-leading order. For a first study in this

direction, let us consider the time-flow approach in what follows.

6.2.2. Soft limit of the bispectrum in the time-flow approach

In this section, we use the time-flow formalism, which was developed in [156], to set up

bispectrum consistency relations in the soft limit. The time-flow approach, which we have

introduced in Section 5.5, relies on the flow equations composing an infinite hierarchy of evo-

lution equations (see (5.39)). In order to close the infinite set of equations and to derive

perturbative statements, the time-flow approach generally requires a truncation of the hi-

erarchy at a certain level, that is, a ‘closure approximation’. In the literature, this closure

approximation usually consists in neglecting the connected part of the four-point correlation

function, the trispectrum, as denoted in (5.42). Although it is generally possible to derive

soft-limit consistency relations from the time-flow approach, the ‘closure’ approximation plays

an important role for assessing the validity of such a consistency relation, as we show in the

following.

Bispectrum consistency conditions

If we close the infinite hierarchy of flow equations (5.39) by neglecting the trispectrum, as

in (5.42), the closed system of evolution equations can be formally solved. The formal solution

for the bispectrum Babc(k,−q, q − k, η) is then given by (5.46).
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6.2. Correlation functions at equal times in the soft limit

Provided the closure approximation holds, we can use this formal solution for the bispec-

trum as a starting point to derive an angular-averaged bispectrum consistency relation in

the soft limit. In contrast to the derivation in SPT, where we have restricted our consid-

erations to the bispectrum of density fluctuations, B111(k,−q, q − k, η), we do not specify

the fluctuation fields composing the bispectrum here and treat the bispectrum in its general

form, Babc(k,−q, q − k, η). In addition, while we have derived the bispectrum consistency

relations in SPT under the assumption of an EdS universe, the time-flow approach allows

in principle for a determination of consistency conditions without specifying the background

cosmology and thus for general classes of cosmological models (for details of treating differ-

ent cosmologies in the time-flow approach see [156]). Taking these points into account, the

derivation of consistency relations from the time-flow approach provides a generalization of

the computation we performed in the last section in the context of SPT.

The only assumption we rely on for the derivation of the bispectrum consistency rela-

tions in the following is the one of Gaussian initial conditions. Due to the Wick the-

orem, which we discussed in Section 4.3.1, this implies that the initial bispectrum van-

ishes, Babc(k,−q, q − k, η0) = 0. Consequently, the formal integral solution of the flow equa-

tion for the bispectrum, (5.46), simplifies to

Babc(k,−q, q − k, η) = 2

∫ η

η0

dη′ gad(η, η
′) gbe(η, η

′) gcf (η, η′)

×
[
γdgh(−k,−q, q − k)Peg(q, η

′)Pfh
(∣∣q − k

∣∣, η′)
+ γegh(−q, q − k,−k)Pfg(

∣∣q − k
∣∣η′)Pdh(q, η′)

+ γfgh(q − k,−k,−q)Pdg(k, η
′)Peh(q, η′)

]
.

(6.20)

Notice that if we assume an EdS background cosmology and growing-mode initial conditions

for computing the linear bispectrum from this equation, we can replace the power spectra

by the linear power spectra according to (4.16), PLab(k, η) = uaubP
L(k) with ua ≡ (1, 1). In

this case, it becomes directly obvious from the recursion relations (3.78) with (3.76) in the

diagrammatic formulation of SPT that we can rewrite the bispectrum relation above in terms

the kernels F (2)
a (q1, q2, η) and F (2)

a (q1, η) with q1, q2 ∈ {k,−q, q − k}. For the assumption

of an EdS cosmology and growing-mode initial conditions, these kernels are explicitly given

in (3.79). As a consequence, we reobtain exactly the linear SPT bispectrum, in the dia-

grammatic formulation and for density perturbations only (see (4.28) and (6.6)), from the

time-flow approach by imposing these assumptions. However, note that the results from SPT

and from the time-flow approach only agree for the bispectrum at leading order and for the

power spectrum up the next-to-leading order, as discussed in Section 5.5.3. We address this
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6. Bispectrum Consistency Conditions

point in more detail below.

Let us now determine an angular-averaged soft-limit consistency relation from the bispec-

trum relation in (6.20). We proceed analogously as in the derivation in SPT we performed

in the last section. This means that we have to expand all quantities in (6.20) which depend

on the difference between the soft and the hard mode,
∣∣q − k

∣∣ with q � k, in a perturbative

series up to first order in q.

Equivalently to the second term of the linear SPT bispectrum in (6.6), which vanishes in the

soft limit due to the linear q-dependence of the series expansion of the respective kernel (see the

discussion below (6.6)), we can already neglect the second term of the bispectrum (6.20) at this

stage since the series expansion of the vertex function γegh(−q, q−k,−k) with e, g, h ∈ {1, 2}
only generates terms linear in q. The definition of the vertex functions γabc is given in (3.53).

If we then insert the series expansion of the power spectrum (see (6.21)),

Pab(|q − k|, η) ' Pab(k, η)− q µ ∂kPab(k, η) +O
(
q2
)

(6.21)

into the bispectrum relation (6.20) (with µ defined in (6.7)), we can summarize the resulting

expression as

Babc(k,−q, q − k, η) = 2

∫ η

η0

dη′ gad(η, η
′) gbe(η, η

′) gcf (η, η′)Peh(q, η′)

×
[
γdhg(−k, q − k,−q)

(
Pfg(k, η

′)− µ q ∂kPfg(k, η′)
)

+ γfgh(q − k,−k,−q)Pdg(k, η
′)
]
.

(6.22)

After performing a series expansion of the remaining γ-vertices about the soft mode q (see

(3.53)) and taking the squeezed limit q → 0 afterwards, the expression within the bracket

in (6.22) can be rewritten in the form[
δh1

(
MA
dg Pgf (k, η′) + Pdg(k, η

′)MA
gf

)
+ δh2

(
MB
dg Pgf (k, η′) + Pdg(k, η

′)MB
gf −

1

2

(
1 + µ2 k ∂k

)
Pdf (k, η′)

)]
,

(6.23)

where we have defined the matrices

MA =

(
0 1

2

0 0

)
, MB =

(
1
2 0

0 µ2

)
. (6.24)

Next, we perform the angular average to remove the dependence on µ. Moreover, we make

the reasonable approximation to replace the power spectrum of the soft, long-wavelength

mode, Pab(q, η), by its linear contribution PLab(q, η). According to (4.16), this approximation

reduces under the assumption of growing-mode initial conditions to

Pab(q, η) ' uaub PL(q, η) . (6.25)
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6.2. Correlation functions at equal times in the soft limit

By inserting this linear approximation for the power spectrum in the angular-averaged soft-

limit bispectrum relation resulting from (6.22) with (6.24), we finally obtain the following

consistency relation based on the time-flow approach

Babc(k,−q, q − k, η)av q→0−−−→ ub P
L(q, η)

∫ η

η0

dη′ gad(η, η
′) gcf (η, η′) e−2(η−η′)

×
[
Mav
dg Pgf (k, η′) + Pdg(k, η

′)Mav
gf −

(
1 +

1

3
k ∂k

)
Pdf (k, η′)

]
.

(6.26)

Here, the exponential factor in the first line of the equation above arises from moving the

linear power spectrum PL(q, η) = e2(η−η0) P0(k), as defined in (4.17), outside of the integral

(see (6.22)). By performing the angular average, we can summarize the contributions of the

matrices MA and MB in (6.24) by the matrix

Mav = 2
[
MA +MB

]av
=

(
1 1

0 2
3

)
. (6.27)

At this point, we would like to emphasize the generality of the bispectrum consistency rela-

tion (6.26) derived from the time-flow approach. Up to here, we neither specified the back-

ground cosmological model, the kind of fluctuation fields composing the bispectrum nor did

we perform any perturbative loop expansion of correlation functions.

Leading order

In order to compare the predictions of the bispectrum consistency relations based on the time-

flow approach, (6.26), with the ones obtained in SPT (see (6.9) and (6.17)), let us assume

an EdS background cosmology in what follows. In the EdS case, the explicit form of the

linear propagator gab(η, η
′) is given by (3.68)-(3.69). Moreover, we rely on the assumption of

growing-mode initial conditions so that the linear power spectrum PLab(k, η) arises as (4.16).

To determine the leading order of the angular-averaged soft-limit consistency relation for

the bispectrum in (6.9) in the EdS case, we replace the power spectra with respect to the hard

mode k by their linear contribution, Pab(k, η) ' PLab(k, η), in analogy to (6.25). Since then

the time dependence of the linear propagator and the power spectra is known, it is possible to

perform the integration over time in (6.9). Thereby, we choose the initial time to be η0 = 0.

The resulting consistency relation for the bispectrum at leading order,

BL
abc(k,−q, q − k, η)av q→0−−−→ PL(q, η)ub

[
1

21

(
47 39

39 31

)
ac

− 1

3
uauc k ∂k

]
PL(k, η) , (6.28)

coincides with the SPT prediction for the component describing the linear bispectrum of

density perturbations, BL
111(k,−q, q − k, η)av

q→0, in (6.9) and thus also reproduces the result
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in the literature [166]. However, at the same time, the bispectrum consistency relation (6.28)

derived from the time-flow approach constitutes a generalization of [166]. It is restricted not

only to the bispectrum of density perturbations, but also comprises the bispectra including

velocity fluctuation fields. Note that in addition, the linearized form of the bispectrum relation

in (6.26) is valid for general background cosmologies. To evaluate this relation for cosmological

models other than EdS, it is only required to choose the corresponding linear propagator (for

details see [156]).

While the angular-averaged consistency relation for the linear bispectrum in the soft limit,

as given in (6.28), constitutes a generalization of the result in the literature [166], which is

restricted to the bispectrum of density perturbations, our actual motivation is to derive soft-

limit relations that are valid non-perturbatively. The bispectrum consistency relation (6.26),

however, is derived from the time-flow approach and thus relies on the closure approxima-

tion. While neglecting the trispectrum is a suitable closure approximation at linear order,

this is not clear to be a reasonable approach holding beyond leading order or even at the

non-perturbative level. In fact, the trispectrum obeys an evolution equation that cannot be

consistently set to zero at all times, although this is usually done for closing the hierarchi-

cal system of flow equations (see [156]). Due to this, it is important to analyze the extent of

non-linear information captured by the bispectrum consistency relation based in the time-flow

approach in (6.26).

Next-to-leading order

To address this issue, we compute the angular-averaged soft-limit consistency relation for

the next-to-leading order bispectrum from the time-flow approach and compare it to the

corresponding relation in SPT (see (6.17)). We continue working under the assumptions of an

EdS universe and growing-mode initial conditions. As discussed in Section 5.5.3, in this case

the one-loop power spectrum in SPT and the time-flow approach are equivalent. This means

that we can use the one-loop SPT power spectrum in the limit of large loop momentum, given

in (6.19), to approximate the power spectra with respect to the hard mode k contained in

the bispectrum consistency relation (6.26), Pab(k, η) ' P 1−loop
ab (k, η), in order to evaluate the

consistency relation for the bispectrum at next-to-leading order. Afterwards, we read off the

characteristic coefficients parameterizing the bispectrum at one-loop order in the time-flow

approach from the resulting expression, analogously as in (6.17),

αTF =
103

6930
' 0.015 , βTF = − 233

1890
' −0.123 , γTF =

271

19404
' 0.014 . (6.29)

By comparing the characteristic parameters obtained in the time-flow approach to those in

SPT that are denoted in (6.18), we find that their values differ significantly from each other.
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Since neglecting the trispectrum as a closure approximation has been the only assumption on

which the derivation of the bispectrum consistency relation (6.26) relies, the difference of the

coefficients leads to the clear conclusion that the trispectrum cannot be ignored for deriving a

consistency relation for the bispectrum beyond linear order in perturbation theory. Hence, we

have explicitly demonstrated that, for an EdS cosmology, the angular-averaged consistency

relations for the bispectrum in the soft limit based on the time-flow approach are only fulfilled

at linear order, but fail to capture the non-linear information at next-to-leading order.

Note that the procedure we applied in the time-flow approach to derive an angular-averaged

soft-limit consistency relation for the bispectrum can be easily generalized to determine a

consistency relation for connected N -point correlation functions, as defined in (4.9), which

include a large number of fields. This requires to truncate the hierarchy of flow equations at

the level of the connected part of N ′-point correlator with N ≤ N ′. Although this can be

successfully done in perturbation theory, the corresponding closure approximation would still

fail to fully capture the non-perturbative physics.

Apart from this, an attempt at including the information from the trispectrum to im-

prove the predictions for the power spectrum in the time-flow approach appeared in [349].

The results therein suggest that the trispectrum contributions to the power spectrum is non-

negligible already in the mildly non-linear regime. Despite this, one could have hoped that

the trispectrum was less relevant for the bispectrum in the soft limit so that the equal-time

bispectrum consistency relations based on the time-flow approach may be approximately accu-

rate. Unfortunately, the large deviations between the predictions for the one-loop bispectrum

in the soft limit derived in SPT and from the time-flow approach indicate that this is not the

case. Including the trispectrum and truncating the infinite hierarchy of flow equations at a

higher-order level, would in principle allow to reproduce the one-loop SPT result for the bis-

pectrum in the soft limit with the time-flow approach. However, as argued before, the latter

would then nevertheless fail at some given loop order depending on the truncation. Thus,

a truly non-perturbative result for an equal-time consistency condition using the time-flow

formalism seems out of reach.

Although the perturbative relations between equal-time correlation functions in the soft

limit based on the time-flow approach do not hold up the same status as the unequal-time

consistency relations derived in Section 6.1, they may still be useful in special circumstances

where the short modes are kept in the mildly non-linear regime. The perturbative relations

of the time-flow approach are, for instance, well suited to study baryon acoustic oscillations

in a background cosmology which requires numerical input, such as models including massive

neutrinos or quintessence. Since the time-flow approach, unlike SPT, only deals with equal-

time correlation functions such that soft effects cancel out from the outset, the perturbative
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time-flow relations for equal-correlations functions in the soft limit may improve numerical

stability and simplify the computational treatment of the fluctuations.

6.3. Background method for a spherically symmetric soft mode

We now present an alternative, non-perturbative approach to derive angular-averaged equal-

time consistency relations in the soft limit. This approach is inspired by the proposal for equal-

time consistency conditions in [173] and [174], and based on ideas introduced in [165, 166].

In [165, 166], a background method is studied which implements a map between the dy-

namics on short distance scales within a flat FRW universe in the presence of a soft, long-

wavelength perturbation and a locally curved FRW cosmology. Thereby, the soft mode is

absorbed into the locally curved background. In the context of N -body simulations, this

method is referred to as the so-called ‘separate universe’ approach [238–241] and used to

compute the power spectrum response function, which we introduce in Section 7.4.3.

6.3.1. Perturbed FRW metric in the Newtonian gauge

In order to establish the background method which provides a mapping from a flat FRW

background cosmology in the presence of a long-wavelength perturbation to a locally curved

FRW cosmology, let us consider the metric of a perturbed FRW universe in the so-called

Newtonian gauge as a basis of the following calculations.

In the general relativistic framework of cosmological perturbation theory, one studies linear

perturbations to the metric of a spatially flat FRW background cosmology. These metric

perturbations are related to perturbations of the stress energy tensor via the Einstein equations

and thus to the matter density perturbations. The symmetries of the flat FRW cosmology

allow to decompose the metric perturbations into independently evolving scalar, vector and

tensor components. Since the growth of structures is predominantly affected by the scalar

metric perturbations, we focus on these scalar modes here. It is beyond the scope of this

thesis to discuss the relativistic the theory of cosmological perturbations. Instead, we refer

to [272, 284] for details.

Due to the gauge invariance of general relativity, certain combinations of metric perturba-

tions and in particular physical observables are invariant under a change of coordinates by

gauge transformations. In case of scalar metric perturbations, one uses this gauge freedom of

general relativity to eliminate two scalar degrees of freedom of the perturbed FRW metric.

A particularly simple gauge to use for the scalar metric perturbations is the so-called New-

tonian gauge, introduced in [272], where the perturbations to the flat FRW cosmology are
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characterized by two scalar potentials, Ψ(x, t) and Φ(x, t),

ds2 = −
[
1 + 2 Φ(x, t)

]
dt2 + a2(t)

[
1− 2 Ψ(x, t)

]
dx2 . (6.30)

Note that we here use x and t to denote the physical coordinates.

The name ‘Newtonian gauge’ originates from the fact that in the non-relativistic Newto-

nian limit, the potential Φ(x, t) in the perturbed Einstein equations can be interpreted as

the gravitational potential of classical Newtonian gravity [27]. We defined the Newtonian

gravitational potential in (2.14). In the Newtonian limit, where the expansion of the Universe

can be neglected, the potential Φ(x, t) fulfills the (perturbed) Poisson equation [92, 272] for

non-relativistic matter (see (2.21) and (2.22)),

∇2Φ(x, t) = 4πGa2 (ρ− ρ̄) =
3

2
Ωm a

2H2 δ . (6.31)

The second scalar potential Ψ(x, t) is often referred to as curvature perturbation. In case of

a universe with vanishing anisotropic stress, that is, if the stress-energy tensor is invariant

under spatial rotations, the two scalar potentials are equal

Ψ(x, t) = Φ(x, t) . (6.32)

6.3.2. Newtonian mapping

Based on the perturbed FRW metric in Newtonian gauge in (6.30), our aim is to set up the

background method in the following. Thereby, the calculations we perform are closely related

to the analysis in [165, 166], where further details can be found. However, we present here a

straightforward and shortened derivation of the relevant transformations in the background

method which does, in contrast [165, 166], not rely on introducing so-called Fermi coordi-

nates [367–369], but directly matches a flat FRW cosmology in the presence of a soft mode

to a locally curved universe.

As a starting point for the derivation of the background method, let us consider a flat

FRW background cosmology in global coordinates which includes a linear long-wavelength

perturbation denoted by ΦL(x, t). Since we intend to study the properties of large-scale

structure correlation functions mainly in the regime where the soft, long-wavelength mode is

linear, we assume that there is no anisotropic stress at the linear level. According to (6.32),

this implies that the two scalar potentials are equivalent so that the perturbed FRW metric

in Newtonian gauge reads (see (6.30))

ds2 = −
[
1 + 2ΦL(x, t)

]
dt2 + a2(t)

[
1− 2ΦL(x, t)

]
dx2 . (6.33)
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As discussed in Section 2.1.2, large-scale structure formation on sub-horizon scales, on which

(aH)/k � 1, can be described in the Newtonian limit of cosmological perturbation theory.

Due to this, we assume that the soft mode ΦL(x, t) is sufficiently far inside the horizon so that

the Newtonian approximation holds for it as well. In the Newtonian limit, ΦL(x, t) fulfills the

Poisson equation (6.31) and is thus related to the linear density contrast δL. If we assume

here, in contrast to Section 7.2 where we discuss the case of a directional long-wavelength

perturbation, that the soft mode is spherically symmetric, we can determine its explicit form

from (6.31),

ΦL(x, t) ' 1

4
Ωm a

2H2δL x2 � 1 . (6.34)

Notice that in the derivation of this relation we have neglected the spatial dependence of

the linear density contrast by assuming δL(x, t) � 1. Moreover, we have not included the

constant and gradient contributions to the perturbation ΦL(x, t) here. This is because these

pieces can be removed by performing a coordinate transformation to a free-falling frame, as

shown in [169, 170]. In fact, such a transformation also leads to the unequal-time consistency

relations we (re-)derived in Section 6.1. However, we only deal with the quadratic part of the

potential, ΦL(x, t) ∝ x2 here, since we are in the physical squeezed limit of the correlations

functions (see [165]).

Our next step consists in determining the coordinate transformation which provides the

essence of the background method by mapping the flat FRW metric (6.33) with a soft and

spherically symmetric perturbation of the form (6.34) to an unperturbed, locally curved FRW

cosmology. To derive the form of this map, we make the following ansatz for the coordinate

transformation

t = tK + f(tK ,xK) , x = xK [1 + g(tK ,xK)] , (6.35)

where we have denoted the coordinates of the locally curved FRW cosmology by tK and xK

and introduced the coordinate-dependent functions f(tK ,xK) and g(tK ,xK). The latter have

to be determined such that they provide a transformation to a locally curved FRW cosmology

with a metric (in isotropic coordinates) given by

ds2 = −dt2K + a2
K(tK)

dx2
K(

1 + 1
4Kx2

K

)2 (6.36)

with K indicating the local curvature. Since we intend to study a locally curved background

cosmology, we only have to assume that the change of coordinates defined in (6.35) is locally

valid at small distances. Consequently, we can treat the functions f(tK ,xK) and g(tK ,xK)

as small corrections and perform a series expansion about them in order to transform the

perturbed, flat FRW metric (6.33) into the locally curved one in the previous equation.
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If we use the change of coordinates (6.35) to transform the metric in (6.33) into the one

given in (6.36), we deduce by comparison of the time-time components of the two metrics

that

ḟ = −ΦL , (6.37)

where the dot denotes the derivative with respect to the time variable t here, ḟ ≡ ∂f/∂t.

Moreover, since the time-space parts in both metrics vanish, we obtain in addition the relation

a2 ġ x = ∇f (6.38)

with the gradient taken with respect to x, ∇ ≡ ∇x. Notice that based on the assump-

tion ΦL � 1 (see (6.34)), the last two equations are valid provided δL � 1 and H2x2 � 1,

such that f ∝ x2 and g ∝ x0. If these constraints are not fulfilled, spatial gradients of the

linear density contrast arise in the coordinate transformation and the analysis has to be mod-

ified. However, the restriction to this particular subclass of soft and spherically symmetric

perturbations is suitable and sufficient for our purpose to study the soft limit of correlation

functions.

Moreover, the change from global to local time coordinates according to (6.35) leads to a

transformation of the time-dependent scale factor a(t) as well. It arises as

a(t) = a(tK) (1 +H f) (6.39)

and contributes to the curvature K in the locally curved FRW cosmology. By transforming

the space-space components of the metrics (6.33) and (6.36) into each other, we furthermore

find the relations

aK(tK) ≡ a(tK) (1 + g) , K x2
K ≡ 4ΦL + 4H

∫
dtΦL . (6.40)

These provide the final constituents to transform the perturbed, flat FRW metric (6.33)

into the unperturbed, locally curved one of (6.36). By using the expressions (6.34), (6.38)

and (6.40) which arise in this transformation, we can furthermore deduce that the Hubble

parameter in the locally curved FRW cosmology reads

HK ≡
ȧK
aK
' H + ġ = H − 1

2a2

∫
dt Ωm a

2H2 δL . (6.41)

In order to be able to compare the predictions of these results for soft-limit consistency condi-

tions to those derived in the framework of SPT and the time-flow approach in the Sections 6.2.1

and 6.2.2, we restrict ourselves henceforth to an EdS cosmology describing a flat universe con-

taining matter only. Thus, we set Ωm = 1 in the following (see Section 3.1.1). Moreover, we

135



6. Bispectrum Consistency Conditions

can use the fact that the Hubble parameter and the growing mode of the linear density con-

trast in the EdS case scale like H ∝ a−3/2 and δL ∝ a (see (3.16) and (3.11) with (3.17)),

to determine the explicit form of the Hubble parameter HK , the scale factor aK and the

curvature K in the locally curved universe. Note that the integrand in the relation (6.41) for

the Hubble parameter HK is approximately constant in time. For the calculation of the scale

factor aK as given in (6.40), we first need to compute the coordinate-dependent function g

from (6.38) and thus also the function f by use of (6.37) and (6.34). In the EdS case, these

are given by

f = −1

6
H0 a

1/2 δL x2 , g = −1

3
δL . (6.42)

Based on this, we obtain for the Hubble parameter, the scale factor and the curvature in the

locally curved EdS universe the following expressions,

HK ' H

(
1− 1

3
δL
)
, (6.43)

aK ' a

(
1− 1

3
δL
)
, (6.44)

K ' 5

3
H2a2δL . (6.45)

Next, let us discuss the implications of these results. If we, for instance, express the matter

density parameter (2.8) of the locally curved cosmology as Ωm,K = (a3
K H

2)/(a3H2
K) by taking

into account that the mean density in a matter-dominated (EdS) universe scales like ρ̄ ∝ a−3,

we can rewrite the first Friedmann equation in (2.9) for the locally curved system as

H2
K = H2 a

3

a3
K

− K

a2
K

. (6.46)

We find that the results (6.43)-(6.45) fulfill this equation. In total, we deduce that the relations

we derived for the locally curved cosmology are consistent with the corresponding Friedmann

equations.

Besides, it is worth pointing out that the mean density in the locally curved universe,

i.e., ρ̄K , is bigger than in a flat one,

ρ̄K = ρ̄
a3

a3
K

' ρ̄ (1 + δL) , (6.47)

where we used (6.44). However, this is not the case for the physical Hubble HK , as given

in (6.43), since the curvature over-compensates the density increase.

6.3.3. Non-perturbative bispectrum consistency condition

Based on the mapping from a flat FRW cosmological model in the presence of long-wavelength

perturbation to a locally curved FRW cosmology that we discussed in the last section and that
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led to the relations (6.44)-(6.45) in the particular case of an EdS universe, our aim is now to

study the imprint of the soft, long-wavelength perturbation on the dynamics of the hard, short-

scale modes. The transformation to the locally curved EdS universe will affect the dynamics

of the hard modes on the one hand through the change in the spatial coordinates (6.35) by

an additional ‘contraction’ (1 + g), with g given in (6.42), and on the other hand through the

modified expansion rate according to (6.44).

For instance, transforming the density contrast of the hard mode in real space, δK(xK , aK),

to the locally curved EdS universe consequently yields

δK(xK , aK) = δ(x, a) (1− δL) . (6.48)

Note that we have expressed the dependence of the density contrast on the time in terms of the

scale factor here. In turn, the relation above allows us to derive the corresponding two-point

correlation function of the density contrast in real space. This two-point correlation function,

which constitutes the real-space equivalent of the power spectrum (see (4.1)), is defined as [40]

ξab(r, a) ≡
〈
ψa(x, a)ψb(x + r, a)

〉
. (6.49)

Due to statistical homogeneity and isotropy, discussed in Section 4.2, it does not depend on

the two different locations x and x + r (in comoving coordinates), but on their separation r

only. According to the transformation of the real-space density contrast of the hard mode

in (6.48), the respective two-point correlation function of the density contrast, that is,

ξ(r, a) ≡ ξ11(r, a) =
〈
δ(x, a) δ(x + r, a)

〉
, (6.50)

according to (6.49), in the presence of a long-wavelength perturbation arises as

ξδL(r, a) =

[
1 + δL

(
2 +

1

3
r∂r

)]
ξK(r, aK)

=

[
1 + δL

(
2 +

1

3
r∂r −

1

3
∂η

)]
ξK(r, a) , (6.51)

where ξK(r, a) refers to the two-point correlator of the density contrast in the locally curved

system. In the derivation of this equation, we have applied once more the transformation of

the spatial coordinates in (6.35), such that rK = r (1 − g) with g = −δL/3 in the EdS case

(see (6.42)), and the change of the scale factor as given in (6.40).

Furthermore, the mapping to a locally curved universe entails a different growth of struc-

tures since the latter is affected by the curvature. In other words, the linear growth factor in

the locally curved system, D1(K, aK), has a different form as in the pure flat EdS case where
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it simply equals D1(K = 0, a) = a (see (3.17)). Indeed, we obtain that the linear growth

factor in the locally curved EdS cosmology equals

D1(K, aK) ' D1(0, a) + K
d

dK
D1(K, aK)

∣∣∣∣
K=0

=

(
1 +

13

21
δL
)
D1(0, a) . (6.52)

Equivalently to the linear power spectrum (see (4.16)), the real-space two-point correlation

function scales at the linear level like the square of the linear growth factor. Consequently,

the different growth of structure in the original (flat) and the locally curved system is taken

into account at linear order by the replacement

ξLK(r, aK)→
(

1 + 2× 13

21
δL
)
ξL(r, a) , (6.53)

where ξL(r, a) corresponds to the two-point correlation function in the flat background cos-

mology without the soft mode.

By combining the prefactors of the expressions (6.51) and (6.53) and correlating the result-

ing two-point correlation function with δL, we can directly determine the real-space three-

point correlation function
〈
ξδL(r, a) δL

〉
. If we perform the Fourier transform of this quantity

afterwards, we obtain the three-point correlation function in Fourier space in the presence of

a soft mode. This is exactly the soft limit of the bispectrum at linear order. The resulting

expression we derive in this way from the background method,

BL
111(k,−q, q − k, η)av q→0−−−→ PL(q, η)

(
47

21
− 1

3
k ∂k

)
PL(k, η) , (6.54)

coincides completely with the leading-order angular-averaged consistency relations which we

calculated in SPT and from the time-flow approach (see (6.9) and (6.28)).

In contrast to SPT and the time-flow formalism being perturbative approaches, the back-

ground method we developed in this section is a non-perturbative approach. This means

that absorbing a soft perturbation into a locally curved background cosmological constitutes

a correct and consistent method also at the non-linear level, as advocated in [165]. Note that

this procedure has also been applied, e.g., in [224], to derive a physical squeezed limit for

correlation functions in the inflationary case. By following similar steps as in [224], we can

thus use the background method to derive a generic, non-perturbative consistency relation

for the bispectrum in the soft limit.

In our previous considerations, the only step where we referred to perturbation theory

consisted in considering the scaling of the two-point correlation at linear order in (6.53).
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Thus, we can simply derive a non-perturbative relation for the bispectrum in the soft limit by

using the expression for the two-point correlation function in the equation before (see (6.51)),

as well as the relation (6.45) between the local curvature K and the linear density contrast in

the EdS case. If we introduce the notation

P (k, η) ≡ P11(k, η) (6.55)

for the density-density power spectrum, the background method yields the following non-

perturbative consistency relation for the soft limit of the bispectrum of density perturbation

in an EdS cosmology,

B111(k,−q, q − k, η)av q→0−−−→ PL(q, η)

[(
1− 1

3
k ∂k −

1

3
∂η

)
P (k, η) +

5

3

∂

∂κ
PK(k, η)

∣∣∣∣
K=0

]
,

(6.56)

where PK(k, η) denotes the power spectrum of the density contrast in the presence of (local)

curvature. Furthermore, we have defined the curvature parameter

κ =
K

a2H2
=

5

3
δL (6.57)

with K given in (6.45). Thereby, the term
(
1− 1

3k∂k
)

arising in the non-perturbative bis-

pectrum consistency relation is a combination of two effects, namely, the difference in the

density contrast between the flat and the locally curved cosmology plus the shift induced by

the displacement term (or equivalently the eikonal phase). Moreover, the contribution 1
3∂η

follows from the change in the scale factor.

Although the expression in (6.56) constitutes a generic result for the bispectrum in the soft

limit, it does not represent a consistency relation which one would confront against observa-

tions, since it depends on the power spectrum PK(k, η) parameterizing the hypothetical case

of a curved universe. In addition, the impact of the curvature on the fluctuations and hence

on the power spectrum, ∂PK(k, η)/∂K, cannot be readily determined in terms of curvature-

dependent quantities at K = 0, as for instance done in (6.52), without resorting to numerical

simulations of perturbative methods. For instance, one may use N -body simulations in the

framework of the so-called ‘separate universe’ approach [238–241] to determine the derivative

with respect to curvature. We take this point up again in Section 7.4. On the other hand, an

attempt to replace the variation with respect to curvature by curvature-independent quan-

tities without resorting to numerical simulations or perturbation theory has been presented

in [173, 174]. We study this (allegedly non-perturbative) proposal, in particular with regard

to its validity beyond perturbation theory, in what follows.
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6.4. VKPR proposal of ‘equal-time consistency relations’

A proposal by Valageas, as well as by Kehagias, Perrier and Riotto (VKPR) to extend the

soft-limit consistency relation for the bispectrum at linear order, that was first derived (in

real) space in [166] and that we recovered in SPT, the time-flow approach and the background

method (see (6.9), (6.28) and (6.54)), into the non-linear regime appeared in [173] and [174].

These works coined the term (angular-averaged) ‘equal-time consistency conditions’ for large-

scale structure.

In practice, the VKPR proposal consists in replacing each linear growth function for the

short modes by the one for a locally curved EdS universe given in (6.52). Thus, in comparison

to (6.51), the two-point correlation function in real space in the presence of the soft, long-

wavelength mode reads

ξVKPR
δL (r, η) =

[
1 + δL

(
2 +

1

3
r∂r +

13

21
∂η

)]
ξ(r, η) . (6.58)

Note that this relation does not show an explicit dependence on the two-point correla-

tor ξK(r, a) of a locally curved system. After correlating ξVKPR
δL

(r, η) with the soft mode δL

and transforming to Fourier space, the resulting consistency relation for the bispectrum in

the soft limit is

BVKPR
111 (k,−q, q − k, η)av q→0−−−→ PL(q, η)

[
2− 1

3
(3 + k ∂k) +

13

21
∂η

]
P (k, η) . (6.59)

Consequently and in contrast to (6.56), this bispectrum consistency relation does not involve

a power spectrum PK(k, η) in the presence of (local curvature).

On the other hand, by comparing the non-perturbative bispectrum consistency condition

in (6.56) with the one based on the VKPR proposal in the previous equation, one can rephrase

the VKPR proposal as

VKPR :
∂

∂κ
PK(k, η)

∣∣∣∣
K=0

=
4

7
∂ηPK=0(k, η) . (6.60)

Thus, one can regard it as an attempt to replace the variation of the power spectrum PK(k, η)

with respect to curvature by a time derivative of the power spectrum PK=0(k, η) in the absence

of curvature, i.e., K = 0.

6.4.1. VKPR bispectrum consistency relation

In the following, our aim is to assess the validity of the VKPR bispectrum consistency rela-

tion (6.59) within and beyond perturbation theory. Let us start by comparing its predictions

with the perturbative results we derived for the soft limit of the bispectrum at leading and

next-to-leading order in SPT.
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Leading order

In order to check the validity of the VKPR bispectrum consistency relation (6.59) at leading

order, we replace the density power spectrum of the hard modes, i.e., P (k, η), by the respective

linear power spectrum. The linear power spectrum of density perturbations is explicitly

written down in (4.17). Since its scaling with time is known, PL(k, η) ∝ e2η, we can perform

the derivative with respect to η in (6.59). Recall that in the EdS case η = ln a(τ) (see (3.63))

so that the logarithmic derivative can be understood as a counter. The resulting expression

for the bispectrum consistency relation (6.59) at linear order is equivalent to the leading-

order prediction for the soft-limit bispectrum in SPT in (6.9), and hence also coincides with

the respective linear-order results derived from the time-flow approach in (6.28) and the

background method in (6.54). Thus, we can conclude that the VKPR proposal correctly

reproduces the bispectrum consistency relation at linear order.

Next-to-leading order

However, the VKPR consistency condition (6.59) is advocated in [173] and [174] as being valid

even in the non-linear regime. Hence, it is even more interesting to investigate the validity

of this relation beyond linear order. Consequently, our next step consists in confronting the

predictions of the VKPR consistency condition at next-to-leading order against the corre-

sponding results in SPT. In order to do so, we insert the one-loop SPT power spectrum (6.19)

on the right-hand side of the VKPR relation (6.59). After bringing the resulting expression

into a form analogous to (6.17), we can compare the one-loop coefficients that emerge from

the VKPR proposal,

αVKPR =
61

1890
' 0.032 , βVKPR = − 3599

13230
' −0.272 , γVKPR =

135

1372
' 0.098 ,

(6.61)

to those in SPT, given in (6.18). We find that the VKPR coefficients overall differ from those

in SPT. Nonetheless, we observe that αVKPR = αSPT. Note that this must, however, be

the case since this coefficients originates from the eikonal phase in (6.1), which we argued is

universal (see Section 6.1.1).

6.4.2. Validity of the VKPR proposal

From our previous considerations in the context of the background method, in particular in

Section 6.3.3 where we discussed the transformations of correlation functions to account for

the impact of a soft mode, it is clear that the subtle step on which the VKPR consistency
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condition is based is the replacement

ξVKPR
K (r, aK) =

(
1 +

13

21
δL ∂η

)
ξ(r, a) . (6.62)

In detail, this substitution aims at generalizing the linear-order relation (6.53) to the non-

linear level. However, as we have explicitly shown by the comparison of the one-loop VKPR

and SPT coefficients, it is not valid beyond leading order even for an EdS cosmological model.

The reason for this is that the replacement (6.62) does not capture the full impact of the soft

perturbation, which is relevant for a consistent description of the dynamics of the hard modes.

We can already identify the seed of the failure to capture the full relevant dynamics directly

in the perturbative expansion of the density field, even before performing the correlation with

the soft mode. As discussed in [165], we can use the framework of SPT to expand the density

contrast δ(k, η), according to (3.30) with (3.31), in a perturbative series up to a given order,

determine its soft limit and perform a Fourier transform to real space. After correlating the

series expansion of the density contrast to obtain the real-space two-point correlation function

and subsequently the bispectrum in the presence of a soft mode, we can then compare the

resulting expressions order-by-order with the VKPR relations in (6.58) and (6.59). Based on

SPT and following [166], we can write the perturbative expansion of the density contrast in

real space in the presence of a soft mode, δS
δL

(x, η), up to the next-to-leading (second) order

as

δSδL(x, η) = δ(1),S(x + d(x, η), η) +
34

21
δ(1),L(x, η) δ(1),S(x, η) +

4

7
KL
ij(x, η)KS

ij(x, η) + . . . ,

(6.63)

where the ellipses represent the higher-order contributions of the perturbative expansion.

Furthermore, we have introduced here the so-called displacement and anisotropy terms as

(see [166])

d(x, η) ≡ −
∫
d3q eiq·x

iq

q2
δ(1)(q, η) ,

Kij(x, η) ≡
∫
d3q eiq·x

(
qiqj
q2
− 1

3
δij

)
δ(1)(q, η) .

(6.64)

Note that we have resummed the effects of the displacement to all orders. This follows from

the eikonal approximations in (6.1) or can also be shown directly in Lagrangian space [208].

Proceeding from the expansion of the density contrast δS
δL

(x, η) in (6.63), it is straightforward

to check the validity of the VKPR relations for the two-point correlation in real space in (6.58)

and the corresponding bispectrum in the soft limit in (6.59). First, we perform the correlation

of the density contrast (6.63) at two different locations x and x + r to obtain the real-

space two-point correlation function ξδL(r, η) according to its definition in (6.50). Then,
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by correlating ξδL(r, η) with the long-wavelength perturbation δL, we obtain the three-point

correlation function 〈
ξδL(r, η) δL

〉
=
〈
δSδL(x + r, η) δSδL(x, η) δL

〉
, (6.65)

which directly leads to the soft-limit bispectrum relation in Fourier space after angular av-

eraging. Determining the two-point correlation function in the equation above, we find that

the piece from the displacement reproduces the factor of 1
3r ∂rξ(r) in (6.58). Furthermore, it

is crucial in this derivation that the anisotropy term does not contribute upon angular aver-

aging, since 〈δL(x, η)KL
ij(x, η)〉av → 0 . Thus, the angular average removes the anisotropic

contributions and accounts in this way for the effect of spherically symmetric perturbations.

At next-to-leading order in SPT, the validity of the VKPR proposal requires that the

expansion of the density contrast δS
δL

(x, η) may be written as

δSδL(x, η) ⊃ δ(2),S(x+d(x, η), η)+
47

21
δ(1),L(x, η) δ(2),S(x, η)+

4

7
KL
ij(x, η)ASij(x, η)+ . . . (6.66)

with the ellipses including higher-order contributions. The factor 47/21 would arise as a con-

sequence of the scaling δ(2) ∝ D1(η)2, as dictated by the VKPR expression in [173, 174]. In the

equation above, we have also collected the anisotropy piece into the term containing ASij(x, η),

which vanishes by averaging over angles. Regarding the assumption of spherical symmetry,

one may be worried that the anisotropy terms could survive after angular averaging. In fact,

even though we take the soft limit q → 0, the angular dependence coming from the soft mode

remains because of the 1/q2 enhancement from the eikonal phase, as for instance (k · q)2/q2.

However, due to the factorization, at equal times the anisotropy terms vanish upon angular

averaging. In other words, we do not encounter singularities of the form 1/q4 at equal times

since the contributions from the eikonal phase cancel each other and the remaining terms are

analytic in q. This can be explicitly checked up to next-to-next-to-leading order (NNLO) in

perturbation theory.

As expected from the explicit one-loop check of the VKPR bispectrum consistency relation

(see (6.59) and (6.61)), the next-to-leading order relation for the density contrast in (6.66) is

not fulfilled in this form. In detail, after performing the angular average, we find an additional

piece (see (6.76)) which causes the small discrepancy between the β- and γ-coefficients of the

one-loop bispectrum in the soft limit derived in SPT and from the VKPR proposal (see (6.18)

and (6.61)). Although being formally not valid at one-loop order, the arising errors in the

coefficients βVKPR and γVKPR are small. If we take the expansion of the density contrast

up to fourth order, i.e., up to δ(4)(x, η), into account, the calculation reveals that the claim

for the form of the density perturbations based on the VKPR proposal is quantitatively very

close, but not exactly equal, to the result we obtain in SPT.3

3Notice, however, although the errors in the coefficients βVKPR and γVKPR are small, these coefficients are
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6.5. Generalization of the background method

Proceeding from these considerations, our aim is to elaborate the reason behind the discrep-

ancy of the VKPR proposal. To identify plausible causes, we start our investigations by

considering the velocity perturbations. Based on this, we subsequently generalize the back-

ground method, introduced in Section 6.3 to properly incorporate the effect of curvature not

only in the density but also in the velocity fluctuations on short distance scales. Thereby,

we demonstrate that the velocity perturbations react differently, by a factor of one, to the

presence of local curvature.

6.5.1. Impact of the velocity

Let us deduce the response of the velocity fields to the presence of a long-wavelength mode

and compare it to the case of the density contrast. As discussed in Section 3.1.1, the linear

growth factor describes the evolution of the growing mode of the density contrast in time.

Consequently, the change in the growth factor by transforming to a locally curved EdS cos-

mology in (6.52) only affects the density contrast, but not the velocity field. In this expression,

the dependence of the growth factor on the curvature originates from two different sources,

dD1(K, aK)

dδL
=
∂D1

∂K

dK

dδL
+
∂D1

∂aK

daK
dδL

. (6.67)

The first term, which describes how the growth factor as a function of a (or equivalently η)

is modified by the curvature K, contributes with a factor 20/21. On the other hand, the

second term, that accounts for the change of the scale factor in the presence of curvature,

gives a contribution including a factor −1/3 when the growing mode is compared at the

same proper time. In total, the linear growth factor of the density contrast increases by a

factor (1 + 13/21 δL) in the locally curved EdS cosmology (see (6.52)) [165, 166]. By using

the inverse of the transformation for the density contrast in (6.48), we can conclude that the

growth of the density contrast is enhanced by a factor (1 + 34/21 δL) in the presence of a soft

mode.

Next, we perform an analogous calculation for the divergence of the velocity Θ(x, a), which

is defined in (3.48). We find that the velocity field responds differently to the effect of local

curvature as the density contrast does. In detail, we obtain that the contribution ∂D1,Θ/∂K

is twice as large as the respective contribution in (6.67). Notice that this is also required

still multiplied by integrals which, depending on the initial conditions, can be large (or even divergent and

thus need to be regularized). This means that the discrepancy can be ultimately large (or divergent) for

initial conditions where the integrals are dominated by the hard part of the spectrum.
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for the continuity equation to be valid. Hence, the growth of the velocity divergence in a

locally curved EdS universe increases by an overall factor (1 + 33/21 δL). To obtain the final

expression for the change of velocity field Θ in the presence of a soft mode, we need in addition

to include the effect of the coordinate transformation (6.35). Since the physical velocity v is

the same in both systems, the transformation of the velocity divergence in real space to the

locally curved EdS cosmology reads (see (6.48))

ΘK(xK , aK) = Θ(x, a) (1 + δL/3) . (6.68)

Taking this relation into account, we deduce that the velocity in the presence of a long-

wavelength perturbation grows faster by a total factor of (1 + 26/21 δL). Note that this result

is consistent with what one can derive in an explicit calculation in SPT. In addition, it is also

confirmed by our findings for the soft-limit bispectrum consistency relation at linear order in

the time-flow approach, given in (6.28), since 2 × 26/21 − 1 = 31/21 reproduces the correct

contribution to the velocity-velocity components (where a = c = 2).

The result that the growth of the velocity perturbations in the presence of a soft mode is

enhanced by an overall factor (1 + 26/21 δL) has important consequences. Namely, it implies

that, by using the transformations discussed above, the bispectrum consistency relation based

on the VKPR proposal in (6.59) may be (naively) generalized to a form (6.28) which also

includes the velocity components. By translating the steps in [173, 174] that lead to the

bispectrum consistency relation (6.59) to the case of velocity perturbations, one would then

write the velocity divergence in real space in the presence of a soft mode as

ΘS
δL(x, η) ⊃ Θ(n),S(x + d(x, η), η) + δ(1),L(x, η)

(
−1

3
+

33

21
∂η

)
Θ(n),S(x, η) + . . . (6.69)

with n ≥ 1 and δ(1),L(x, η) = Θ(1),L(x, η). Here, the ellipses would include either terms that

vanish upon angular averaging or are of higher order in perturbation theory. However, as we

show in what follows, this expression extending the VKPR proposal to the velocity field dra-

matically fails beyond leading order. This has to be interpreted as a clear sign that the impact

of a long-wavelength perturbation on the velocity fields has to be carefully accounted for and

requires a systematical implementation to correctly reproduce the predictions of perturbative

methods such as SPT.

6.5.2. Fluid perturbations in a curved background

Although the response of density and velocity fields to the presence of a long-wavelength

perturbation is different, one replaces δ(1) by Θ(1) in the usual SPT computations. In order to

account for the different impact of local curvature on each component consistently, one would
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have to deduce the dependence of the non-linear power spectrum on the two growing and

decaying modes associated to the doublet field of density and velocity perturbations, ψa(k, η)

in (3.51), separately. However, there is no easy way to do so. By disregarding the different

effect of curvature on the density and velocity fields, one would then expect to find a significant

departure from the VKPR bispectrum consistency relation (6.59) for the density contrast and

its equivalent for the velocity fields beyond linear order. On the one hand, these expectations

turn out to be fulfilled for the case of the velocity field. On the other hand, however, we

find that the VKPR bispectrum relation for the density field qualitatively reproduces the

perturbative predictions in SPT up to a small discrepancy.

To gain some intuition behind the smallness of the discrepancy, let us next investigate

the dynamics of fluid fluctuations in curved background cosmology by means of perturbation

theory in more detail. For this purpose, we consider the non-linear fluid equations (3.54)

for the short modes in a (locally) curved EdS cosmology. Since the dependence of the fluid

equations is entirely encoded in the matrix Ωab(η), defined in (3.52) and in the EdS case given

in (3.64), transforming to a locally curved universe in the fluid description simply amounts to a

change of Ωab. At leading order in the curvatureK (see (6.45)), the corresponding modification

of the matrix Ωab for an EdS cosmology, (3.64), in the presence of (local) curvature reads

Ωab,K ' Ωab,K=0 + K
∂

∂K
Ωab,K

∣∣∣∣
K=0

= ΩEdS
ab + κ

(
0 0

−3/2 −1/2

)
. (6.70)

Note that although the curvature K, according to (6.45), is time independent for an EdS

cosmology, the corresponding curvature parameter κ, defined in (6.57), depends on time and

scales like κ ∝ a in the EdS case.

Due to the fact that the matrix Ωab,K enters in the solution of the fluid equations through

the linear propagator (see (3.56)), the additional curvature contribution in (6.70) leads to a

modification of the linear propagator in the perturbative analysis. However, at leading order

in the curvature K ∝ δL (see (6.45)) and thus in the soft mode δL, it sufficient to treat the

effect of the curvature as an additional interaction. Consequently, the first-order solution of

the doublet field for the short modes, ψ
(1)
a,K(k, η), at linear order in K can be written as

ψ
(1)
a,K(k, η) ' ψ(1)

a,K=0(k, η) +K
∂

∂K
ψ

(1)
a,K(k, η)

∣∣∣∣
K=0

=

[(
1

1

)
+

4κ

7

(
1

2

)]
eη−η0 δ(1)(k, η0) ,

(6.71)

where have used that ψ
(1)
a,K=0(k, η) = eη−η0 ua δ0(k) for growing-mode initial conditions, as

defined in (3.74) with (3.76). Note that as discussed in the previous section, the impact of

the curvature on the velocity field is twice as large as on the density field.
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For the higher-order solutions of the doublet field at linear order in K,

ψ
(n)
a,K(k, η) ' ψ(n)

a,K=0(k, η) +K
∂

∂K
ψ

(n)
a,K(k, η)

∣∣∣∣
K=0

(6.72)

with n > 1, the second term includes in general two different contributions,

K
∂

∂K
ψ

(n)
a,K(k, η)

∣∣∣∣
K=0

= K

∫ η

η0

dη′ gab(η, η
′)
[
∂

∂K
Ωbc(η

′)ψ(n)
c (k, η′)

+ γbcd(k, q1, q2)
∂

∂K

n−1∑
m=1

ψ
(m)
c,K(q1, η

′)ψ(n−m)
d,K (q2, η

′)
]
.

(6.73)

While the first contribution corresponds to the additional interaction induced by the pres-

ence of curvature, just as the second term in the leading-order expression (6.71), the second

contribution arises due to the curvature-dependent lower-order solutions entering in the SPT

recursion relation (3.77). If we, for instance, compute the next-to-leading (second) order

solution of the doublet field in the presence of curvature,

ψ
(2)
a,K(k, η) ' ψ(2)

a,K=0(k, η) +K
∂

∂K
ψ

(2)
a,K(k, η)

∣∣∣∣
K=0

. (6.74)

the two contributions to the linear curvature term are given by

K
∂

∂K
ψ

(2)
a,K(k, η)

∣∣∣∣
K=0

=
4κ

7

(
2 0

0 3

)
ab

ψ
(2)
b,K=0(k, η)

+
κ
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(
1

3

)∫
d3q1

∫
d3q2 δD(k − q1 − q2) (6.75)

×(q1 · q2)2 − q2
1q

2
2

q2
1q

2
2

e2(η−η0) δ(1)(q1, η0) δ(1)(q2, η0) .

From this, we can deduce that already at next-to-leading order of the solution for the doublet

field, the linear curvature contribution K ∂ψ
(2)
a,K(k, η)/∂K is not any more proportionally

related to the doublet field ψ
(2)
a,K=0(k, η) itself. Moreover, the overall difference with the

expression in (6.59) for the density contrast (first entry) is rather small. At the same time,

we see that the extension for the velocities in (6.69) fails (compare with second entry).

In conclusion, we find that it is not possible to naturally reformulate the curvature de-

pendence of the density and velocity fields in terms of a time derivative with respect to η.

Thus, the assumption on which the VKPR proposal in [173, 174] is based does not hold in

general and in particular not non-perturbatively. However, we also find that the suggestion

of the VKPR proposal to parameterize the curvature dependence by a time derivative gives a

reasonable empirical perturbative approximation. Hence, we can generalize the results for the
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doublet fields for the short modes at leading and next-to-leading order in (6.71) and (6.74)

with (6.76) to the nth-order in perturbation theory by the approximation

K
∂

∂K
ψ

(n)
a,K(kK , η)

∣∣∣∣
K=0

' 4κ

7

(
∂η 0

0 ∂η + 1

)
ab

ψ
(n)
b,K=0(kK , η) , (6.76)

which translates into the relation

∂

∂δL
ψ

(n)

a,δL
(k, η)

∣∣∣∣
δL=0

' 1

21

(
21 + 13 ∂η 0

0 13 + 13 ∂η

)
ab

ψ
(n)
b,K=0(kK , η) . (6.77)

The approximation (6.76) can be understood as follows. If we do not base our considerations

on the form of the non-linear fluid equations for an EdS background cosmology, but start

from their general form with the velocity dependence Θ(k, η) and the matrix Ωab(η) being

dependent on the growth rate f(η) (see (3.48) and (3.52)) as well as the time variable η ≡
lnD1(τ) of (3.49). By mapping to a locally curved universe, η and f(η) transform into

η → lnD1,K(η) , f(η)→ ∂ lnD1,K(η)

∂ ln a
(6.78)

with D1,K(η) being the linear growth factor in the presence of curvature for the EdS case. As

a consequence, we obtain a new system of fluid equations containing the matrix

Ωab,f =

(
0 −1

−3
2

Ωm
f2

3
2

Ωm
f2 − 1

)
' ΩEdS

ab +
3κ

14

(
0 0

1 −1

)
. (6.79)

Here, we used the fact that for an EdS cosmology in the presence of curvature the matter

density parameter and the growth rate are given by Ωm ' 1 + κ and f ' 1 + 4
7κ up to linear

order in κ, respectively. Thus, we can absorb the information regarding the background

cosmology into the time evolution up to an interaction term proportional to the curvature

parameter κ (see (6.79)).

If we, however, neglect this κ-dependent interaction term in the matrix Ωf,ab in (6.79) and

solve the fluid equations by means of perturbation theory, we can derive that the nth-order

solution of the doublet field ψ
(n)
a,K(kK , η) for the soft mode in the presence of curvature fulfills

the relation (6.76) (and thus the VKPR relation for the density power spectrum in (6.60)).

In other words, in to obtain (6.76), one has to absorb the dependence of the fluid equations

on the curved background cosmology not in the matrix Ωf,ab, but merely into the linear

growth factor D1,K(η). In this case, the derivatives with respect to the curvature K can be

reformulated as derivatives with respect to the time variable η.

Consequently, assessing the accuracy of the VKPR relation in (6.60) amounts to estimating

the error induced by this approximation. On the one hand, the accuracy of the VKPR proposal
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can be related to the variation (see (6.57))

∂

∂δL

(
3

2

Ωm

f2

)
' − 5

14
, (6.80)

in the presence of a long-wavelength perturbation which has been absorbed into the back-

ground. Notice, however, that the explicit perturbative computations, e.g., the one-loop

check of the density bispectrum in the soft limit (compare (6.61) with (6.18)), reveal a much

better precision of the VKPR proposal. In fact, this is related to the appearance of extra

cancellations. We find that the linear κ-dependent contribution to the matrix Ωf,ab in (6.79)

almost annihilates the growing-mode solution at any given order in SPT, which is dominated

by δ(n) ' Θ(n) (i.e., ψ(n) ∝ (1, 1)). This explains the smallness of the discrepancy between the

predictions obtained in SPT and by use of the approximation (6.76), and thus the unreasonable

effectiveness of the VKPR proposal in perturbative computations.

As shown in [173], it is possible to derive exact relations in a simplified (1 + 1)-dimensional

toy model, whose background equations resemble an EdS cosmology. In this case, the response

to a soft mode is given by ψa,δL ' [1 + δL(1 + ∂η)]ψa.

Apart from this, attempts of testing the VKPR proposal against numerical simulations have

appeared in [231, 238]. The small deviations between the VKPR proposal and the numerical

results found therein are consistent with our findings. We take this interesting point up again

in Section 7.4.3. There, we make use of the so-called response function of the density power

spectrum to confront the VKPR proposal against N -body simulation data.

Proceeding from the derivation of a non-perturbative relation for the bispectrum in the

soft limit, we take another step in this direction in what follows. To be precise, our intention

in the next chapter is to derive a non-perturbative equation for the power spectrum in the

soft limit. Before doing so, we motivate why it is interesting and important to derive and

investigate such a non-perturbative power spectrum equation.
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Based on the insights on analytic methods in the theory of large-scale structure formation we

gained in Chapter 5, we can summarize that current attempts to improve perturbation theory

approaches can be broadly classified into two categories (see Section 5.2.2). On the one hand,

studies have been undertaken to investigate the effects of long-wavelength (IR) fluctuations

on modes around the scale of the baryon acoustic oscillations in [1, 101, 143, 159, 176, 182,

189, 208]. On the other hand, there have been efforts directed towards an understanding of

the impact of short-wavelength (UV) perturbations. Thereby, the treatment of UV modes is

complicated by the fact that the dynamics of gravitational instability is non-linear on short

distance scales.

Since SPT fails to capture the correct dynamics on short distance scales due to the emer-

gence of UV dependencies, other tools have been developed to study the imprint of UV modes

on long-distance variables. The most prominent example among these is maybe the effective

field theory of LSS [49, 63, 89, 178–208]. Besides, other attempts in this direction appeared.

These are based on a different implementation of perturbation theory (see e.g., [212]) or,
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motivated by numerical simulations [209, 210], perform a reorganization of the perturbative

expansion [102, 213, 214].

In contrast to the approaches above, which rely on means of perturbation theory, our

aim in this chapter is to study the long-wavelength, soft limit of the power spectrum non-

perturbatively. By making use of the background method, introduced in the previous chapter

to derive a (non-perturbative) bispectrum consistency relation (see (6.56)), and performing

an operator product expansion (OPE), we derive a non-perturbative equation for the power

spectrum of long-wavelength modes in what follows. This equation encodes the coupling

to the UV modes in two time-dependent coefficients. Hence, these allow us to investigate

the actual impact of the UV fluctuations on the power spectrum on large distance scales.

Moreover, we can use them to assess the UV dependence of the leading-order – renormalized

– EFT coefficients [63, 178, 208, 370]. Since the two coefficients of the non-perturbative power

spectrum relation may be obtained from small-volume N -body simulations of an ‘anisotropic

separate universe‘ with spatial curvature, it is in principle possible to additionally use our non-

perturbative approach to precisely infer the relevance of the leading-order EFT coefficients.

As a first step, let us next set up all the necessary ingredients to derive the non-perturbative

equation for the power spectrum on large distance scales. This includes, among others, estab-

lishing the OPE in order to determine the two coefficients encoding the coupling to the UV

modes in the non-perturbative power spectrum relation.

7.1. Derivation of a non-perturbative power spectrum equation

As deduced in Section 3.3.1, we can express the non-linear evolution equations of large-scale

structure in a compact matrix form by using the doublet field ψa(k, η) of density and velocity

perturbations in (3.51) so that we obtain the fluid equations, defined in (3.54). If we rewrite

the left-hand side of the fluid equations (3.54) in terms of the momentum q and ensure

momentum conservation in the vertex function γabc of (3.53) on the right-hand side, we can

recast (3.54) in

∂ηψa(q, η) + Ωab(η)ψb(q, η) = γabc(q, q/2− k, q/2 + k)ψb(q/2− k, η)ψc(q/2 + k, η) . (7.1)

As introduced in (3.52), the matrix Ωab(η) encodes the dependence of the fluid equations

on the underlying cosmological model. In what follows, we account for the dependence on

the background cosmology by applying the approximation discussed in Section (3.3.3). This

means that we approximate the matrix Ωab(η) by its form in the EdS case, (3.64), but properly

treat the model-dependent linear growth D1(τ) (see (3.9)) in the time variable η = lnD1(τ).

Furthermore, in the fluid equations (7.1), we use the conventions to sum repeated indices
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and integrate over internal momenta associated to the vertex function γabc, as introduced in

Section 3.3.1.

In the effective field theory approach of LSS [63, 178, 208], the fluid equations are modified

by additional terms to account for smoothed regions. The relevance of these additional terms

can then be determined by the mismatch of the solutions to the fluid equations (7.1) in

comparison to data from observations or numerical simulations. In principle, one reason for

this mismatch is that we neglect the contribution of the vorticity, i.e., the curl modes of the

velocity field as defined in (3.20). As we discussed in Section 2.4, the latter can be ignored in

the soft limit q → 0 (see also [40]), but matter on short distance scales where k � q. However,

neglecting the vorticity does not have an influence on our main finding. We take this issue up

again in Section 7.4.

If one solves the non-linear fluid equations (7.1) perturbatively within the framework of the

effective field theory, the resulting EFT coefficients of the perturbative solutions also include

counter-terms. These counter-terms are required to cancel possible divergences in the loop

integrals arising for different initial conditions [63, 208], for instance, by introducing a cutoff.

Even after the cutoff dependence is removed by the counter-terms, the EFT coefficients do

not necessarily vanish. In fact, the remaining renormalized contribution, being non-divergent

and thus physical, accounts for the finite-size corrections of the fluid equations (7.1).

Starting from the fluid equations (7.1), we can in principle obtain the dynamics of the

power spectrum Pab(q, η) by applying the time-flow approach which we have introduced in

Section 5.5 and already used before in Section 6.2.2. This implies to multiply both sides of

the fluid equations by an additional fluctuation field ψa(q, η) and take the statistical average

afterwards. As we can explicitly see in (5.39), the resulting equation for the power spectrum

depends on the bispectrum. This, in turn, is dependent on the four-point correlation function,

the trispectrum. Like this, the time-flow approach generates an infinite hierarchy of evolution

equations between N - and N + 1-point functions, the so-called flow equations, and thus relies

on a suitable closure approximation, e.g., (5.42), to obtain a closed analytic form for the power

spectrum.

In contrast to this, our aim is to derive a closed, non-perturbative expression for the power

spectrum which only depends on the latter itself and derivatives thereof. Even though we

expect that it is not possible to derive such a relation in full generality, we are able to deduce

such a non-perturbative expression in certain limits. Based one our results in the previous

chapter, it seems natural to seek for a non-perturbative power spectrum equation in the

case where one momentum, say q, becomes small. In other words, we intend to derive a

non-perturbative expression for the power spectrum in the soft limit q → 0.
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For the derivation we can use a relation for the doublet fields ψa(k, η) that resembles the

operator product expansion in quantum field theory. We discuss this in detail in the next

section.

7.1.1. Operator product expansion

In order to derive a non-perturbative equation for the power spectrum, we can resort to meth-

ods of quantum field theory by performing an operator product expansion for two fluctuation

fields at nearby points. For details on operator product expansions in quantum field the-

ory see e.g., [371–374]. Notice that an explicit example of a product expansion is given by

the non-perturbative soft-limit bispectrum consistency condition which we derived in the last

section in (6.56).

For performing an OPE in the context of large-scale structure formation, we can regard the

as the relevant degree of freedom from which a solution for the perturbation fields ψa(x, η)

(in real space) follows (see also Section 6.3.1). For instance, the forces induced by its spatial

gradient −∇Φ(x, η) allow us to deduce the displacement fields as a function of time. Based

on this, an OPE in the theory of structure formations refers to an expansion of a product

of doublet fields ψa(x, η) and ψb(y, η) at nearby points x and y as a function of composite

operators O
[
Φ, ∂Φ, · · ·

]
which are built in terms of Φ(x, η) and its derivatives. Formulated

in terms of an equation, this means

ψa(x, η)ψb(y, η)
x→y−−−→

∑
O
fOab(|x− y|, η) O

[
Φ, ∂Φ, · · ·

](
1
2(x + y), η

)
(7.2)

with space- and time-dependent coefficient functions fOab(|x− y|, η). Consequently, the corre-

sponding OPE for the doublet fields in Fourier space reads

ψa(q/2− k, η)ψb(q/2 + k, η)
k�q−−−→

∑
O
fOab(k, η) O

[
Φ, ∂Φ, · · ·

](
q, η
)
. (7.3)

Note that applying an OPE in our setting has some caveats. First of all, there exist only

a few exemplary cases that obey an OPE beyond perturbation theory (for an overview see

e.g., [375]). Furthermore, in the theory of large-scale structure formation, the statistical

properties of the initial state constitute an additional complication, since the existence of

different possible realizations generates stochastic terms which are not necessarily proportional

to products of long-wavelength fields. In the language of quantum field theory, these stochastic

terms correspond to the so-called ‘contact terms’ [376]. For our purposes, however, it is

appropriate to neglect these terms since they are known to enter in the evolution equations

for the power spectrum only at higher order, more precisely at q4 [92]. Nevertheless, the

relevance of these terms when approaching the non-linear scale has been recently emphasized
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in [196, 198]. Finally, we have to be aware that the operators on the right-hand side of the

OPE in (7.3) can themselves include products of the doublet fields at the same point, which

in turn need to be regularized [208]. However, since these extra terms are suppressed by

additional powers of PL, their effect is only sub-leading and thus negligible here.

Next, let us determine explicitly the operators O
[
Φ, ∂Φ, · · ·

](
q, η
)

of the OPE in (7.3). In

order to do so, it is sufficient to only keep terms linear in Φ due to the smallness of the density

perturbations as well as the gradients in the soft limit q → 0. Moreover, we can make use of

statistical isotropy, parity and the equivalence principle to deduce the form of the operators.

The equivalence principle restricts the first term of the series expansion to include – at least

– two derivatives with respect to the gravitational potential. The operators we need then

possess the form

O0(q, η) = q2Φ(q, η) ∝ δ(q, η) ,

Oi(q, η) = q2qiΦ(q, η) ∝ qiδ(q, η) ,

OTF
ij (q, η) = (qiqj)TF Φ(q, η) ,

OTF
ijl (q, η) = (qiqjql)TF Φ(q, η)

(7.4)

with i, j, l ∈ {1, 2, 3} and ‘TF’ standing for trace-free. The traces renormalize the coefficients

of the tensor operators with fewer indices. To keep the simplicity of the notation, we do not

include them here.

Similarly to the operator relations in (7.4), we can additionally split the coefficient functions

of the hard modes, fOab(k, η), in (7.3) into scalar functions. Beside the lowest-order coefficient

function fO0
ab (k, η), we thus obtain coefficients of the form

fOi
ab;i(k, η) =

ki

k
fOi
ab (k, η) ,

f
OTF

ij

ab;ij (k, η) =
(kikj)TF

k2
f
OTF

ij

ab (k, η) ,

f
OTF

ijl

ab;ijl(k, η) =
(kikjkl)TF

k3
f
OTF

ijl

ab (k, η) .

(7.5)

After inserting these coefficient functions and the operators of (7.4) in the OPE in (7.3) and

performing the contractions of the indices i, j, l, the resulting expression reads

ψa(q/2− k, η)ψb(q/2 + k, η)
k�q−−−→

(
fab(k, µ, η) + gab(k, µ, η)

q

k

)
ψL(q, η) + . . . , (7.6)

where ψL(q, η) constitutes the linearized long-wavelength perturbation in the soft limit q → 0.

To be precise, the function fab(k, µ, η) and gab(k, µ, η) (not to be confused with the linear

propagator defined via (3.56)) represent polynomials up to third order in µ. Higher-order

polynomials in µ arise, if we perform a series expansion to higher orders in q. However, since
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the functions fab(k, µ, η) and gab(k, µ, η) only comprise terms up to order µ3, we can rewrite

them in terms of Legendre polynomials Q`(µ) up to third order in `,

fab(k, µ, η) = f
(0)
ab (k, η) + f

(2)
ab (k, η)Q2(µ) ,

gab(k, µ, η) = f
(1)
ab (k, η)Q1(µ) + f

(3)
ab (k, η)Q3(µ)

(7.7)

with [377]

Q0(µ) = 1 , Q1(µ) = µ , Q2(µ) =
1

2

(
3µ2 − 1

)
, Q3(µ) =

1

2

(
5µ3 − 3µ

)
. (7.8)

Note that the relation (7.6) with the coefficient functions (7.7) is only accurate at leading

order in q we consider here.

As a consequence, we can conclude that the expression (7.6), originating from the OPE

in (7.3), confirms our preconceived idea that the fluid dynamics on short distance scales is

influenced by long-wavelength modes in a very specific way. This finding is also reflected by

the non-perturbative soft-limit bispectrum consistency condition in dependence on the power

spectrum of a hypothetically curved universe, derived in the previous chapter (see (6.56)).

Similarly to the soft-limit bispectrum consistency condition (6.56), we can deduce a relation

for the bispectrum in the soft limit based on the OPE. In order to do so, we correlate the

product of doublet fields in (7.6) with an additional soft-mode perturbation ψLa (q, η) and

account for momentum conservation according to the definition of the bispectrum in (4.10).

Thus, the bispectrum in the soft limit is given by

Babc(−q, q/2− k, q/2 + k, η)
q→0−−−→ ua

(
fbc(k, µ, η) + gbc(k, µ, η)

q

k

)
PL(q, η) + . . . , (7.9)

where ua = (1, 1) (see (4.15)) so that B1ab = B2ab. Recall that the linear solution ψLa (q, η)

for the doublet field, given in (3.56) with (3.70), implies for the linear power spectrum that

PL(q, η) = PL11(q, η) = PL22(q, η) (see (4.16) and (4.17)). Notice that even before angular

averaging, the bispectrum in the soft limit based on the OPE does not reveal terms propor-

tional to 1/q even before angular averaging, in contrast to the perturbative derivations of the

bispectrum consistency relations in Section 6.2. As we discuss explicitly in the next section,

we can use the consistency condition to determine the coefficients of the bispectrum relation

from the OPE in (7.9) in terms of the power spectrum on short distance scales.

Building up on the relation (7.9) for the bispectrum in the soft limit, we can next set up

an non-perturbative equation for the power spectrum based on the fluid equations (7.1).

7.1.2. Fluid equations in the soft limit

For the derivation of the power spectrum equation in the soft limit, we do not want to rely

on any perturbative methods. However, in the first step, we can proceed accordingly to
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the time-flow approach (see Section 5.5.1) since at this stage perturbation theory is not yet

applied. Thus, in order to obtain an evolution equation for the power spectrum Pab(q, η), we

correlate the fluid equations (7.1) with an additional fluctuation field. This yields the first flow

equation for the two-point correlation function in (5.39). Next, express the two- and three-

point correlation function arising in the first flow equation in terms of the power spectrum

and the bispectrum by using their definitions in (4.1) and (4.10) and applying momentum

conservation. Thus, we obtain the following differential evolution equation for the soft-mode

power spectrum Pab(q, η),

∂η Pab(q, η) =− Ωac(η)Pcb(q, η)− Ωbc(η)Pac(q, η)

+

∫
d3k

[
γacd(q, q/2− k, q/2 + k)Bbcd(−q, q/2− k, q/2 + k, η)

+ γbcd(q, q/2− k, q/2 + k)Bacd(−q, q/2− k, q/2 + k, η)
]
.

(7.10)

Note that we have explicitly written down the momentum integration here for the sake of

clarity. In addition, notice that the differential evolution equation above coincides (apart from

the choice of momenta) with the one obtained in the framework of the time-flow approach

in (5.43). The reason for this is that the closure approximation (5.42) which is applied in the

time-flow formalism to close the infinite hierarchy of flow equations (5.39) does not affect the

first flow equation for the power spectrum, but only the higher-order flow equations starting at

the level of the bispectrum. In other words, in contrast to these higher-order flow equations,

the flow equation for the power spectrum is exact and thus non-perturbatively valid.

To derive a non-perturbative relation for the power spectrum in the soft limit, our next step

is to insert the soft-limit bispectrum relation, which we derived based on the OPE in (7.9), in

the differential evolution equation in (7.10) and investigate which contributions are relevant

in the soft limit q → 0.

In order to do so, let us first elucidate why it is justified to employ – right from the

beginning – the soft limit of the bispectrum in the equation for the power spectrum in (7.10).

Using the bispectrum expression for small modes q in (7.9) in (7.10) implies that contributions

of the integral from loop momenta k . q can be neglected. Indeed, in the case of a physical

power spectrum P0(k) ∝ kns (see (4.5)) with spectral index ns ' 1 and for small external

momentum q, the ultra soft momenta k . q contribute like
∫ q
d3k P0(k) ∼ qns+3 ∼ q4 to

the loop integral in (7.10). At the same time, the hard momenta k > q yield contributions

scaling like ∼ q2σ2
d (see (5.10)), with σ2

d being in turn dominated by modes k � q beyond the

maximum of the power spectrum. Consequently, in the soft limit q → 0, the contributions

of the integral from the loop momenta k . q are subdominant. This justifies to consider the

bispectrum in the soft limit in the equation for the power spectrum in (7.10) directly from
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the onset.

To identify the relevant contributions in the soft limit which arise from inserting the soft-

limit bispectrum relation (7.10) in the differential evolution equation for the power spectrum

in (7.9), we split the power spectrum in three parts,

Pab(q, η) = P hom
ab (q, η) + Pαab(q, η) + P βab(q, η) . (7.11)

Thereby, the first term P hom
ab (q, η) corresponds to the homogeneous solution of the differential

equation. The homogeneous solution is obtained when neglecting the contributions in (7.10)

which include the vertex function γabc,

∂η P
hom
ab (q, η) = −Ωac(η)P hom

cb (q, η)− Ωbc(η)P hom
ac (q, η) . (7.12)

In the soft limit, it is then simply given by the linear power spectrum (see also the discussion

in Section 5.5.3),

P hom
ab (q, η) = PLab(q, η) = uaubP

L(k) , (7.13)

where we assumed Gaussian-distributed growing-mode initial conditions in the last equality

(see (4.16) and (4.17)).

Furthermore, the other two terms in (7.11), Pαab(q, η) and P βab(q, η), constitute the non-linear

contributions to the power spectrum which are sourced either by the mode-coupling function α

or β entering in the vertex γabc (see (3.23) and (3.53)).

In the following, let us first investigate the contributions to the differential equation for

the power spectrum in (7.10) that are associated to the vertex elements involving the mode-

coupling function β. In contrast to the contributions from the mode-coupling function α, the

former can be determined in a straightforward manner.

Non-linear β-contributions

According to the definition of the vertex function γabc in (3.53), we obtain the non-linear

contributions to the differential equation for the power spectrum (7.10) which involve the

mode-coupling function β by setting c = d = 2 in (3.53). Thereby, we do not have to specify

the indices a and b. Consequently, for a, b,∈ {1, 2}, the β-contributions from the two vertices

in (7.10) are of the form∫
d3k ua β(q/2− k, q/2 + k)Bb22(−q, q/2− k, q/2 + k, η) . (7.14)

This is quite fortunate since the mode-coupling function β(q/2− k, q/2 + k), expanded in a

series up to the second-order in the soft momentum q, scales like (see (3.23))

β(q/2− k, q/2 + k) ' − q2

2k2
(7.15)
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so that the β-contribution in (7.14) becomes

−q
2

2

∫
d3k

k2
uaBb22(−q, q/2− k, q/2 + k, η) . (7.16)

If we next insert the soft-limit bispectrum relation derived from the OPE in (7.9) into the

equation above and restrict our considerations to the leading order in q, we can neglect the

contribution of the bispectrum term including the function gbc(k, µ, η) to the integral in (7.9).

Hence, the resulting expression reads

−q
2

2
PL(q, η) uaub

∫
d3k

k2
f22(k, µ, η) . (7.17)

Then, we express the remaining function f22(k, µ, η) in terms of Legendre polynomials accord-

ing to (7.7) and perform the angular integration over dΩ = 2π dµ. The first term of the func-

tion f22(k, µ, η), i.e., f
(0)
22 (k, η), does not depend on the angular parameter µ so that the angular

integration simply yields a factor 4π. On the other hand, the second term f
(2)
22 (k, η)Q2(µ)

vanishes upon angular integration due to the form of the second-order Legendre polynomial,

given in (7.8). Thus, we can express the β-contributions of the two vertices in (7.10) at leading

order in q as

−q
2

2
PL(q, η) uaub C

(0)
22 (η) , (7.18)

where we have introduced the time-dependent coefficient

C
(0)
22 (η) ≡ 4π

∫
dk f

(0)
22 (k, η) . (7.19)

As a result, we find that the non-linear contributions of the β-terms to the differential evolution

equation for the power spectrum in (7.10) at leading order in q are given by

∂η P
β
ab(q, η) + Ωac(η)P βcb(q, η) + Ωbc(η)P βac(q, η) = −q

2

2
PL(q, η)

(
0 1

1 2

)
ab

C
(0)
22 (η) . (7.20)

In principle, we can directly extract the time-dependent coefficient C
(0)
22 (η), or equivalently

the function f
(0)
22 (k, η) in (7.19), entering in the power spectrum equation above by confronting

the soft-limit bispectrum relation based on the OPE in (7.9) against observational data or

numerical simulations. This is similar to determining the local non-Gaussianity parameter f loc
NL

in the squeezed limit of the respective CMB bispectrum.

In the derivation of the β-contributions to the differential equation (7.20), the form of the

mode-coupling function β allowed us to integrate out the angular dependence of the terms

arising from the soft-limit bispectrum relation based on the OPE in (7.9). This means that

ultimately only the angular-averaged soft-limit bispectrum enters in (7.20).
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Consequently, we can determine the coefficient C
(0)
22 (η) further by using a non-perturbative

angular-averaged soft-limit bispectrum consistency relation including both the density and

velocity perturbation field. We can deduce such a relation in a straightforward way by fol-

lowing the derivation of the non-perturbative angular-averaged consistency condition for the

bispectrum of density perturbations in (6.56) and taking the impact of the velocity fields, as

discussed in Section 6.5, into account. The resulting relation reads

Babc(k,−q, q − k, η)av q→0−−−→ PL(q, η)ub

[(
Nac −

1

3
k ∂k −

1

3
∂η

)
Pac(k, η)

+
5

3

∂

∂κ
Pac,K(k, η)

∣∣∣∣
K=0

] (7.21)

with N11 = 1 , N12 = N21 = −1/3 , N22 = −5/3. If we subsequently insert the equation

above into the non-linear β-contribution (7.16) (by adapting the momentum dependence ac-

cordingly) and rewrite it in the form (7.17), we can express the coefficient C
(0)
22 (η) as

C
(0)
22 (η) = −4σ2

22(η) + ∂ησ
2
22(η) + 5

∂

∂κ
σ2

22,K(η)

∣∣∣∣
K=0

. (7.22)

Here, we have included the one-dimensional momentum integral of the power spectrum in the

dimensionful variance of the displacement fields σ2
ab(η), which we defined in (5.11).

Following the Lagrangian-space EFT approach of [208], we could instead introduce the

parameters εψ<ab (q, η) ≡ q2
∫ q

0
d3k
k2 Pab(k, η) and εψ>ab (q, η) ≡ q2

∫∞
q

d3k
k2 Pab(k, η). However, for

reasons of clarity, we keep the explicit dependence of the β-contribution (7.17) on the soft-

momentum factor q2. Besides, the distinction between εψ< and εψ> is unnecessary in the soft

limit q → 0.

In order to specify the coefficient C
(0)
22 (η) in (7.22), we can go one step further. Since

the expression (7.22) involves a curvature derivative, we can make use of the generalized

VKPR proposal in (6.76), constituting a quantitatively reasonable empirical approximation,

to reformulate this derivative with respect to curvature as a time derivative. Hence, we can

finally transform the relation (7.22) into1

C
(0)
22 (η) ' −8

7
σ2

22(η) +
13

7
∂η σ

2
22(η) . (7.23)

In Section (7.4), we use this result for the coefficient C
(0)
22 (η) to compare with numerical

simulations. We omit the superscript of this coefficient in what follows so that

C22(η) ≡ C(0)
22 (η) . (7.24)

1 Notice that the expression for the coefficient C
(0)
22 (η) in (7.23) differs from the corresponding one in [2] since

we have corrected a typographical error in the prefactor of the first term. This correction has no impact

on the remaining results and our conclusions.
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Non-linear α-contributions

From the form of the vertex function γabc in (3.53), we can extract the non-linear contributions

of the mode-coupling function α to the differential evolution equation for the power spectrum

in (7.10) if we set c = 1, d = 2 and c = 2, d = 1. Thus, for a, b ∈ {1, 2}, the form of

the α-contributions in each of the two vertices in (7.10) equals∫
d3k

[
γa12(q, q/2− k, q/2 + k)Bb12(−q, q/2− k, q/2 + k, η)

+γa21(q, q/2− k, q/2 + k)Bb21(−q, q/2− k, q/2 + k, η)
]
.

(7.25)

We can combine the second term in the integrand with the first one by reformulating the

momentum dependence of the former. Thereby, we make use of the fact that the integrand

remains invariant if we change the sign of both momenta k and q. Additionally, we take

into account that the soft-limit bispectrum relation deduced from the OPE in (7.9) does not

depend on the sign of the soft mode q, but only on its magnitude q. As a result, we can

rewrite the previous equation such that the α-contributions in each vertex are of the form

(see (7.14)) ∫
d3k ua α(q/2− k, q/2 + k)Bb12(−q, q/2− k, q/2 + k, η) . (7.26)

Next, we perform a series expansion of the mode-coupling function α, defined in (3.23), up

the second order in the soft momentum q,

α(q/2− k, q/2 + k) =
q2

2k2
− q · k

k2
− (q · k)2

k4
. (7.27)

Afterwards, we insert this series expansion together with the soft-limit OPE bispectrum re-

lation in (7.9) into the expression for the α-contribution in (7.26). By decomposing the

soft-limit bispectrum in terms of Legendre polynomials Q`(µ), analogously as in (7.7), we can

subsequently specify the different term contributing to (7.26) in more detail. Since each of

the three terms in the series expansion of the mode-coupling function α in (7.26) involves a

different dependence on the angular parameter µ, defined in (6.7), they generate in combi-

nation with the Legendre polynomials three different terms from the α-contribution (7.26).

Since the first term in the series expansion (7.27) does not incorporate any dependence on the

angular parameter µ, it basically amounts to an angular average of the bispectrum in the soft

limit, analogous to the β-contributions in (7.14)-(7.17). Hence, we can write the first term in

the α-contribution (7.26) in terms of the time-dependent coefficient (see (7.19))

C
(0)
12 (η) ≡ −4π

3

∫
dk f

(0)
12 (k, η) . (7.28)
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Moreover, as the second term in the series expansion of the mode-coupling function α in (7.27)

scales like µ, only the first-order Legendre polynomial Q1(µ) (see (7.8)) leads to a non-

vanishing contribution after angular integrating. Hence, according to (7.7), the resulting

time-dependent coefficient,

C
(1)
12 (η) ≡ 8π

3

∫
dk f

(1)
12 (k, η) , (7.29)

includes the function f
(1)
12 (k, η). Finally, the µ2-dependence of the last term in the series

expansion (7.27) entails that the only remaining contribution upon angular averaging arises

from the bispectrum term including the second-order Legendre polynomial Q2(µ). Thus, we

can express the third term, which involves the function f
(2)
12 (k, η), through the coefficient

C
(2)
12 (η) ≡ 16π

15

∫
dk f

(2)
12 (k, η) . (7.30)

If we summarize the three time-dependent coefficients in (7.28)-(7.30) as

C12(η) ≡ C(0)
12 (η) + C

(1)
12 (η) + C

(2)
12 (η) , (7.31)

our result for the non-linear contributions of the α-terms to the differential power spectrum

equation in (7.10) at leading order in the soft momentum q reads (see (7.20))

∂η P
α
ab(q, η) + Ωac(η)Pαcb(q, η) + Ωbc(η)Pαac(q, η) = −q

2

2
PL(q, η)

(
2 1

1 0

)
ab

C12(η) . (7.32)

Finally, by adding the three parts (7.11) contributing to the differential power spectrum

equation in (7.10), namely the linear homogeneous contribution (7.13) also as the non-linear

contributions from the mode-coupling functions β and α in (7.20) with (7.24) and (7.32), we

can rewrite the differential equation for the power spectrum in (7.10) at leading order in the

soft mode q as

∂ηPab(q, η) = − Ωac(η)Pcb(q, η)− Ωbc(η)Pac(q, η)

− q2

2
PL(q, η)

[(
0 1

1 2

)
ab

C22(η) +

(
2 1

1 0

)
ab

C12(η)

]
.

(7.33)

At this point, we have arrived at the desired non-perturbative equation for the power spectrum

in the soft limit. It is solely written in terms of the power spectrum Pab(q, η) itself and a set

of coefficients, C22(η) and C12(η), depending on fluctuations on short distance scales. Notice

that the expansion in terms of small momenta q in the power spectrum equation is only viable

if the momentum integrals contained in the coefficients C22(η) and C12(η) are dominated by
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the hard modes k � q. We illustrated at the beginning of this section that this is indeed the

case.

In order to use this expression to evaluate the power spectrum Pab(q, η), it is necessary to

further determine the coefficients C22(η) and C12(η). As discussed for the coefficient C22(η),

that arises from the non-linear β-contributions in (7.31), this can be achieved by using non-

perturbative consistency conditions for the bispectrum in the soft limit (see e.g., (7.21)). With

regard to the coefficient C12(η) in (7.31) parameterizing the non-linear contributions of the

mode-coupling function α, we can in principle follow a similar path as for the β-contributions

by resorting to a non-perturbative consistency condition for the bispectrum in the soft limit.

However, in the case of the β-contributions, the independence of the mode-coupling function β

of the angle between the momenta q and k for q � k (see (7.17)) simply reduced the three-

dimensional momentum integral to an angular average of the bispectrum in the soft limit.

Thus, we could make use of the angular-averaged consistency relation for the bispectrum

which we derived from the background method for a spherically symmetric soft mode (see in

particular Section 6.3).

It is not possible to use this angular-averaged soft-limit bispectrum relation for further

specifying the coefficient C12(η) of the α-contributions in (7.31), at least not for C
(1)
12 (η)

and C
(2)
12 (η). As the mode-coupling function α for small momenta q � k depends on the angle

between these momenta (see (7.27)), we need an angular-dependent consistency condition

for the bispectrum in the soft limit in this case. In fact, it is possible to derive such a

consistency condition by applying the background method not for a spherically symmetric, but

for a directional soft mode and perform a Newtonian mapping to a locally curved anisotropic

universe. As we can see explicitly in the following section, this is rather cumbersome.

7.2. Background method for a directional soft mode

Our considerations in the last section revealed that it is not possible to constrain the coeffi-

cient C12(η) in the non-perturbative differential equation for the power spectrum in the soft

limit in (7.33) by an angular-averaged bispectrum consistency condition, as given in (7.21).

In particular, determining the contributions to the coefficient C12(η), defined in (7.31), from

the multipoles ` = {1, 2} requires the derivation of an angular-dependent non-perturbative

consistency relation for the bispectrum in the soft limit. In order to derive such a relation, we

resort to the background method, that we developed in Section 6.3 for a spherically symmet-

ric soft, long-wavelength perturbation, and extend it to the case of a directional soft mode.

Thereby, we implement a Newtonian mapping that transform a flat FRW cosmology in the

presence of a directional soft mode into a locally curved anisotropic universe. For extracting
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7. Non-Perturbative Power Spectrum Equation

the coefficient C12(η) it turns out to be necessary to study this map up to the order (q · x)3

in the soft mode.

In the following, we proceed in similar steps as in Section 6.3.1 for setting up the coordinate

transformation mapping the directional soft mode to a locally curved anisotropic universe.

Afterwards, we build upon the analysis in Section 6.3.3 in order to derive a non-perturbative

consistency relation for the bispectrum in the soft limit from this coordinate transformation.

We refer to the sections mentioned above for details. In addition, a related discussion within

the framework of the ‘separate universe’ approach can be found in [241].

7.2.1. Newtonian mapping

To set up a mapping based on the background method which transforms a flat FRW back-

ground cosmology in the presence of a long-wavelength directional perturbation into a locally

curved anisotropic universe, we start from the metric of a perturbed FRW cosmology in

Newtonian gauge in terms of the global coordinates (x, t), given in (6.33). We assume the

perturbation to be a directional long-wavelength, soft density fluctuation of the form

δL(x, t) ' 1

2
δL(t) ei q·x + . . . . (7.34)

By inserting this ansatz for the directional soft mode into the perturbed Poisson equa-

tion (6.31), we can subsequently determine the gravitational potential generated by the soft

mode as (see (6.34))

ΦL(x, t) ' 3

2

Ωm a
2H2

q2

[
1

2
δL(t) ei q·x + . . .

]
. (7.35)

For a discussion of the similar case of a plane-wave perturbation see [165].

In order to deduce the mapping needed to transform the flat FRW metric (6.33) with a di-

rectional soft perturbation of the form (7.35) to an unperturbed, locally anisotropic cosmology,

our ansatz for the coordinate transformation is (compare with (6.35))

t = tA + f(tA,xA) , x = xA + g(tA,xA) . (7.36)

Here, we have added the subscript ‘A’ to indicate the coordinates in the locally curved

anisotropic cosmology and introduced the functions f(tA,xA) and g(tA,xA) depending on

these local coordinates. Note that g(tA,xA) is a vector-valued function.

Our intention is to determine the functions f(tA,xA) and g(tA,xA) in the coordinate

transformation (7.36) such that we can absorb the directional long-wavelength perturbation

in (7.35) into a locally anisotropic (Bondi-type) metric. For this purpose, we perform a series

expansion of perturbation (7.35) in q. As a first application, let us determine the coordinate

transformation (7.36) for the first non-trivial order of this expansion.
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Parallel curvature and scale factor

We search for a coordinate transformation of the form (7.36) with coordinate-dependent func-

tions f(tA,xA) and g(tA,xA) mapping the perturbed flat FRW metric in (6.33) into a locally

curved anisotropic metric of the form

ds2 =− dt2A + a2
‖(tA) dx2

A,‖ + a2
⊥(tA) dx2

A,⊥

− 1

2

(
K‖(tA)x2

A,‖(tA) +K⊥(tA)x2
A,⊥
)
a2(tA) dx2

A ,
(7.37)

where we neglect corrections to the metric of order O(x3
A) for the moment. Moreover, the

time-dependent quantities a‖, a⊥, K‖ and K⊥ represent the parallel and perpendicular scale

factors and curvature parameters in the locally curved anisotropic universe. Thus, in the

anisotropic universe described by the metric above, one observes two different expansion

rates a‖, a⊥ and curvatures K‖,K⊥, parallel and perpendicular to the soft momentum q.

Here, the perpendicular and parallel directions are defined with respect to q as

xA,‖ =
x · q
q2

q , xA,⊥ = x− xA,‖ . (7.38)

Notice that in the second term of the metric (7.37), involving the curvature parameters K‖
and K⊥, we do not distinguish between the respective scale factors a‖ and a⊥. As we show

later on, this distinction is not necessary when considering the leading order in the density

contrast δL only. For notational purposes, we drop the subscript ‘A’ in the following.

In analogy to the Newtonian mapping performed in Section 6.3, applying the change of

coordinates (7.36) to transform the metric of the perturbed flat FRW background cosmology

in (6.33) into the one describing a locally curved anisotropic cosmology in (7.37) allows us

to derive constraints on the coordinate-dependent functions f(tA,xA) and g(tA,xA). If we

compare the time-time components of the two metrics (6.33) and (7.37), we find the same

constraint as before (see (6.37)),

ḟ = −ΦL . (7.39)

The reason for this is simply that the coordinate transformations (6.35) and (7.36) possess the

same general form for the transformation of the time variable. However, the structure of the

spatial coordinate transformation in (7.36) differs from the one in (6.35). Hence, in contrast

to (6.38), we find that the vanishing time-space parts in both metrics leads to the relation

a2 ġ = ∇f . (7.40)

As in (6.37) and (6.38), the derivatives in time and space in the equations (7.39) and (7.40)

are taken with respect to the global coordinates (t,x). By integrating the last two equations
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with respect to time t or equivalently the scale factor a(t), we can determine the coordinate-

dependent functions f and g in dependence of the long-wavelength perturbation ΦL as

f = −
∫
da

a

1

H
ΦL , g =

∫
da

a

1

a2H
∇f + c . (7.41)

While we can set the time-independent integration constant of the function f to zero (as

in (6.42)), it is necessary to keep the vector-valued time-independent integration constant c

associated to the function g. This becomes evident in the following calculations.

In order to evaluate the expressions for the functions f and g in the previous equation

and derive concrete results, let us henceforth consider the case of a flat matter-dominated

EdS background cosmology as a benchmark. In what follows, we thus set Ωm = 1 and

assume the Hubble parameter and the linear density contrast in the growing mode to scale

like H ∝ a−3/2 and δL ∝ a (see (3.16) and (3.11) with (3.17)). Thus, for an EdS universe, the

long-wavelength perturbation ΦL is constant in time, ΦL ∝ a0, so that the explicit expressions

for the functions f and g in (7.41) read

f = −2

3

1

H
ΦL , g = −2

3

1

a2H2
∇ΦL + c . (7.42)

Apart from the constraints in (7.39) and (7.40), which we derived by comparison of the

time-time and (vanishing) time-space components of the metrics (6.33) and (7.37) under the

coordinate transformation (7.36), we can obtain an additional relation between the space-

space parts of the two metrics. We first apply the coordinate transformation (7.36) to the

unperturbed metric (6.33) and use the general solution for the functions f and g in (7.41),

yielding to write its space-space components as

ds2 ⊃
(

1− 2ΦL − 2H

∫
da

a

1

H
ΦL

)
a2 dx2 + (∇i gj +∇j gi) a2 dxi dxj (7.43)

with i, j ∈ {1, 2, 3}. Note that the terms within the first bracket are constant for an EdS

cosmology since

2ΦL + 2H

∫
da

a

1

H
ΦL ' 10

3
ΦL . (7.44)

Next, we perform a series expansion of the long-wavelength perturbation ΦL, given in (7.35),

with respect to q · x,

ΦL(x, t) ' 3

2

H2a2

q2

[
1

2
δL(t)

(
1 + i q · x− 1

2
(q · x)2 − i

6
(q · x)3 + · · ·

)
+ . . .

]
. (7.45)
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Likewise, we can expand the time-independent integration constant c of the function g

in (7.42) as

c = c1 x + c2 (q · x)x + c3 q x
2 +O(x3) , (7.46)

so that we generate an additional contribution to the metric (7.43) of the form

(∇i cj +∇j ci) dxidxj = (c1 + c2 q · x) dx2 + (c2 + 2c3)xiqj dxi dxj . (7.47)

The expansion above allows us, through an appropriate choice of the involved constants, to

remove the constant and linear contributions in the space-space part (7.43) of the perturbed

metric. Thus, only one contribution to (7.43) remains, emerging from the time-dependent

term of the function g (see (7.42)), which we can determine as

(∇i gj +∇j gi) dxi dxj ⊃ 2 δL(t)
(q · dx)2

q2
. (7.48)

If we finally add the different contributions that arise from applying the coordinate transfor-

mation (7.36) to the perturbed flat FRW metric (6.33), we find that the resulting metric in

the anisotropic local coordinates (tA,xA) reads (restoring the labels)

ds2 = −dt2A + a2dx2
A + 2 a2δL(t)

(q · dxA)2

q2
− 5

2
a2H2δL(t)

(q · xA)2

q2
dx2

A . (7.49)

At last, the comparison of the form of the locally curved anisotropic metric in the equation

above with the one given in (7.37) shows that these can be transformed into each other by

the identifications

a⊥ = a , (7.50)

K⊥ = 0 , (7.51)

a‖ = a
(

1− δL(t)
)
, (7.52)

K‖ = 5H2a2δL(t) . (7.53)

Note that for being consistent, these expression have to reproduce the results for the scale

factor aK and the curvature K found in the case of a spherically symmetric perturbation,

given in (6.44) and (6.45) (see also [165]), if we perform an angular averaging. However,

it is slightly subtle to perform the angular average of the expressions in (7.50)-(7.53) since

these are defined with respect to the soft momentum q, constituting the actual quantity to

be averaged over. Nonetheless, by realizing that performing the angular average with respect

to q amounts in the replacement
qiqj
q2
→ 1

3
δij (7.54)
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with δij denoting the Kronecker delta, we can conclude that the anisotropic locally curved

metric (7.49) after angular averaging indeed reproduces the results for aK and K in (6.44)

and (6.45), respectively.

More anisotropy

Remember that our original motivation for extending the background method to the case of

a directional soft mode was to derive an angular-dependent soft-limit bispectrum consistency

relation to extract the coefficient C12(η) in the non-perturbative differential equation for the

power spectrum in (7.33). In order to deduce the coefficient C12(η) from such a bispectrum

consistency condition, involving curvature derivatives with respect to the power spectrum in

locally curved anisotropic universe, it is necessary to extend our previous calculations and to

include the next order in the soft mode q in the series expansions. Note that at this order

in q, the anisotropies gain a fundamental role since the locally curved anisotropic background

cosmology cannot simply be reduced to an isotropic locally curved FRW cosmology with tidal

forces, as it is possible at leading order in q (see [241]).

Proceeding from these considerations, we extend the series expansions of the long-wavelength

mode ΦL in (7.45) and of the integration constant c, associated to the coordinate-dependent

function g, in (7.46) about q ·x to the next order. Afterwards, we can eliminate certain terms

arising due to the series expansions in the space-space part of the locally curved anisotropic

metric (7.43) by an appropriate choice of the expansion coefficients of the integration con-

stant c. By doing so, we can transform terms of the form x2dx2 into (x · dx)2. Afterwards,

we combine the remaining terms with the other contributions to the metric generated by

performing the coordinate transformation (7.36). Finally, this leads to the following locally

curved anisotropic metric

ds2 =− dt2A + a2dx2
A + 2 a2δL(t)

(q · dxA)2

q2
− 5

2
a2H2δL(t)

(q · xA)2

q2
dx2

A

− 5

3
a2H2δL(t)

(q · xA)3

q2
dx2

A + 2 a2δL(t)
(q · dxA)2

q2
(q · xA) . (7.55)

In comparison to the metric in (7.49), the two additional higher-order terms with respect to

the soft mode are given in the second line of this equation. We can subsequently transform

the locally curved anisotropic metric above into a corresponding metric of the form

ds2 =− dt2A + a2 dx2
A,⊥ +

(
1 + b‖ q xA,‖

)
a2
‖ dx

2
A,‖

− 1

2

(
K‖ +K‖ q xA,‖

)
a2 x2

A,‖ dx
2
K , (7.56)
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by using the identifications for the parallel and perpendicular scale factors and curvature

parameters, a‖, a⊥, K‖ and K⊥, in (7.50)-(7.53) and defining the parallel quantities

b‖ = 2 δL(t) , (7.57)

K‖ =
10

3
a2H2δL(t) (7.58)

with K‖ not to be confused with the parallel curvature K‖, defined in (7.53). Moreover, note

that we can make the replacement b‖a2
‖ → b‖a2 when considering only the leading order in δL.

However, if we average over the angles defined with respect to the soft momentum q, the

additional terms involving the quantities b‖ and K‖ vanish.

7.2.2. Non-perturbative bispectrum consistency condition

Since the locally curved anisotropic background cosmology described by the metric (7.56)

involves two time variables associated to the parallel and the perpendicular scale factor,

η‖ ≡ ln a‖ and η⊥ ≡ ln a⊥ with a⊥ = a, as well as the curvature parameters K‖ and K⊥
with K⊥ = 0 (see (7.50)-(7.53)), the fluctuation fields ψa,A and hence the corresponding

correlation functions, such as the power spectrum, depend on these quantities. Furthermore,

the power spectrum depends not only on the absolute value of the momentum k, but separately

also on the momenta k‖ and k⊥, denoting the projections relative to q. Thus, in its most

general form the power spectrum reads Pab,A(k‖,k⊥, η‖, η⊥,K‖).

Following the steps outlined in Section 6.3.3, we can then derive a non-perturbative angular-

dependent consistency condition for the bispectrum in the soft limit in dependence of the

density-density power spectrum in the locally curved anisotropic background. As a result, we

obtain for the bispectrum in the soft limit the (non-perturbative) relation (see (6.56))

B111(k,−q, q − k, η)
q→0−−−→ PL(q, η)

[(
1− k‖

∂

∂k‖
− ∂

∂η‖

)
P11,A(k‖,k⊥, η‖, η⊥,K‖)

+ 5
∂

∂κ‖
P11,A(k‖,k⊥, η‖, η⊥,K‖)

]
+ . . . ,

(7.59)

where we have introduced

κ‖ =
K‖
a2H2

, (7.60)

in analogy to the parameter κ in (6.57). Furthermore, after the derivatives of the bispectrum

consistency relation in (7.59) have been performed, it is understood to be evaluated at η‖ =

η⊥ = η, k‖ = k⊥ = k and κ‖ = 0. Besides, the ellipses in this equation represent higher-order

contributions with respect to the soft mode q, incorporating derivatives, e.g., with respect

to K⊥ in (7.55). To avoid a rather cumbersome expression, we do not write down these
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higher-order contributions explicitly. However, they can be obtained in a straightforward

manner from the locally curved anisotropic metric (7.56).

If we average the soft-limit bispectrum consistency condition in (7.59) over the angles re-

lated to the directional soft mode q according to (7.59), we regain exactly the relation for the

bispectrum in the soft limit derived for the case of a spherically symmetric soft mode in an

EdS background cosmology, given in (6.56) (see also [165, 166, 173, 174]). The correspond-

ing bispectrum consistency relation including also the velocity perturbations can be found

in (7.21). As we have shown in (7.22) with (5.11), this can be used to extract the multipole

contribution ` = 0 of the coefficient C22(η).

By performing an analogous computation as for C22(η), it is straightforward to determine

the coefficient C12(η) in (7.31) from the non-perturbative angular-dependent bispectrum con-

sistency relation in (7.59). Thereby, it is necessary to take the higher-order terms denoted

by the ellipses in the bispectrum consistency relation (7.59) into account. These allow us, in

particular, to extract the contributions C
(`)
ab (η) for the multipoles ` = {1, 2} in (7.31). These

can be expressed in terms of the variance of the displacements, defined in (5.11), in the locally

curved anisotropic cosmology

σ2
ab,A(η‖, η⊥,K‖, . . .) ≡

1

3

∫
d3k

k2
Pab,A(k‖, k⊥, η‖, η⊥,K‖, . . .) , (7.61)

which depends on a series of geometrical parameters arising from the inclusion of the higher-

order bispectrum contributions. In analogy to (7.22), we can finally write the coefficient C12(η)

in terms of derivatives with respect to these geometrical parameters. To evaluate C12(η), we

consequently would have to set the geometrical derivatives in relation to quantities inferred

from the flat EdS cosmology, either by deducing an empirical approximation similar to the

generalized VKPR proposal for spherically symmetric soft modes (see (6.76)) or by performing

numerical simulations in a locally curved anisotropic background cosmology. These would

then be used as input in the non-perturbative differential equation for the power spectrum

in the soft limit in (7.33). However, as we illustrate in the next section, the contributions of

the coefficient C12(η) to the power spectrum equation (7.33) are only subleading. For this

reason, we can neglect C12(η) In the end and solely focus on the impact of the remaining

coefficient C22(η), given in (7.22). In contrast to C12(η), the latter can be extracted from the

angular-averaged version of the bispectrum consistency relation (7.59), coinciding with (6.56).
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7.3. Evaluation of the non-perturbative power spectrum

equation

Apart from the parameterization of the non-linear α-contributions in terms of the coeffi-

cient C12(η) in Section 7.1.2, there exists another, perhaps more suggestive way, to quantify

their impact in the non-perturbative differential equation for the power spectrum in (7.33).

By a judicious shift in the integration variables, we can rewrite the non-linear α-contributions

of (7.26) as∫
d3k ua α(q/2− k, q/2 + k)Bb12(−q, q/2− k, q/2 + k, η)

=

∫
d3k ua

q · k
2k2

[
Bb12(q,−q/2− k,−q/2 + k, η)−Bb12(−q, q/2− k, q/2 + k, η)

]
.

(7.62)

From this way of reformulating the α-contributions, we can directly see that these do not

receive angular-averaged bispectrum contributions. In other words, if we replace the bispec-

tra in the equation above by the OPE decomposition of the bispectrum in (7.9), only terms

including the function f̃
(1)
12 (k, η) enter in the coefficient C12(η) and yield non-vanishing con-

tributions to the α-terms. Here, we have used the tilde to distinguish from the direct OPE

decomposition of the bispectrum in the soft limit, performed in Section 7.1 and leading to the

coefficient C12(η) as given in (7.31).

Because of the explicit angular dependence of the α-contributions which is apparent in

(7.62), one may suggest that they are of minor importance compared to the β-contributions

so that their influence in the differential power spectrum equation in (7.33) corresponds only

to a subleading effect. Indeed, by performing a perturbative cross check in SPT, we find

that the α-contributions are roughly a factor 20 smaller than the leading contributions from

the β-terms. In the non-perturbative regime, neglecting the α-contributions is in principle not

justified and may still lead to sizeable errors. However, as we demonstrate in what follows,

most of the modes contributing to the coefficient C12(η) come from near the non-linear scale.

Thus, we expect only small deviations to occur due to neglecting the α-terms. In the analysis

we perform next, we therefore ignore the α-terms by working under the hypothesis

Pαab(k, η)� P βab(k, η) . (7.63)

In Appendix A.2, we present a numerical estimate for the errors induced by neglecting the

coefficient C12(η) that parameterizes the α-contributions. In fact, as we shall see in Section 7.4,

this approximation fares well against numerical simulations.

Hence, by concentrating on the non-linear contributions of the β-terms, we can approximate
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7. Non-Perturbative Power Spectrum Equation

the fully non-linear power spectrum of (7.11) with (7.13) by

Pab(q, η) ' PLab(q, η) + P βab(q, η) . (7.64)

As a consequence, the non-perturbative equation for the power spectrum in (7.33) does only

include the coefficient C22(η) arising from the β-contributions. By using the angular-averaged

bispectrum consistency relation (7.21) and the generalized VKPR proposal (6.76) to ex-

press C22(η) as in (7.23), the non-perturbative equation for the power spectrum in the soft

limit finally reads

∂ηPab(q, η) = − Ωac(η)Pcb(q, η)− Ωbc(η)Pac(q, η)

+ q2PL(q, η)

(
0 1

1 2

)
ab

(
4

7
σ2

22(η)− 13

14
∂η σ

2
22(η)

)
.

(7.65)

Next, we parameterize the power spectrum in the soft limit as

Pab(q, η) =
[
uaub + q2cab(η)

]
PL(q, η) . (7.66)

If we subsequently insert this parameterization into the non-perturbative power spectrum

equation in (7.65) and subtract the terms governing the evolution of the linear power spec-

trum, (7.12), we obtain a momentum-independent differential evolution equation for the co-

efficients cab(η),

∂ηcab(η) = − Ωac(η) ccb(η)− Ωbc(η) cac(η)

+

(
0 1

1 2

)
ab

(
4

7
σ2

22(η)− 13

14
∂η σ

2
22(η)

)
.

(7.67)

This evolution equation for cab(η) is the main relation on which our following numerical

analysis relies.

7.4. Numerical analysis

In our numerical analysis, we treat the dependence of the evolution equation on the back-

ground cosmology, which is encoded in the matrix Ωab(η) (see (3.52)), by using the form of

this matrix in the EdS case in (3.64) as input, Ωab(η) = ΩEdS
ab . To generalize to cosmological

models other than EdS, we do not change the background-encoding matrix, but only adapt

the time variable η = lnD1(τ) by taking the linear growth factor D1(τ) in (3.9) correctly into

account. This implies D1(τ) = a(τ) to hold only for an EdS cosmology (see (3.17)). In the
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case of a ΛCDM universe, the linear growth factor is approximately given by (3.18). As dis-

cussed in the Sections 3.2.4 and 3.3.3, the error induced by this approximation is subdominant

(see also [40]).

As a first example, let us evaluate the evolution equation (7.67) for the coefficients cab(η)

at leading order. Thereby, we use the fact that the variance (5.11) of the linear power spec-

trum (5.11) scales in time like

σ2
ab,L(η) =

4π

3

∫
dk PLab(k, η) = e2(η−η0) σ2

ab,L(η0) , (7.68)

when assuming growing-mode initial conditions for the linear power spectrum as in (4.16).

This allows us to determine the time-derivative on the right-hand side of (7.65) and perform

the integration over η afterwards. Hence, the resulting evolution coefficient at leading-order

(LO) reads

cLO
ab (η) = −

σ2
ab,L(η)

63

(
38 76

76 114

)
ab

' −σ2
ab,L(η)

(
0.60 1.21

1.21 1.81

)
ab

. (7.69)

In order to gain an insight on the accuracy of these predictions for the leading-order coeffi-

cients cLO
ab (η), we compare them with the results arising from a direct computation in SPT.

If we parameterize the power spectrum in the soft limit in SPT according to (7.66), we see

that the first order of the non-linear contributions to the power spectrum, involving the co-

efficient cab(η), corresponds to the one-loop order in SPT. Consequently, we have to confront

the coefficient cSPT
ab (η) extracted from the one-loop SPT power spectrum in the soft limit

against the leading-order coefficient cLO
ab (η) emerging from (7.67). Since it is equivalent to

consider the one-loop power spectrum for soft external momenta q or hard loop momenta k

with k � q, we can use the SPT power spectrum at one-loop order for large loop momenta,

given in (6.19), to directly read off the coefficient cSPT
ab (η) from the contribution proportional

to the square of the external momentum,

cSPT
ab (η) = −

σ2
ab,L(η)

105

(
61 125

125 189

)
ab

' −σ2
ab,L(η)

(
0.58 1.19

1.19 1.80

)
ab

. (7.70)

If we compare the coefficients cLO
ab (η) in (7.69) and cSPT

ab (η) in the expression above, we ob-

serve small deviations between the numerical values of the corresponding components. At

this level, these small differences quantify the errors in the non-perturbative power spectrum

equation (7.65) induced by neglecting the impact of the α-contributions (7.32) and by approxi-

mating the β-contributions (7.20) by the generalized VKPR proposal (6.76). As we illustrated

in the previous chapter, the application of the VKPR proposal, being a reasonable empiri-

cal approximation, causes a small error within perturbation theory. Thus, for the non-linear
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regime, we estimate the overall error generated by these approximations to be at most an

effect of the order of ∼ 10%. This estimate is consistent with the conclusion we draw from

determining the coefficients cab(η) numerically.

7.4.1. Estimation of the error due to neglecting the α-terms

All numerical results we present in the following are based on predictions from N -body simu-

lations that rely on a phase-space projection technique and have been performed in [378]. In

detail, [378] provides N -body predictions for the power spectra Pab(k, η) of the density and

velocity fields at present time, or equivalently at redshift z = 0, in a ΛCDM universe. In

the N -body simulations, the cosmological parameters of the WMAP7 data release [379] have

been used, i.e., the density parameters Ωm,0 = 0.276, ΩΛ,0 = 0.724 and Ωb,0 = 0.045, a di-

mensionless Hubble parameter of h = 0.703, the power spectrum renormalization σ8 = 0.811

as well as the primordial spectral index ns = 0.96. For our numerical analysis, we have used

the N -body predictions for the power spectra in [378] to numerically determine the variance

of the displacement fields σ2
ab(η), defined in (5.11), by performing the momentum integral over

the power spectra Pab(k, η).

For instance, we can use the N -body predictions for the velocity power spectrum P22(k, η) in

the ΛCDM case to determine the corresponding variance σ2
22(η). Since σ2

22(η) is the only input

needed to numerically evaluate the evolution equation for the coefficients cab(η) in (7.67), we

can consequently study these coefficients as a function of time η (see (3.49) with (3.18)) or

equivalently of redshift z (see (1.1)). This is shown in Figure 7.1. By comparing in particular

our numerical results for the coefficient c11(η), parameterizing the non-linear power spectrum

of the density fields in the soft limit, with corresponding data from [199, 200], we find that the

agreement within the error bars of the order of ∼ 10% is remarkably good. Unfortunately, we

currently do not have knowledge of data in the literature that could be used for comparison

with our numerical results for the coefficients c12(η) = c21(η) and c22(η).

7.4.2. Impact of hard modes beyond the non-linear scale

Additionally, there is another interesting aspect we can infer from Figure 7.1. In order to

evaluate the coefficients cab(η) numerically, we have determined the variance σ2
22(η) according

to (5.11) by performing the momentum integral over the velocity power spectrum P22(k, η).

We have set the upper integration limit to the scale kmax = 1h/Mpc and kmax = 10h/Mpc,

respectively. However, as we can see from Figure 7.1, the coefficients cab(η) only depend very

weakly on this choice of the cutoff scale kmax.

To investigate this point in further detail, we adapt our definition of the variance of the
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Fig. 7.1.: Numerical results for the coefficients cab(z), parameterizing the non-linear power

spectrum Pab(q, z) in the soft limit according to (7.66), as a function of redshift z

and for a ΛCDM universe. The coefficients cδδ ≡ c11, cδθ ≡ c12 = c21 and cθθ ≡ c22

are obtained from the relation (7.67) based on the non-perturbative equation for

the power spectrum in the soft limit. Thereby, the only input needed to evalu-

ate (7.67) consists of the variance of the displacement field σ2
22(z), defined in (5.11).

Here, we have determined σ2
22(z) by using the power spectrum of the velocity diver-

gence, Pθθ(q, z = 0) ≡ P22(k, z = 0), from the numerical simulations in the ΛCDM

case performed in [378] and performing the momentum integration up to a momen-

tum kmax afterwards (see also (7.71)). The data points indicated by black squares

correspond to numerical results for the coefficient c11(z) of the density power spec-

trum in the soft limit from [199, 200]. Moreover, the gray error bands indicate

a 10%-deviation from the numerical results for the coefficients cab(z) which con-

stitutes a rough estimation of the error in the non-perturbative power spectrum

equation (7.65), induced by ignoring the α-terms (7.32) and applying the VKPR

approximation (6.76). By comparing the numerical results for the coefficient c11(z)

with the data points from [199, 200], we see that the deviation is indeed at most

a ∼ 10% effect and becomes remarkably small at higher redshift z.

displacement fields σ2
ab(η) in (5.11) by reintroducing it as a cutoff-dependent quantity,

σ2
ab(kmax, η) ≡ 4π

3

kmax∫
0

dk Pab(k, η) , (7.71)
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Fig. 7.2.: Dependence of the variance of the displacement fields σ2
ab(kmax), defined in (7.71),

on the cutoff scale kmax at redshift z = 0 and for a ΛCDM universe. The vari-

ances σ2
δδ ≡ σ2

11, σ2
δθ ≡ σ2

12 and σ2
θθ ≡ σ2

22 are evaluated by using the numerical

results for the power spectrum Pab(q, z = 0) based on the ΛCDM simulation data

in [378]. While the variance of the density auto-correlation, σ2
11(kmax) depends sig-

nificantly on the chosen cutoff scale, the variances associated to the density-velocity

cross correlation and the velocity auto-correlation, σ2
12(kmax) and σ2

22(kmax), show

a saturation behavior and thus only a weak dependence on modes kmax bigger than

the non-linear scale ΛNL ' 0.5h/Mpc. Note that at earlier times where z > 0, the

cutoff-dependence is even less relevant.

evaluated at present time η(z = 0),

σ2
ab(kmax) ≡ σ2

ab

(
kmax, η(z = 0)

)
. (7.72)

Here, we have refrained to propose an additional symbolic notation for the cutoff-dependent

variance at present time, σ2
ab(kmax), that has to be distinguished from the time-dependent

variance σ2
ab(η), defined in (5.11), for keeping the notation simple.

In Figure 7.2, we present the dependence of the variance σ2
ab(kmax) on the short-distance

cutoff scale kmax. Therein, the numerical results for σ2
ab(kmax) are evaluated at redshift z = 0

and for the ΛCDM cosmology as implemented in [378]. This figure illustrates that the vari-

ances arising from the cross-correlation of density and velocity fields as well as from the auto-
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correlation of the latter, i.e., σ2
12(kmax) and σ2

22(kmax), do not vary significantly for kmax & ΛNL

with ΛNL ' 0.5h/Mpc being the non-linear scale. In fact, σ2
12(kmax) and σ2

22(kmax) exhibit

a saturation that sets in for kmax & ΛNL. In contrast to this, the variance of the density

auto-correlation, σ2
11(kmax), does show a cutoff-dependent behavior beyond the non-linear

scale ΛNL.

7.4.3. Dependence on the background cosmology

In the non-perturbative power spectrum equation (7.10), the dependence on the cutoff scale

kmax enters through the coefficients C12(η) and C22(η). These constitute – in their most gen-

eral form – functions of the variances σ2
12,A(kmax, . . .) and σ2

22,A(kmax, . . .) in a (hypothetical)

locally curved anisotropic background cosmology (see (7.61)). Here, we define the cutoff-

dependent variance σ2
ab,A(kmax, . . .) at zero redshift similarly as in (7.71). While we expect that

the variance σ2
ab,A(kmax, . . .) depends on the underlying cosmological model for kmax � ΛNL,

the situation is different if the cutoff scale kmax is much bigger than the non-linear scale ΛNL.

Since the curvature parameters and the other geometrical dependencies entering in the vari-

ance (7.61) are induced by the directional soft mode, they depend on the properties of the

long-wavelength mode δL(q, η) � 1 with q � ΛNL. Thus, the details of the background

cosmology, which are only relevant at long distances, should not significantly affect the qual-

itative behavior of the variance σ2
ab,A(kmax, . . .) on short distance scales. In other words, we

expect for kmax � ΛNL the relation

σ2
ab,A(kmax, . . .) ' σ2

ab(kmax) (7.73)

to be valid. As a consequence, we can apply the conclusions we draw from Figure 7.1 and Fig-

ure 7.2 for the variance σ2
ab,A(kmax, . . .) in the locally curved anisotropic universe. This implies

in particular that σ2
12,A(kmax, . . .) and σ2

22,A(kmax, . . .) can only display a weak dependence on

short-distance modes beyond the non-linear scale.

Let us next consider the case of a spherically symmetric perturbation, which is sufficient to

determine the coefficient C22(η) in the non-perturbative power spectrum equation (7.10) in

dependence of a locally curved background cosmology. Following the same arguments as used

before to derive (7.73), we can approximate the variance in the locally curved background

cosmology, induced by the spherically symmetric soft mode, for kmax � ΛNL as

σ2
ab,K(kmax) ' σ2

ab(kmax) . (7.74)

Since the variance σ2
22(η) constitutes the crucial quantity to determine the coefficient C22(η)

entering in the non-perturbative power spectrum equation (7.65), we can use the observed
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saturation of σ2
22(η) beyond the non-linear scale to draw also conclusions about the cutoff-

dependence of C22(η). In order to do so, we need to include one more step though. The reason

for this is that the general form of the coefficient C22(η) in (7.22) includes, among others, a

derivative with respect to curvature. However, for modes deep in the non-linear regime, i.e.,

for k � ΛNL, one can show that (see also (6.60))

∂

∂κ
Pab,K(k, η)

∣∣∣∣
K=0

< Pab(k, η) (7.75)

with κ defined in (6.57). This can be inferred from testing the background method, which

absorbs a spherically symmetric soft mode into a locally curved background cosmology, with

numerical simulations in the framework of the ‘separate universe’ approach [238–240, 380]

(see also the discussion in Section 6.3). In [380], the ‘separate universe’ approach is used to

calculate the derivative of the power spectrum with respect to curvature and to subsequently

determine the response to the spherically symmetric long-wavelength perturbation numerically

from N -body simulations. To be precise, the response function G1(k, η) of the density power

spectrum P (k, η) ≡ P11(k, η) (see (6.55)), defined as [380]

G1(k, η) ≡ −1

3
∂η lnPK=0(k, η) +

5

3

∂

∂κ
lnPK(k, η)

∣∣∣∣
K=0

, (7.76)

is evaluated at different redshifts z and hence different times η. Note that the response

functionG1(k, η) incorporates exactly the combination of time and curvature derivatives which

enters in the non-perturbative angular-averaged bispectrum consistency condition that we

derived in (6.56) (see (7.21) as well). Thus, it is this combination of derivatives that determines

the coefficient C22(η). Recall that in the final step of our derivation of C22(η) (see (7.23)), we

applied the generalized VKPR proposal in (6.76) to approximate the derivative with respect

to curvature by a time derivative. By using the results of the response function G1(k, η) from

the numerical simulations of [380], we can judge the exactness of this approximation. For

this purpose, we formulate the VKPR proposal (6.60) for the logarithm of the density power

spectrum,
∂

∂κ
lnPK(k, η)

∣∣∣∣
K=0

=
4

7
∂η lnPK=0(k, η) . (7.77)

Afterwards, we insert this expression into (7.76) and determine the response function based

on the VKPR proposal. In Figure 7.3, we then compare the results for the power spectrum

response function (7.76) based on the numerical simulations of [380] with the one arising from

the VKPR proposal at redshift z = 0 (on the left) and z = 2 (on the right).2 The results

2The cosmological parameters used for the N -body simulations in [380] are the density parameters

Ωm,0 = 0.27, ΩΛ,0 = 0.73 and Ωb,0 = 0.023, a dimensionless Hubble parameter of h = 0.7, the power

spectrum renormalization σ8 = 0.8 and the primordial spectral index ns = 0.95.
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Fig. 7.3.: Momentum dependence of the density power spectrum response function G1(k, z),

introduced in (7.76), to a spherically symmetric long-wavelength perturbation at

redshift z = 0 (on the left) and z = 2 (on the right) for a ΛCDM universe. While

the black squares represent the results for G1(k, z) from the N -body simulations

for a ΛCDM universe performed in [380], the red solid line displays the predic-

tions of the VKPR proposal (7.77) in [173, 174]. Besides, the numerical results

for the power spectrum response function obtained from SPT computations in a

curved background cosmology (see Section 6.5.2) and from the phenomenological

‘halo model’ [381–383] are indicated by the dashed black line and the dotted blue

line, respectively. On the one hand, for both redshifts z = 0 and z = 2, we see a rel-

atively good agreement of the VKPR proposal with the N -body simulation data at

small wavenumbers k. On the other hand, at zero redshift, the VKPR proposal de-

viates from the numerical simulations at higher wavenumbers k near the non-linear

scale ΛNL ' 0.5h/Mpc with an error of the order of ∼ 10%. This disagreement in-

creases significantly for momenta much bigger than the non-linear scale, k � ΛNL,

such that the predictions of the VKPR proposal overestimate G1(k, z) compared to

results based on the numerical simulations.

from the N -body simulations performed in [380] correspond to the black squares, whereas the

predictions of the VKPR proposal are displayed by the red solid line. In addition, we show the

power spectrum response function obtained from SPT computations in a curved background

cosmology (dashed black line), implementing our results derived in Section 6.5.2, as well as

from the phenomenological ‘halo model’ (dotted blue line).3

3The so-called ‘halo model’ [381–383] is a phenomenological model to describe the dynamics of gravitational

clustering. In its simplest formulation, it relies on the approximation that all matter in the Universe is asso-
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Both at redshift z = 0 and z = 2, the N -body results and those relying on the VKPR

approximation agree relatively well for small momenta k. However, at zero redshift, it is clearly

visible that the VKPR proposal fails at higher momenta near the non-linear scale ΛNL '
0.5h/Mpc with an error of the order of ∼ 10%. If we consider even bigger momenta k �
ΛNL, this disagreement increases significantly so that the VKPR predictions lie much above

the results from the numerical simulations. Thus, the predictions of the VKPR proposal

overestimate the power spectrum response function compared to the results obtained from

the N -body simulations in [380]. Unfortunately, the numerical simulations in [380] only refer

to the power spectrum of density perturbations, P11(k, η), and do not include the density-

velocity or velocity-velocity power spectrum P12(k, η) and P22(k, η), respectively. However,

we expect to deduce similar results for the latter.

Proceeding in this direction, we present in Figure 7.4 the time derivative of the vari-

ance, ∂ησ
2
ab(kmax, η) (see (7.71)), based on the N -body simulation data for a ΛCDM universe

in [378], as a function of the cutoff scale kmax. First of all, this figures illustrate once more

the weak dependence of the variances σ2
12(kmax) and σ2

22(kmax) on modes kmax beyond the

cutoff scales ΛNL. Moreover, by comparing it with Figure 7.2, we see that the approxima-

tion ∂η lnσ2
12(22)(kmax) ' 2 is relatively accurate for kmax & ΛNL. If we transfer this finding to

the power spectrum, i.e., ∂η lnP12(22)(k, η) ' 2 with k much larger than ΛNL (see (7.71)), and

take into account that the predictions of the generalized VKPR proposal for P12(k, η) and

P22(k, η) in the regime k � ΛNL are an overestimation of the N -body results (see Figure 7.3),

we conclude that the upper bound on the derivative of the power spectrum in (7.75) with re-

spect to spatial curvature is fulfilled. This implies that the weak sensitivity to the hard modes

beyond the non-linear scale also applies for the curvature derivatives of the variances σ2
12,K

and σ2
22,K . In particular, the latter enters through the coefficient C22(η), given in (7.22), in

the non-perturbative power spectrum equation (7.65).

On physical grounds, we expect this saturation behavior beyond the non-linear scale to be a

general feature that also occurs in the case of a locally curved anisotropic universe, for both the

variances σ2
12,A and σ2

22,A as well as their variations with respect to the additional geometrical

parameters introduced in (7.61). Since these quantities constitute the general contributions

to the coefficients C12(η) and C22(η), we draw the conclusion that also C12(η) and C22(η)

ciated to dark matter halos. The halo model yields a relatively accurate description for the power spectrum

and bispectrum of density perturbations, with an precision of typically better than ∼ 10% for k < 1h/Mpc

at redshift z = 0 [384]. The ideas of the halo model have been extended further into the direction of

phenomenology by the implementation of the ‘halofit’ method [385, 386]. This method provides even more

accurate predictions for the density power spectrum in form of a simulation-calibrated fitting formula, which

is based on the halo model and contains numerous heuristic parameters matched to numerical simulations.
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Fig. 7.4.: Time derivative of the variances of the displacement fields ∂ησ
2
ab(kmax, η), introduced

in (7.71), as a function of the cutoff scale kmax for a ΛCDM universe. Here, we use the

notation σ2
δδ ≡ σ2

11, σ2
δθ ≡ σ2

12 and σ2
θθ ≡ σ2

22 for the variances of the displacement

fields, defined in (7.71). The presented results are obtained by determining the

variance of the displacement fields in (7.71) from the N -body simulation data for

the power spectrum Pab(k, η) for a ΛCDM cosmology in [378]. By comparing with

Figure 7.2, we deduce the approximation ∂η lnσ2
12(22)(kmax) ' 2, which is valid in

the saturation range where kmax & ΛNL.

only depend weakly on short-distance modes beyond the non-linear scale. This finding has

important consequences. As the coefficients C12(η) and C22(η) determine the non-perturbative

equation for the power spectrum in the soft limit, given in (7.33) or in (7.65) if neglecting the

subleading coefficient C12(η), the power spectrum Pab(q, η) in the soft limit receives most of its

contributions from hard modes near the non-linear scale. This conclusion stands in contrast to

the predictions for the power spectrum in SPT which show a UV-divergent behavior. In fact,

studying the coefficients cab(η), which parameterize the non-linear power spectrum (7.66) in

dependence of the cutoff scale, confirms this conclusion, as we illustrate in what follows.

7.4.4. UV dependence of the SPT power spectrum

Let us explore the cutoff-scale dependence of the coefficients cab(η) for the ΛCDM model

considered in [378] in further detail. In the two upper panels of Figure 7.5, we show the coef-
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7. Non-Perturbative Power Spectrum Equation

ficients cab(η) in dependence of the redshift z for two different cutoff scales kmax = 1h/Mpc

and kmax = 10h/Mpc, respectively. Thereby, we have obtained the results for the coef-

ficients cab(η) from the evolution equation (7.67) by either determining the variance σ2
22(η)

perturbatively in SPT up to three-loop order (see also [102]) or non-perturbatively with the N -

body simulation data of [378].

If we compare the values of the coefficients cab(η) for the cutoff scale kmax = 1h/Mpc

(upper figure on the left) with the corresponding ones for kmax = 10h/Mpc (upper figure

on the right), we see that the perturbative SPT predictions depend strongly on the cutoff

scale, in particular at two- and three-loop order, while the full solution is essentially robust.

As opposed to this, the non-perturbative results for the coefficients cab(η) extracted from

the numerical simulations do not vary significantly when changing the cutoff scale by an

order of magnitude. Hence, this implies that the main contribution to the coefficients cab(η)

arises from modes k . 1h/Mpc. In turn, we arrive at the conclusion that the apparent

strong(er) dependence of the perturbative calculations in SPT on the small-scale fluctuations,

being clearly displayed by the two- and three-loop-order SPT results, is an artificial effect.

Thus, the UV dependence observed in SPT computations is an artifact arising due to the

inapplicability of perturbation theory beyond the non-linear scale.

This conclusion is confirmed by the comparison of the non-perturbative N -body results with

the perturbative SPT predictions that we present in the lower panels of Figure 7.5. Therein,

we display the variance σ2
ab(kmax), evaluated at redshift z = 0 in the discussed ΛCDM cos-

mology, as a function of the cutoff scale kmax. We contrast the non-perturbative results for

the variance σ2
ab(kmax) based on the N -body simulation data of [378] (solid lines) with the

corresponding perturbative SPT predictions at one-loop order (dashed lines in the lower panel

on the left) and at two-loop order (dotted lines in the lower panel on the right). Again, we no-

tice that the perturbative SPT predictions or the variance σ2
ab(kmax) strongly depend on kmax

beyond the non-linear scale ΛNL ' 0.5h/Mpc. This becomes particularly obvious at the two-

loop level for σ2
11(kmax) and σ2

12(kmax), but also to a lesser degree for σ2
22(kmax). Compared

to the strong cutoff dependence of the perturbative predictions, we can consider the non-

perturbative results for σ2
ab(kmax), especially for σ2

12(kmax) and σ2
22(kmax), to remain basically

unaltered for kmax greater than the non-linear scale ΛNL. Since the variance σ2
22(kmax) consti-

tutes the crucial quantity that enters in the non-perturbative power spectrum equation (7.65),

it is in particular the saturation beyond the non-linear scale observed for σ2
22(kmax) that has

important consequences. It does not only allow us to conclude that the UV dependence of

the SPT power spectrum constitutes an artifact, but it also has implications for the EFT of

LSS. We discuss these in the following.
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Fig. 7.5.: Comparison of the non-perturbative predictions with the perturbative SPT predic-

tions for the cutoff-scale dependence of the coefficients cab(z) in (7.66) and the

variances of the displacement fields σ2
ab(kmax) at zero redshift (see (7.71)) and

for a ΛCDM universe. For the non-perturbative evaluation of σ2
ab(kmax) and in

turn cab(z) in (7.67), we have used the N -body simulation data for a ΛCDM uni-

verse in [378] (solid lines). The corresponding perturbative evaluation has been per-

formed in SPT at one-, two and three-loop order (dashed, dotted and dot-dashed

lines), see also [102]. Here, the depicted non-perturbative results coincide with

those in Figure 7.1 and Figure 7.2. In the upper two panels, we display the coef-

ficients cab(z) as a function of redshift z for the cutoff-scales kmax = 1h/Mpc (on

the left) and kmax = 10h/Mpc (on the right). While this change of the cutoff scale

only affects the non-perturbative results weakly (at the 2% level), the perturbative

SPT predictions show a strong cutoff-scale dependence, in particular at two- and

three-loop order. Moreover, in the lower panels, we show the variance σ2
ab(kmax) at

redshift z = 0 in dependence of the cutoff scale kmax. We also notice here that in

contrast to the non-perturbative results, the SPT predictions at one-loop order (on

the left) and especially at two-loop order (on the right) for σ2
11(12)(kmax) strongly

depend on modes kmax beyond the non-linear scale ΛNL.
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7.4.5. Implications for the EFT of LSS

In the effective field theory approach of large-scale structure (EFT of LSS) [49, 63, 89, 178–

208], one introduces an additional time-dependent (renormalized) parameter l2ren at leading

order in the soft wavenumber q. This parameter scales like l2ren ∝ q2PL(q, η) in the soft

limit q → 0. In the Eulerian framework of EFT, l2ren can be interpreted as a ‘sound speed’ c2
s

(see e.g., [63]), whereas it includes a series of response functions in the Lagrangian-space for-

mulation LEFT, developed in [208]. As originally emphasized in [63, 178, 208], the effects of

the EFT coefficient(s) can be read off from the discrepancy between observations (and/or pure

numerical simulations), P obs
ab (q, η), and the theoretical solution of the flow equation (7.10) for

the power spectrum, P flow
ab (q, η), without adding finite-size effects. In the context we consider

here, we can alternatively use the non-perturbative power spectrum equation in (7.33), in-

cluding both the coefficients C12(η) and C22(η) from the α- and β-contributions, to determine

the theoretical solution P flow
ab (q, η) for the power spectrum.

Hence, by quantifying the mismatch of the power spectrum determined from observations

and by solving the non-perturbative equation (7.33) as

∆Pab(q, η, kmax) ≡ P obs
ab (q, η)− P flow

ab (q, η, kmax) , (7.78)

we can define a (renormalized) parameter l2ren(kmax) that incorporates the dependence on the

short-distance modes at a given point of time η as

l2ren(kmax) ≡ ∆P (q, η, kmax)

q2PL(q, η)
, q � ΛNL � kmax (7.79)

with ∆P (q, η, kmax) ≡ ∆P11(q, η, kmax). The actual cutoff-independent mismatch of the power

spectra ∆P (q, η, kmax) and the corresponding parameter l2ren is then determined by taking the

cutoff to infinity or, in practice, much larger than the non-linear scale, kmax � ΛNL. While

the dependence of the parameter l2ren(kmax) on the cutoff scale kmax reflects the sensitivity

of the power spectrum P flow
11 (q, η, kmax) on the short-distance modes, the size of l2ren(kmax)

is however determined by the mismatch ∆P (q, η, kmax) between data from observations or

numerical simulations and the theoretical solution to the non-perturbative equation for the

power spectrum in the soft limit in (7.33).

In principle, the mismatch ∆Pab(q, η, kmax) in (7.78) also measures the effect of neglecting

the vorticity w ≡ ∇ × u, as defined in (3.3), which has been neglected from the onset (see

the discussion at the beginning of Section 3.2 for details). The vorticity enters in the fluid

equations (7.1) through additional vertices, such as γδθω with the indices referring to the

density contrast δ, the velocity divergence θ and vorticity ω. These new vertices in turn lead

to additional coefficients in the non-perturbative power spectrum equation (7.33) which are,
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for instance, proportional to the variance of the vorticity auto-correlation σ2
ωω(kmax). However,

since the vorticity power spectrum Pωω(k, η) is highly suppressed on small momentum scales

and is at most of the same order as the velocity power spectrum on for large momenta

(see [378]), we conclude that σ2
ωω(kmax) � σ2

22(kmax). Thus, it is justified to neglect the

impact of the vorticity in the non-perturbative equation for the power spectrum in (7.33).

As we argued in Section 7.4.3, the coefficients C12(η) and C22(η) depend only very weakly

on the cutoff scale kmax beyond the non-linear scale ΛNL. Since these coefficients determine

the cutoff-dependence of the power spectrum P flow
ab (q, η, kmax) through the non-perturbative

equation (7.33), also P flow
ab (q, η, kmax) depends only weakly on the cutoff scale for kmax � ΛNL.

This implies

P flow
ab (q, η, kmax) ' P flow

ab (q, η,ΛNL) , kmax � ΛNL , (7.80)

so that the EFT parameter l2ren(kmax), introduced in (7.79), can be expressed as

l2ren(kmax � ΛNL) ' ∆P (q, η,ΛNL)

q2PL(q)
, q � ΛNL . (7.81)

Hence, at leading order in q, the renormalized coefficient(s) in the EFT framework [63, 178,

208] themselves possess only a weak dependence on modes beyond the non-linear scale. Con-

sequently, they can be determined with information from modes up to or near the non-linear

scale.

In fact, this result is not surprising. It reflects the statement that virialized scales decouple

on large-scale dynamics, which was shown in [178] for the back-reaction on the evolution of the

Universe. The reason for this is that short distance scales contribute through the expectation

value of their quadrupole moment [208], that is suppressed relative to non-virialized scale

(see [92]). Likewise, our analysis demonstrates that the same occurs for the response of this

quadrupole to a long-wavelength perturbation entering at order q2.4 Our results are then

compatible with numerical investigations of the impact of UV modes (see e.g., [209, 210]) as

well as general expectations from analytic arguments (such as in [92, 96, 387]).

On the other hand, our findings are in contrast to the behavior of the solutions to the

fluid equations (7.1) obtained in standard Eulerian (or Lagrangian) perturbation theory. In

these frameworks, the power spectrum P flow
ab (k, η) is determined as a perturbative expansion

in terms of the linear power spectrum, involving possibly divergent loop integrals over all mo-

mentum scales. Within the effective field theory approach to LSS, the divergences are canceled

4Note that for virialized objects, the density contrast equals approximately δvir ' 102. However, if we

use that the potential is roughly constant (of the order Φ ' 10−5) on all scales, this corresponds to

kvir ' 10 ΛNL. Furthermore, the power spectrum turns over near the horizon scale at matter-radiation

equality k ' keq < ΛNL. This introduces an additional suppressing factor. Thus, we see the turn-over of

the power spectrum in Figure 7.2 to occur closer to the non-linear scale ΛNL ' 0.5h/Mpc.

185



7. Non-Perturbative Power Spectrum Equation

by counter-terms so that the physical renormalized coefficients remain. From our previous

considerations, we deduce that any dependence of the leading-order EFT coefficient(s) in

Eulerian (or Lagrangian) space on short-distance modes beyond the non-linear scales arises

mainly from the counter-term(s). This finding also leads to the conclusion that the UV sen-

sitivity in SPT is an artifact due to the inapplicability of perturbation theory beyond the

non-linear scale, in contrast to the intrinsic UV dependence of the – physical – renormalized

parameters, which encode finite-size effects.

To go beyond, let us discuss one further issue concerning the renormalized EFT parame-

ter(s). Although our formulation of (7.79) suggest that l2ren(kmax) is constant for all values

of q, this must not necessarily be the case. Instead, there may also be an inherited dependence

of l2ren(kmax) on q that occurs due to the existence of non-analyticities, such as logarithms of

the form ∝ q2 (ln q)n. Thus, the renormalized parameter(s) on different scales can differ by

large logarithms so that they need to be resummed. This is achieved through the renor-

malization group flow. On the one hand, this does not affect our conclusions if we vary the

momentum q towards the non-linear scale. The reason for this is that, for q ' ΛNL, the

renormalized parameter(s) do not depend strongly on short-distance modes beyond the non-

linear scale. On the other hand, there could still be an important renormalization group flow

between modes with q � ΛNL and the non-linear scale. Though we do not expect this scale

dependence to have a large impact, it is nonetheless an important factor when hunting for a

percent-level accuracy. In this regard, we also refer to [199, 200] for a related discussion.

The fact that the renormalized EFT parameter(s) at leading order in the soft mode q

do not strongly depend on the UV modes does not mean that the effect of the additional

EFT term ∝ l2ren q
2PL(q) with l2ren given in (7.81), in the dynamics of the non-perturbative

power spectrum equation (7.33) is necessarily small. As we can see from (7.81) with (7.78),

its relevance rather relies on how well the theoretical solution for the power spectrum fares

against observations or numerical simulations. Moreover, on physical grounds, we know that

tidal effects are expected to contribute on large momentum scales [208, 370].

Due to the intricate series of approximations we applied to derive the non-perturbative

equation for the soft-limit power spectrum in (7.65), it is not possible to directly extract the

size of the renormalized EFT coefficient(s) in the soft limit. Nonetheless, we can conclude

that their importance in correcting the underlying fluid equations (7.1) is at most of the same

order as the error we estimated in Section 7.4.1, i.e., at the level of ∼ 10%.

186



Chapter 8

Conclusions and Outlook

In this thesis, we studied correlation functions of matter density and velocity perturbations,

such as the power spectrum and the bispectrum, in the theory of large-scale structure for-

mation. Thereby, we focused on the investigation of such correlation functions in the limit

where one of their wavenumbers becomes small. In this squeezed or soft limit, (N + 1)-point

and N -point correlators of density and velocity fields can be linked to so-called ‘consistency

conditions’. We deduced consistency conditions both for equal- and unequal-time correlation

functions. Thereby, we worked in the Eulerian representation of cosmological perturbation

theory and used the compact notation of the large-scale structure fluid equations in terms

of a doublet field which simultaneously includes the density and velocity fluctuation fields

(see [40, 236]). Afterwards, we explored the validity of these consistency conditions within

and beyond perturbation theory.

Unequal-time consistency conditions for correlation functions

in the soft limit

With regard to unequal-time correlation functions, the main appeal of the consistency condi-

tions is that they can be derived solely from symmetry arguments and thus are universal. In

fact, they are only based on the general assumption of a single-field inflation to impose the

initial conditions for the seeds of structure, and the diffeomorphism invariance (general covari-

ance) of general relativity. For that reason, the unequal-time consistency conditions lead to

quite general, non-perturbative predictions about the dynamics on short distance scales [165–

171, 228, 235]. Thus, they constitute a powerful tool to test the underlying assumptions and

the basic aspects of the theory with upcoming large-scale structure surveys [53–60].
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Here, we (re-)derived the consistency conditions for unequal-time correlation functions in

the soft limit. One of the crucial aspects in the derivation was the factorization of soft and

hard modes. Hence, we applied the eikonal approximation which naturally accounts for the re-

summation of the soft mode into a so-called eikonal phase [159, 160, 237]. By using the eikonal

approximation, we did not only deduce the known consistency conditions for unequal-time

correlation functions of density perturbations in a straightforward way (see e.g., [167, 169–

171, 228–230]), but in addition extended them to unequal-time correlation functions including

the velocity field. Moreover, the transparent derivation with the eikonal approximation has

the advantage that it can be easily adapted to account for different cosmological models.

These consistency conditions become degenerate for the observationally most interesting

case of equal-time correlation functions, that is, they vanish at leading order in the soft

momentum q. To extract information about equal-time correlators, one consequently has

to study next-to-leading order effects. Beyond linear order, equal-time correlation functions

depend on the coupling between soft and hard modes so that dynamical information starts to

become important. Hence, it is relevant to investigate under which circumstances consistency

conditions for equal-time correlation functions in the soft limit exist beyond a perturbative

treatment of the hard modes.

Equal-time consistency conditions for the bispectrum in the

soft limit

In order to access the existence and validity of the consistency relations between correlation

functions at equal times, we computed the soft limit of the angular-averaged equal-time con-

nected three-point function, the bispectrum, up to next-to-leading order in SPT [40, 92–102] as

a benchmark for the comparison of different methods. In detail, we scrutinized the predictions

for the soft-limit of the bispectrum in two different approaches, namely in the perturbative

time-flow approach [156] and in a non-perturbative background method where the soft mode

is absorbed into a locally curved cosmology. The latter has been applied in [173, 174] for

proposing allegedly non-perturbative equal-time consistency conditions.

Time-flow approach

The time-flow approach relies on applying a closure approximation to truncate a hierarchical

system of differential evolution equations for equal-time correlators, the so-called flow equa-

tions. In general, deriving perturbative statements in the time-flow approach is only possible

by imposing a suitable closure approximation.
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Usually, the infinite hierarchy of flow equations is closed by neglecting the connected four-

point correlation function, i.e., the trispectrum. However, the success of this closure approx-

imation in computations involving the power spectrum is questionable (see [156, 348]). An

attempt at including the information from the trispectrum to improve the predictions of the

time-flow approach for the power spectrum appeared in [349]. The results therein point to-

wards a non-negligible contribution to the power spectrum already in the mildly non-linear

regime.

For the case of the soft-limit angular-averaged bispectrum consistency relations derived in

the time-flow formalism, one could have hoped that the trispectrum was less relevant in the

soft limit and that equal-time consistency conditions based on the time-flow approach may

be approximately accurate. However, we showed that the trispectrum plays an important

role in assessing the validity of the consistency relations for the bispectrum in the soft limit.

We demonstrated explicitly that the time-flow approach reproduces the SPT predictions for

the soft-limit angular-averaged bispectrum of density perturbations at linear order and thus

coincides with the known result in the literature [166]. At this level, we could in fact use

the time-flow approach to extend the known linear-order bispectrum consistency relations to

correlation functions including the velocity fields and to general background cosmologies other

than the simplest EdS one. Beyond the leading order, however, the time-flow approach fails to

provide accurate predictions for the consistency relations of the angular-averaged bispectrum

in the soft limit. Already at one-loop order, we found large deviations between the soft-limit

bispectrum in SPT and from the time-flow approach.

If we include the trispectrum and truncate the infinite hierarchy of flow equations at a

higher-order level of the correlations functions, we can in principle reproduce the one-loop

SPT result for the bispectrum in the soft limit with the time-flow approach. Nevertheless,

the time-flow approach will fail to provide accurate predictions for the bispectrum in the soft

limit at some given loop order depending on the truncation. Thus, a truly non-perturbative

result for an equal-time consistency condition seems out of reach in the time-flow formalism.

For this reason, the perturbative relations between equal-time correlation functions in the

soft limit derived from the time-flow approach do not hold up the same status as the non-

perturbative consistency conditions at unequal times. However, they may still be useful in

special circumstances where the short-distance modes are kept in the mildly non-linear regime.

For instance, the perturbative relations of the time-flow approach are well suited to study the

baryon acoustic oscillations in a background cosmology that requires numerical input, such

as cosmological models including massive neutrinos or quintessence. In contrast to SPT, the

time-flow approach is formulated only in terms of equal-time correlation functions so that

soft effects cancel out from the beginning. Thus, the perturbative time-flow relations for the
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equal-time correlation functions in the squeezed limit may improve numerical stability and

simplify the computational treatment of the fluctuations.

Non-perturbative background method

To assess the existence of equal-time soft-limit consistency conditions beyond the realm of

perturbative methods, we subsequently presented an alternative, non-perturbative approach

for deriving equal-time angular-averaged correlation functions in the soft limit. This approach

was based on a background method, introduced in [165, 166], which implements a map be-

tween the dynamics on short distance scales within a flat FRW universe in the presence of

a soft, long-wavelength perturbation and a locally curved background. In the context of N -

body simulation, the background method was exploited in the so-called ‘separate universe’

approach [238–241]. It was argued in [165] that this physical equivalence between a perturbed

FRW cosmology with a soft mode and a locally curved universe even applies if the short

modes are deep in the non-linear regime. In turn, the proposal of allegedly non-perturbative

‘angular-averaged equal-time consistency conditions’ by Valageas, and also by Kehagias, Per-

rier and Riotto (VKPR) in [173, 174] appeared as an attempt to use this equivalence for

extending the leading-order result of [166] into the non-linear regime.

Inspired by the VKPR proposal, our aim was to derive a non-perturbative consistency re-

lation for the bispectrum in the soft limit from first principles using the background method.

Thereby, we developed a straightforward and shortened derivation of the relevant transfor-

mations in the background method of [165, 166], which directly matches a flat FRW cos-

mology in the presence of a soft mode to a locally curved universe. Afterwards, we used

these transformations to relate the bispectrum of density perturbations, B111(k,−q, q−k, η),

in the soft limit q → 0 to the variation of the density power spectrum on short distance

scales, P (k, η) ≡ P11(k, η), in the presence of a local curvature K in an EdS cosmology. Con-

sequently, we obtained the generic, non-perturbative angular-averaged bispectrum consistency

condition (see (6.56))

B111(k,−q, q − k, η)av q→0−−−→ PL(q, η)

[(
1− 1

3
k ∂k −

1

3
∂η

)
P (k, η) +

5

3

∂

∂κ
PK(k, η)

∣∣∣∣
K=0

]
,

(8.1)

where we denoted the full non-linear density power spectrum in the presence of local cur-

vature as PK(k, η) and introduced the curvature parameter κ = K/(a2H2). The general-

ization for background cosmologies other than EdS is straightforward. Here, the term in-

volving
(
1− 1

3k ∂k
)

results from the combination of two effects, namely, the difference in the

density contrast between the two cosmologies plus the shift induced by the so-called displace-
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ment term [208] (or equivalently the eikonal phase). Moreover, the contribution 1
3∂η arises

from the transformation of the scale factor. Since the last term in the relation above involves

the dependence on the power spectrum PK(k, η) in a hypothetically (locally) curved universe,

this expression for the bispectrum in the soft limit, though universal, cannot be directly con-

fronted against observations. However, one can, on the one hand, use numerical simulations to

determine the derivative with respect to κ. This was done in [238–241] within the framework

of the ‘separate universe’ approach. On the other hand, we demonstrated that one can use

the VKPR proposal for this purpose.

Validity of the VKPR proposal

The VKPR proposal, introduced in [173, 174], can be rephrased as an attempt to replace the

variation of the density power spectrum with respect to curvature with the corresponding one

in the absence of curvature where K = 0 (see (6.60))

VKPR :
∂

∂κ
PK(k, η)

∣∣∣∣
K=0

=
4

7
∂ηPK=0(k, η) . (8.2)

For assessing the accuracy of this VKPR relation, we reformulated the fluid equations with

respect to a new time variable in terms of the linear growth factor in the presence of cur-

vature, D1,K(η). Thus, we performed the transformation η → lnD1,K(η) to treat the fluid

perturbations in a curved background. This allowed us to absorb the information on the back-

ground cosmology into the time evolution, up to a κ-dependent interaction (see (6.79)). As a

result, we found that the VKPR relation in (6.60) is based on the approximation of neglecting

this additional (time-dependent) interaction term. Due to this approximation, the VKPR

proposal does not fully account for the effect of local curvature on the growth of structure

and thus does not constitute a general, non-perturbatively valid relation. Through estimating

the error induced by neglecting the curvature-dependent interaction term, we could assess the

accuracy of the VKPR relation (6.60). We found the VKPR relation for the bispectrum of den-

sity perturbation is only exact at linear order in perturbation theory, but still quantitatively

accurate (to the few-percent level) beyond leading order. We draw the same conclusion from

investigating its predictions for the bispectrum of density perturbations at one-loop order.

Hence, the VKPR proposal (6.60) can be regarded as a quantitatively reasonable empirical

approximation within the realm of perturbation theory.

As opposed to this, transferring the VKPR proposal to the velocity fields fails significantly

beyond leading order in perturbation theory. Consequently, we generalized the background

method to properly account for the effect of local curvature both in the density and velocity

perturbations on short distance scales. Based on this, we demonstrated that the velocity
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fluctuations react differently by a factor of order one to the presence of curvature than the

density perturbations. These findings allowed us finally to formulate a proper generalization

of the VKPR proposal in terms of the doublet field ψa(k, η), including not only the density

perturbations but also the velocity fluctuations (see (6.76))

∂

∂κ
ψa,K(k, η)

∣∣∣∣
K=0

' 4

7

(
∂η 0

0 ∂η + 1

)
ab

ψb,K(k, η) . (8.3)

Finally, we investigated the reasons behind the accuracy of the VKPR proposal for the power

spectrum of density perturbations in (6.60). At first, the accuracy of the VKPR proposal can

be related to the variation (see (6.80))

∂

∂δL

(
3

2

Ωm

f2

)
' − 5

14
, (8.4)

in the presence of a long-wavelength perturbation that has been absorbed into the background

cosmology. Here, Ωm and f are the matter density parameter and the linear growth rate in

the presence of the soft mode. Note, however, that the precision of the VKPR proposal we

observed in the perturbative computations is much better. In fact, it arises due to supple-

mentary cancellations. At leading order in the curvature parameter κ, the additional term in

the fluid equations accounting for the presence of curvature (see (6.79)) almost annihilates the

growing-mode EdS solution at any given order n in SPT, which is dominated by δ(n) ' Θ(n)

(i.e., ψ(n) ∝ (1, 1)). While these cancellations explain the unreasonable effectiveness of the

VKPR proposal (6.60) within the framework of perturbation theory, they do not necessarily

imply a similar accuracy beyond it. Attempts at testing the VKPR proposal against N -

simulations appeared in [231, 238]. The small deviations between the VKPR proposal and

the numerical simulations are in agreement with our findings.

Non-perturbative power spectrum equation

After having derived a non-perturbative relation for the bispectrum in the soft limit (see

(8.1)), we took a further step in this direction and derived a non-perturbative equation for

the power spectrum in the soft limit. However, the road we pursued to deduce this power

spectrum equation was slightly different.

First, we derived a non-perturbative relation for a product of doublet fields in the case

where one momentum is taken to be soft, q → 0, by performing an operator product expan-

sion (OPE). By correlating this expression with an additional doublet field, we obtained an

angular-dependent non-perturbative relation for the bispectrum in the soft limit. To parame-

terize its angular dependence, we then rewrote it in terms of Legendre polynomials. Next, we
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multiplied the fluid equations with an additional fluctuation field and performed the statisti-

cal average to formulate a non-perturbative differential evolution equation for the soft-mode

power spectrum Pab(q, η). This equation included two non-linear contributions, sourced either

by the mode-coupling function α or β, respectively, in dependence of the angular-dependent

bispectrum. On the basis of the overall momentum dependence of each of the non-linear con-

tributions, we subsequently could infer the bispectrum contributions remaining after the loop

integration. In turn, we expressed these in terms of two time-dependent coefficients, C22(η)

and C12(η), arising from the β- and α-contributions, respectively. This allowed us finally to

rewrite the non-perturbative differential evolution equation for the power spectrum in the

soft limit solely in terms of the power spectrum Pab(q, η) itself and the coefficients C22(η)

and C12(η) (see (7.33)),

∂ηPab(q, η) = − Ωac(η)Pcb(q, η)− Ωbc(η)Pac(q, η)

− q2

2
PL(q, η)

[(
0 1

1 2

)
ab

C22(η) +

(
2 1

1 0

)
ab

C12(η)

]
.

(8.5)

Let us emphasize here again that, due to the form of the vertex function in the fluid equations,

the non-perturbative power spectrum equation above does not involve a coefficient C11(η).

As a consequence, it does not receive a contribution from the density-density power spectrum

on short distance scales.

For evaluating the power spectrum Pab(q, η) from this expression, we needed to further de-

termine the coefficients C22(η) and C12(η), encoding in particular the dependence on the hard

modes. This could be achieved by use of non-perturbative (angular-dependent) consistency

conditions for the bispectrum in the soft limit. The coefficient C22(η), for instance, incorpo-

rated only a dependence on the angular-averaged bispectrum in the soft limit so that we could

make use of the previously derived non-perturbative bispectrum consistency relation, (8.1),

to determine it as (see (7.22) and (7.24))

C22(η) = −4σ2
22 + ∂ησ

2
22 + 5

∂

∂κ
σ2

22,K

∣∣∣∣
K=0

(8.6)

with σ2
ab being the variance of the displacement fields, here expressed in dependence of a cutoff

scale kmax (see (5.11) and (7.71)),

σ2
ab(kmax, η) ≡ 4π

3

kmax∫
0

dk Pab(k, η) . (8.7)

Hence, this expression allowed us to connect the coefficient C22(η) to the power spectrum of

hard modes, albeit to a certain extent in a locally curved background cosmology. However,
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8. Conclusions and Outlook

at this point, we made used of the generalized VKPR proposal (see (8.3)) to replace the

derivative of the variance with respect to curvature with a time derivative.

In order to determine the coefficient C12(η), we needed to include information from an

angular-dependent consistency relation for the bispectrum in the soft limit. We derived such

a consistency condition by generalizing the background method from the case of a spherically

symmetric soft mode to the one of a directional long-wavelength perturbation. Thereby, we

implemented a map between the flat FRW cosmology in the presence of the directional soft

mode and a locally curved anisotropic universe. Proceeding from this, we could determine an

angular-dependent non-perturbative bispectrum consistency relation, which reproduces the

expression in (8.1) by angular averaging. In turn, we could use the angular-dependent consis-

tency condition to extract the coefficient C12(η) in dependence of the variance σ2
ab,A(kmax, . . .)

on short distance scales (or the corresponding power spectrum of hard modes (see (8.7)) in

a hypothetical locally curved anisotropic universe, and the derivatives thereof. Thereby, the

variance σ2
ab,A(kmax, . . .) constitutes a function of a series of geometrical parameters arising

from the form of the locally curved anisotropic metric. Because of the anisotropies, this metric

includes, for instance, two different expansion rates, parallel and perpendicular to the direc-

tional soft mode q, as a curvature parameter, K‖, which only enters in the parallel direction.

Evaluating C12(η) thus requires either to deduce it by an empirical approximation ex-

tending the generalized VKPR proposal in (8.3) to the locally curved anisotropic case or

by performing numerical simulations in a locally curved anisotropic background cosmology.

However, since the coefficient C12(η) originated from higher-order terms with respect to the

Legendre polynomials (in a suitable basis) and its contribution compared to the one involv-

ing the coefficient C22(η) was suppressed roughly by a factor 20 in perturbation theory, a

reasonable approximation consisted in neglecting the coefficient C12(η). In other words, we

truncated the non-perturbative power spectrum equation (8.5) in the numerical analysis by

setting C12(η) = 0.

Numerical analysis

Based on the numerical analysis we performed, we estimated the overall error in the non-

perturbative power spectrum equation induced by neglecting the impact of the coefficient

C12(η) and by approximating the curvature dependence of the coefficient C22(η) by the gen-

eralized VKPR proposal to be at most an effect of the order of ∼ 10%. We demonstrated

explicitly that for a ΛCDM cosmology, the non-perturbative predictions for the power spec-

trum in the soft-limit, parameterized by the coefficients cab(η) as (see (7.66))

Pab(q, η) =
[
uaub + q2cab(η)

]
PL(q, η) (8.8)
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with ua = (1, 1), agree remarkably well with the results from numerical simulations of [378]

within the error bars of ∼ 10% (see Figure 7.1). This level of precision is consistent with the

numerical estimate of the impact of C12(η) in the non-perturbative power spectrum equation

that we performed (see Figure A.1). Indeed, at present time (or equivalently at redshift z = 0),

the prediction of the non-perturbative power spectrum equation under neglecting C12(η), that

is c11

(
η(z = 0)

)
' −21 (Mpc/h)2, lies within the error of the numerical value cnum

11

(
η(z =

0)
)
' −23 (Mpc/h)2 [199, 200]. The accuracy of the order of ∼ 10% for the non-perturbative

predictions at redshift z = 0 improves to a percent-level precision at higher redshifts.

Our analysis of the coefficients cab(η) parameterizing the non-linear power spectrum revealed

in addition an important characteristic of the power spectrum in the soft limit. We showed for

a ΛCDM cosmology that the coefficients cab(η) in the non-perturbative case, determined by

numerically evaluating the momentum integral contained in the variance σ2
ab(kmax, η) in (8.7),

only show a weak cutoff-scale dependence if kmax is chosen well within the non-liner regime

(see Figure 7.1). To explore this feature in further detail, we investigated in turn the variance

itself at redshift z = 0,

σ2
ab(kmax) ≡ σ2

ab

(
kmax, η(z = 0)

)
(8.9)

for a ΛCDM cosmology as a function of the cutoff scale kmax (see Figure 7.2). As a result,

we found that the variances σ2
12(kmax) and σ2

22(kmax), in contrast to σ2
11(kmax), notably show

a clear saturation behavior for kmax � ΛNL with ΛNL ' 0.5h/Mpc being the non-linear

scale. Note that it is exactly the variances σ2
12(kmax) and σ2

22(kmax) that enter through the

coefficients C12(η) and C22(η) in the non-perturbative power spectrum equation in (8.5).

In their most general form, the coefficients C12(η) and C22(η) involve a dependence on

the variance in a hypothetical locally curved (anisotropic) background cosmology. How-

ever, we argued that the dependence on the background cosmology through curvature or

other geometrical (anisotropic) parameters, induced by a long-wavelength mode q � ΛNL,

should not significantly affect the qualitative behavior of the variance on short distance scales

where kmax � ΛNL. Thus, in the case of the spherically symmetric soft mode, we expected

the relation (see (7.74))

σ2
ab,K(kmax) ' σ2

ab(kmax) (8.10)

to be valid for modes deep in the non-linear regime, i.e., for kmax � ΛNL. We formulated an

analogous approximation in the case of the directional soft mode, σ2
ab,A(kmax, . . .) ' σ2

ab(kmax),

for kmax � ΛNL. From the equation above, we inferred that background-dependent vari-

ances σ2
12,K(kmax) and σ2

22,K(kmax) (as well as their anisotropic equivalents) display only a

weak dependence on short-distance modes beyond the non-linear scale.

195



8. Conclusions and Outlook

To go beyond, we investigated whether this finding applies not only to the σ2
12,K(kmax)

and σ2
22,K(kmax) themselves but also to their derivatives with respect to curvature. Thereby,

we deduced that the derivative of the power spectrum on short distance scales with respect

to spatial curvature fulfills the bound

∂

∂κ
Pab,K(k, η)

∣∣∣∣
K=0

< Pab(k, η) (8.11)

for modes deep in the non-linear regime, k � ΛNL. For deriving this bound, we first made

use of the response function G1(k, η) for the density power spectrum P (k, η) ≡ P11(k, η)

(see (7.76)),

G1(k, η) ≡ −1

3
∂η lnPK=0(k, η) +

5

3

∂

∂κ
lnPK(k, η)

∣∣∣∣
K=0

, (8.12)

to confront the predictions of the VKPR proposal (6.60) against results from numerical simu-

lations obtained within the ‘separate universe’ approach in [380] (see Figure 7.3). As a result,

we found that the predictions of the VKPR proposal overestimate the response function of the

density power spectrum P11(k, η) for modes much bigger than the non-linear scale, k � ΛNL.

We expected the generalized VKPR proposal (see (8.3)) to lead to similar results for P12(k, η)

and P22(k, η), respectively. Next, by comparison of Figure 7.4 with Figure 7.2, we deduced

that the approximation ∂η lnσ2
12(22)(kmax) ' 2 is relatively accurate for kmax & ΛNL. Trans-

ferring this finding to the power spectra contained in σ2
12(22)(kmax) (see (8.7)) and taking into

account the generalized VKPR proposal in (8.3) as an overestimation of the curvature deriva-

tive for P12(k, η) and P22(k, η), we deduced the upper bound on the derivative of the power

spectrum in (8.11) with respect to spatial curvature is fulfilled. Consequently, we concluded

that the weak sensitivity to the hard modes beyond the non-linear scale also applies for the

curvature derivatives of the variances σ2
12,K(kmax) and σ2

22,K(kmax). We expect this saturation

behavior beyond the non-linear scale to be a general feature occurring in the case of a locally

curved anisotropic universe, for both the variances σ2
12,A(kmax) and σ2

22,A(kmax) as well as

their variations with respect to the additional geometrical parameters.

Since these quantities constitute the general contributions to the coefficients C12(η) and

C22(η), we concluded from the above reasoning that also C12(η) and C22(η) depend only

weakly on short-distance modes beyond the non-linear scale. Since these coefficients determine

the non-perturbative equation for the power spectrum in the soft limit (see (8.5)), we could

finally draw the conclusion that the power spectrum Pab(q, η) in the soft limit involves only

a weak dependence on hard modes deep in the non-linear regime, but receives most of its

contributions from short-distance modes near the non-linear scale.
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Implications for SPT and the EFT of LSS

The finding that the soft-limit power spectrum is only weakly dependent on short-distance

modes beyond the non-linear scale stands in contrast to the predictions for the power spec-

trum in SPT that indicate a UV-divergent behavior. In fact, studying the coefficients cab(η),

which parameterize the non-linear power spectrum, as well as the variance σ2
ab(kmax), as a

function of the cutoff scale kmax, confirmed this finding (see Figure 7.5). Thereby, we evalu-

ated cab(η) and σ2
ab(kmax) either non-perturbatively, by using data from N -body simulations

performed in [378], or perturbatively in SPT up the three-loop order (see also [102]). While we

demonstrated that the non-perturbative numerical result does not vary significantly for kmax

greater than the non-linear scale ΛNL, the perturbative SPT predictions displayed a strong

dependence on kmax beyond the non-linear scale ΛNL, in particular at two- and three-loop

order. Hence, we arrived at the conclusion that the apparent strong(er) dependence of the

perturbative calculations in SPT on small-scale fluctuations is an artificial effect. The non-

perturbative numerical result did not vary significantly for kmax greater than the non-linear

scale ΛNL. In other words, the UV dependence found in explicit computations in SPT is

nothing but an artifact since the perturbative techniques on which SPT relies are inapplicable

beyond the non-linear scale.

The results of our numerical analysis allow us not only to draw conclusions about the UV

dependence of the SPT power spectrum, but has also important ramifications for the effective

field theory (EFT) of LSS formation. In the framework of EFT, an additional parameter l2ren

is introduced, which scales like l2ren ∝ q2PL(q, η) in the soft limit q → 0. While l2ren can be

interpreted as ‘sound speed’ c2
s in the Eulerian framework of EFT [63], it includes a series of

response functions in the Lagrangian-space formulation of EFT [208]. Here, we can infer the

effects of the EFT coefficient(s) by quantifying the discrepancy of the power spectrum deter-

mined from observations (or pure numerical simulations) and by solving the non-perturbative

power spectrum equation in (8.5)) for a given cutoff scale kmax, that is, ∆Pab(q, η, kmax). In

principle, the mismatch ∆Pab(q, η, kmax) also measures the effect of neglecting the vorticity of

the velocity field in the fluid equations from the beginning. However, since the vorticity power

spectrum is highly suppressed on long distance scales and is at most of the same order as the

velocity power spectrum on short distance scales (see [378]), we argued that it is justified to

neglect its impact in the non-perturbative power spectrum equation.

Based on the fact that the numerical analysis revealed only a very weak dependence of the

coefficients C12(η) and C22(η) and thus of the non-perturbative power spectrum on the cutoff

scale kmax beyond the non-linear scale ΛNL, we could draw the same conclusion for the power

spectrum discrepancy. Hence, we inferred the relation ∆Pab(q, η, kmax) ' ∆Pab(q, η,ΛNL) to
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8. Conclusions and Outlook

be valid for kmax � ΛNL. Proceeding from this, we could introduce a (renormalized) EFT

parameter l2ren(kmax) at a given point of time η as follows,

l2ren(kmax � ΛNL) ' ∆P (q, η,ΛNL)

q2PL(q)
, q � ΛNL , (8.13)

where ∆P (q, η,ΛNL) ≡ ∆P11(q, η,ΛNL). Hence, we arrived at the conclusion that the leading-

order renormalized coefficient(s) in the EFT framework [63, 178, 208] themselves depend

only weakly on modes beyond the non-linear scale. Consequently, they receive most of their

contributions from modes up to or near the non-linear scale.

As opposed to SPT, the EFT of LSS introduces counter-terms to cancel the divergences

in the perturbative expansion, e.g., by introducing a cutoff, so that the leftover renormalized

contribution is physical. The previous considerations thus imply that any dependence of the

leading-order EFT coefficient(s) in Eulerian (or Lagrangian) space on short-distance modes

beyond the non-linear scale develops mainly from the counter-term(s). This finding also leads

to the conclusion that the UV sensitivity in SPT arises as an artifact due to inapplicability

of perturbative techniques beyond the non-linear scale.

As we discussed, our conclusion that the renormalized EFT coefficient(s) at leading order

in the soft limit do not strongly depend on the UV modes does not imply that the effect

of the additional EFT term ∝ l2ren q
2PL(q) in the dynamics of the non-perturbative power

spectrum equation is necessarily small. In fact, its relevance relies on how well the theoreti-

cal solution for the power spectrum in the soft limit fares against observations or numerical

simulations. However, due to the intricate series of approximations we applied to derive the

non-perturbative equation for the soft limit power spectrum, it is not possible to directly ex-

tract the size of the renormalized EFT parameter(s) in the soft limit. Moreover, our analysis

does not take into account the plausible scale dependence (through a renormalization group

flow) of the renormalized EFT coefficient(s). We can, nonetheless, conclude that their impor-

tance in correcting the fluid equations is no more than of the same order as the deviations

from numerical simulations we found, i.e., at most an effect of the order of ∼ 10%.

In general, the overall level of accuracy could be improved by fitting the time dependence of

the power spectrum response function to a long-wavelength perturbation G1(k, η), integrated

over wavenumbers k. It is this momentum integral of the response function that ultimately

contributes to the coefficient C22(η) and thus determines the power spectrum through the

non-perturbative equation. However, due to neglecting the second coefficient C12(η) in this

equation, this was not justified at this stage. In fact, the generalized VKPR proposal turned

out to be relatively accurate to compute the coefficient C22(η), with an error comparable to

the one induced from ignoring the contribution associated to the coefficient C12(η). In order

to include C12(η) in our computations, it is necessary to determine the momentum-integrated
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power spectrum response function to a directional long-wavelength perturbation. This can be

done by performing numerical simulations within an anisotropic ‘separate universe’ approach.

In contrast to the direct extraction of the coefficients cab(η) in the non-linear soft-limit power

spectrum from N -body simulations where large simulation volumes are needed to beat the

variance in the soft limit [199, 200]), computing the response function requires modest vol-

umes [238–240, 380]. This suggests a hybrid analytic or a numerical approach to model the

power spectrum. The numerical input would come from fitting the time dependence of the

integrated response functions, unlike extracting the behavior of the power spectrum for small

momenta q. In principle, this would allow us to precisely extract the size of the renormal-

ized leading-order coefficients in the effective field theory approach. We leave this interesting

aspect to be addressed in future work.
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Appendix

A.1. The soft limit of the one-loop density bispectrum in SPT

In this appendix, we determine the soft limit of the angular-averaged bispectrum of density

perturbations at one-loop order in SPT. Since the full soft-limit expression turns out to be

too cumbersome to allow for a meaningful comparison with methods other than SPT, we

derive the soft limit of the one-loop density bispectrum for the case where its loop momentum

is much larger than its external momenta. In other words, we perform the derivation by

restricting our considerations to the UV limit of the bispectrum loop integrals.

As we derived in Section 4.4.2, the one-loop contribution to the bispectrum of density

perturbations in SPT, B1−loop
111 (k1,k2,k3, η) denoting the external momenta here by k1, k2

and k3, arises as the sum of the four one-loop diagrams in Figure 4.6 and thus reads (see (4.30))

B1−loop
111 (k1,k2,k3, η) = B

(222)
111 (k1,k2,k3, η) +B

(321,I)
111 (k1,k2,k3, η)

+B
(321,II)
111 (k1,k2,k3, η) +B

(411)
111 (k1,k2,k3, η) .

(A.1)

The four individual one-loop contributions are explicitly given in (4.31)-(4.34).

For these one-loop bispectrum contributions, we determine the UV limit of the loop inte-

grals with respect to the loop momentum l. For this purpose, we first express the one-loop

contributions in terms of the absolute values of the external momenta and the loop momen-

tum, i.e., k1, k2, k3 and l, integrate out their respective angles and take the UV limit l� k1,2,3

afterwards. In the UV limit, the one-loop contributions of the density bispectrum are then of
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the form (see [187])1

B
(222)
111 (k1, k2, k3, η) ' − (2π)3

4802π2

[
30k6

1 − 30k4
1

(
k2

2 + k2
3

)
+ k2

1

(
−30k4

2 + k2
2k

2
3 − 30k4

3

)
+ 30

(
k2

2 − k2
3

)2(
k2

2 + k2
3

)] ∫
dl l2

(
PL(l, η)3

l6

)
,

(A.2)

B
(321,I)
111 (k1, k2, k3, η) ' (2π)3

35280π2k2
3

[
170k6

1 + k4
1

(
83k2

2 + 190k2
3

)
+ 2k2

1

(
67k4

2 + 256k2
2k

2
3 − 445k4

3

)
−
(
387k2

2 − 530k2
3

)(
k2

2 − k2
3

)2]
× PL(k3, η)

∫
dl l2

(
PL(l, η)2

l4

)
+ 5 permutations ,

(A.3)

B
(321,II)
111 (k1, k2, k3, η) '− 61

105
F
s
2 (k2,k3) PL(k2, η)PL(k3, η) k2

3

4π

3

∫
dl l2

(
PL(l, η)

l2

)
+ 5 permutations ,

(A.4)

and

B
(411)
111 (k1, k2, k3, η) ' − 1

226380

1

k2
2k

2
3

[
12409k6

1 + 20085k4
1

(
k2

2 + k2
3

)
+ k2

1

(
−44518k4

2

+ 76684k2
2k

2
3 − 44518k4

3

)
+ 12024

(
k2

2 − k2
3

)2(
k2

2 + k2
3

)]
× PL(k2, η)PL(k3, η)

4π

3

∫
dl l2

(
PL(l, η)2

l2

)
+ 2 permutations .

(A.5)

Here, F s2 (k2,k3) denotes the symmetrized second-order kernel in SPT, as defined in (3.36)

with (3.33), and the permutations have to be taken with respect to the external momenta.

For deriving the soft limit of the angular-averaged one-loop density bispectrum, we next

replace the external momenta k1, k2, and k3 in (A.2)-(A.5) by k, q and |q − k|, involving the

angular parameter µ of (6.7) and perform a series expansion about the soft mode q afterwards.

1 Notice that in this work, we use different Fourier conventions than in [1] and [187]. Our Fourier conventions

are given in (1.6). Besides, we have corrected typographical errors of [1] in (A.4) and (A.5). These

corrections have no impact on the subsequent results and our conclusions.
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Subsequently, we take the soft limit q → 0 and perform the angular average with respect to µ.

While

B
(222)
111 (k,−q, q − k, η)av q→0−−−→ 0 , (A.6)

the other resulting angular-averaged expressions for one-loop bispectrum contributions in the

soft limit read

B
(321,I)
111 (k,−q, q − k, η)av q→0−−−→PL(q, η) (2π)3 k

4

π2
γSPT

∫
dl l2

(
PL(l, η)2

l4

)
,

B
(321,II)
111 (k,−q, q − k, η)av q→0−−−→PL(q, η) (2π)3 k

2

π2

(
αSPT

1 k ∂k +βSPT
1

)
PL(k, η)

∫
dl l2

(
PL(l, η)

l2

)
,

B
(411)
111 (k,−q, q − k, η)av q→0−−−→PL(q, η) (2π)3 k

2

π2

(
αSPT

2 k ∂k +βSPT
2

)
PL(k, η)

∫
dl l2

(
PL(l, η)

l2

)
,

(A.7)

where we introduced the coefficients

γSPT =
515

5292
, αSPT

1 = αSPT
2 =

61

3780
, βSPT

1 = − 671

8820
, βSPT

2 = −155

756
. (A.8)

Finally, the sum of these contributions (see (A.1)),

B1-loop
111 (k,−q, q − k, η)av q→0−−−→ PL(q, η) (2π)3 k

2

π2

[(
αSPTk ∂k + βSPT

)
PL(k, η)

∫
dl l2

(
PL(l, η)

l2

)
+ γSPTk2

∫
dl l2

(
PL(l, η)2

l4

)]
(A.9)

with

βSPT ≡ βSPT
1 + βSPT

2 = − 3719

13230
, αSPT ≡ αSPT

1 + αSPT
2 =

61

1890
, (A.10)

yields the angular-averaged soft-limit bispectrum of density perturbations at one-loop order

in SPT.
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A.2. Estimating the impact of the coefficient C12

In this appendix, we provide a numerical estimation of the impact of the coefficient C12(η) pa-

rameterizing the α-terms in (7.32) of Section 7.1.2. Since we have neglected the α-contributions

Pαab(q, η) to the non-linear soft-limit power spectrum in the final non-perturbative equa-

tion (7.65) in Section 7.3, the numerical estimation also allows to estimate the errors induced

by this approximation. These error estimations are important for being able to perform the

numerical analysis of our analytical results in Section 7.4.

As discussed in Section 7.2, the coefficient C12(η) generally depends, through the variance of

the density-velocity cross correlation in (7.61), on various geometrical parameters of the locally

curved anisotropic background cosmology. In principle, this dependence can be extracted

from suitable N -body simulations performed within anisotropic ‘separate universe approach’,

similarly to [238–240, 380]. To our best knowledge, numerical simulations of these kind

have not been performed yet. Thus, we estimate the error induced due to neglecting the

coefficient C12(η) in the non-perturbative power spectrum equation (7.65) by another suitable

numerical approach. Since we expect the final expression for C12(η) to show a functional

dependence analogous to the one of the coefficient C22(η) in (7.23), we explore it by the

ansatz

C12(η) = d1 σ
2
12(η) + d2 ∂ησ

2
12(η) , (A.11)

where d1 and d2 constitute adjustable free parameters.

In order to estimate the plausible values of the parameters d1 and d2, we evaluate the

ansatz for C12(η) in the previous equation within the perturbative approach of SPT. Thereby,

we proceed as in our first example in the numerical analysis of Section 7.4, in which we

evaluate the coefficients cab(η) of the evolution equation (7.67) in SPT. If we include the

ansatz for C12(η) in (A.11) in the non-perturbative equation for the power spectrum in the

soft limit in (7.33), and parameterize its non-linear part by (7.66), the resulting evolution

equation for the coefficients cab(η) incorporating C12(η) reads (see (7.67))

∂ηcab(η) = − Ωac(η) ccb(η)− Ωbc(η) cac(η)

+

(
0 1

1 2

)
ab

(
4

7
σ2

22(η)− 13

14
∂η σ

2
22(η)

)

−
(

2 1

1 0

)
ab

(
d1

2
σ2

12(η) +
d2

2
∂ησ

2
12(η)

)
.

(A.12)

If we require that the left-hand side of the evolution equation above reproduces the results

emerging from the one-loop power spectrum in the soft limit in SPT, i.e., cSPT
ab (η) in (7.70),
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and furthermore take into account that the variance σ2
ab,L(η) at leading order scales like

σ2
ab,L = e2(η−η0) σ2

ab,L(η0), we obtain the constraint

−1

2
(d1 + 2 d2) =

1

35
' 0.03 . (A.13)

Hence, in comparison to the terms associated to the coefficient C12(η) in the second line

on the right-hand side of (A.12), yielding likewise (4/7 − 2 · 13/14) = −9/7 ' −1.29, the

contributions from the coefficient C22(η) are significantly suppressed. Since we extracted from

the numerical results in Figure 7.4 that ∂η lnσ2
12(22)(kmax) ' 2 generally holds for kmax & ΛNL,

we conclude that the overall small coefficient in (A.13) leads to a strong effective suppression

of the impact of the coefficient C12(η), and of the related uncertainties. Moreover, notice that

the constraint (A.13) precisely accounts for the %-level difference between the leading-order

coefficients cLO
ab (η) in (7.69), based on the non-perturbative evolution equation (7.67), and the

coefficients cSPT
ab (η) in (7.70), derived from the one-loop soft-limit power spectrum in SPT.

By varying the parameters d1 and d2 in (A.13), we can then estimate the error caused

by neglecting the impact of the coefficient C12(η) in the non-perturbative equation for the

power spectrum Pab(q, η) in (7.65) and thus in the evolution equation for the coefficients cab(η)

in (7.67). In Figure A.1, we show the resulting variations of cab(η) as a function of redshift z,

as given in (1.1), which is equivalent to the time variable η, for a ΛCDM universe (see (3.49)

and (3.18)). To determine the variances in the displacement field σ2
ab(η), according to (5.11),

and in turn the coefficients cab(η) from (A.12), we have used the results of the numerical

simulations in the ΛCDM case performed in [378]. This evaluation procedure is the same which

has been applied in Figure 7.1. Furthermore, we have assumed for definiteness that |d1|, |d2| ≤
3. As we can see from Figure A.1, the coefficients cab(η) depend only relatively mildly on

the impact of C12(η). For instance, at redshift z = 0 (0.5), their variations ∆cab(η) are of the

order

∆c11 ' 15% (5%) , ∆c12 ' 5% (1%) , ∆c22 . 1% . (A.14)

Here, the fact that the velocity-velocity components ∆c22(η) are at least affected by the impact

of C12(η) can be understood from the structure of the evolution equation (A.12). Note that

the results for the coefficients cab(η) in Figure 7.1, which are obtained from (7.65) neglecting

C12(η), lie within the uncertainty bands shown in Figure A.1.

As a next step, we can require the evolution equation for the coefficients cab(η) in (A.12),

which includes the contributions from C12(η), to be (approximately) fulfilled at next-to-leading

order in SPT. By adjusting the free parameters according to (A.13), we can reproduce the next-

to-leading order corrections for the coefficients cab(η) with a relative accuracy of at least ∼ 15%

for all auto- and cross-correlations of density and velocity fields, independent of the linear
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Fig. A.1.: Estimate for the impact of the coefficient C12(η), representing the neglected α-

contributions in the non-perturbative power spectrum equation (7.33), on the co-

efficients cab(z) in (7.66) as a function of redshift z for a ΛCDM universe. The

coefficients cδδ ≡ c11, cδθ ≡ c12 = c21 and cθθ ≡ c22 are obtained from the evolution

equation (A.12), including C12(η), by determining the variances σ2
ab(η) in (5.11)

from the ΛCDM N -body simulation data in [378] and taking into account the con-

straint on the free parameters d1 and d2 in (A.13). Thereby, we have assumed

|d1|, |d2| ≤ 3 for definiteness. By variation of the parameters d1 and d2 (grey re-

gions), the numerical results for the coefficients cab(η) show only a weak dependence

on the value of C12(η).

input. Since the next-to-leading order correction is suppressed by a factor of a few compared to

the leading-order contribution in the relevant regime, this level of accuracy is also compatible

with our estimation of the error induced by neglecting the impact of the coefficient C12(η)

and thus of the α-contributions, being of the order of ∼ 10% (see Section 7.4.1).
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Appendix B

Zusammenfassung

Summary

Large-scale structure surveys have the potential to become the leading probe for precision

cosmology in the next decade. To extract valuable information on the cosmological evolution

of the Universe from the observational data, it is of major importance to derive accurate

theoretical predictions for the statistical large-scale structure observables, such as the power

spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the

greatest challenges of modern cosmology is to theoretically understand the non-linear dy-

namics of large-scale structure formation in the Universe from first principles. While analytic

approaches to describe the large-scale structure formation are usually based on the framework

of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and

develop methods to derive generic, non-perturbative statements about large-scale structure

correlation functions. We study unequal- and equal-time correlation functions of density and

velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in

the soft limit.

In the soft limit, it is possible to link (N + 1)-point and N -point correlation functions

to non-perturbative ‘consistency conditions’. These provide in turn a powerful tool to test

fundamental aspects of the underlying theory at hand. In this work, we first rederive the

(resummed) consistency conditions at unequal times by using the so-called eikonal approxi-

mation. The main appeal of the unequal-time consistency conditions is that they are solely

based on symmetry arguments and thus are universal. Proceeding from this, we direct our

attention to consistency conditions at equal times, which, on the other hand, depend on

the interplay between soft and hard modes. We explore the existence and validity of equal-
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time consistency conditions within and beyond perturbation theory. For this purpose, we

investigate the predictions for the soft limit of the bispectrum of density and velocity pertur-

bations in two different approaches, namely in the perturbative time-flow approach and in a

non-perturbative background method. This background method, which relies on absorbing

a spherically symmetric soft mode into a locally curved background cosmology, has recently

inspired a proposal for an (allegedly non-perturbative) angular-averaged equal-time consis-

tency condition for the bispectrum of density perturbations (henceforth referred to as VKPR

proposal). We demonstrate explicitly for an Einstein–de Sitter universe that the time-flow re-

lations as well as the VKPR proposal are only fulfilled at leading order in perturbation theory,

but are not exact beyond it. Since the VKPR proposal still leads to qualitatively accurate

predictions for the bispectrum of density perturbations beyond the linear perturbative order,

it can nevertheless be regarded as a reasonable empirical approximation in this case. However,

transferring the VKPR proposal to the velocity perturbations significantly fails beyond linear

order in perturbation theory. In consequence, we generalize the background method to prop-

erly account for the effect of local curvature both in the density and velocity perturbations

on short distance scales. This allows us not only to identify the discrepancies of the VKPR

proposal, but also to formulate a proper generalization of it which includes both the density

and velocity perturbations. In addition, we use the background method to deduce a generic,

non-perturbative angular-averaged bispectrum consistency condition, which depends on the

density power spectrum of hard modes in the presence of local curvature.

Building upon this, we proceed by deriving a non-perturbative equation for the power spec-

trum in the soft limit. To this end, we perform an operator product expansion, on the one

hand, and deduce a non-perturbative angular-dependent bispectrum consistency condition,

on the other hand. We obtain the latter from extending the background method to the

case of a directional soft mode, being absorbed into a locally curved anisotropic background

cosmology. The resulting non-perturbative power spectrum equation encodes the coupling

to ultraviolet (UV) modes in two time-dependent coefficients. These can most generally be

inferred from response functions to geometrical parameters, such as spatial curvature, in

the locally curved anisotropic background cosmology. However, we can determine one co-

efficient by use of the angular-averaged bispectrum consistency condition together with the

generalized VKPR proposal, and we show that the impact of the other one is subleading.

Neglecting the latter in consequence, we confront the non-perturbative power spectrum equa-

tion against numerical simulations and find indeed a very good agreement within the expected

error bars. Moreover, we argue that both coefficients and thus the non-perturbative power

spectrum in the soft limit depend only weakly on UV modes deep in the non-linear regime.

This non-perturbative finding allows us in turn to derive important implications for pertur-
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bative approaches to large-scale structure formation. First, it leads to the conclusion that

the UV dependence of the power spectrum found in explicit computations within standard

perturbation theory is an artifact. Second, it implies that in the Eulerian (Lagrangian) effec-

tive field theory (EFT) approach, where UV divergences are canceled by counter-terms, the

renormalized leading-order coefficient(s) receive most contributions from modes close to the

non-linear scale. The non-perturbative approach we developed can in principle be used to

precisely infer the size of these renormalized leading-order EFT coefficient(s) by performing

small-volume numerical simulations within an anisotropic ‘separate universe’ framework. Our

results suggest that the importance of these coefficient(s) is a ∼ 10% effect at most.

209



B. Zusammenfassung

Zusammenfassung

Rotverschiebungssurveys zur Durchmusterung der großräumigen Struktur des Universums ha-

ben das Potential, innerhalb des nächsten Jahrzehnts die führende kosmologische Präzisions-

messung zu werden. Um aus den Beobachtungsdaten wertvolle Informationen über die kos-

mologische Entwicklung des Universums gewinnen zu können, ist es von größter Bedeutung

präzise theoretische Vorhersagen für die statistischen Observablen der großräumigen Struktur

des Universums, wie zum Beispiel das Leistungsspektrum und das Bispektrum der (Dunkle-)

Materiedichtefluktuationen, zu machen. Eine der größten Herausforderungen der modernen

Kosmologie ist es daher, die nicht-lineare Dynamik der kosmologischen Strukturbildung von

Grund auf theoretisch zu verstehen. Während analytische Methoden zur Beschreibung der

kosmologischen Strukturbildung in der Regel auf den Grundlagen der nicht-relativistischen

kosmologischen Störungstheorie basieren, verfolgen wir in dieser Dissertation einen anderen

Ansatz und entwickeln Methoden, um generelle, nicht-perturbative Aussagen über Korrela-

tionsfunktionen der großräumigen Struktur des Universum herzuleiten. Hierfür untersuchen

wir Korrelationen von Dichte- und Geschwindigkeitsfluktuationen ungleicher und gleicher Zei-

ten in dem Limes, in dem eine ihrer Wellenzahlen sehr klein wird, das heißt im sogenannten

‘weichen’ Limes.

In diesem weichen Limes ist es möglich, (N + 1)-Punkts- und N -Punktskorrelationsfunktio-

nen zu nicht-perturbativen ‘Konsistenzbedingungen’ zu verknüpfen. Diese bilden ihrerseits

ein mächtiges Handwerkszeug, um fundamentale Aspekte der zugrundliegenden physikali-

schen Theorie zu testen. Im Rahmen dieser Arbeit leiten wir zunächst die (resummierten)

Konsistenzbedingungen für ungleiche Zeiten her, indem wir die sogenannte Eikonalnäherung

verwenden. Der größte Reiz dieser Konsistenzbedingungen für ungleiche Zeiten besteht darin,

dass sie auschließlich auf Symmetrieargumenten beruhen und daher universell sind. Danach

wenden wir uns den Konsistenzbedingungen für gleiche Zeiten zu, die andererseits von der

Wechselwirkung zwischen weichen und harten Moden abhängen. Wir erforschen die Existenz

und Gültigkeit von Konsistenzbedingungen für gleichen Zeiten innerhalb der Störungstheorie

sowie über sie hinausgehend. Zu diesem Zweck untersuchen wir die Vorhersagen zweier ver-

schiedener Methoden für den weichen Limes des Bispektrums der Dichte- und Geschwindig-

keitsfluktuationen, nämlich zum einen der perturbativen ‘time-flow’-Methode und zum ande-

ren einer nicht-perturbativen Hintergrundmethode. Diese Hintergrundmethode, die auf der

Absorbierung einer sphärisch symmetrischen weichen Mode in eine lokal gekrümmte Hinter-

grundkosmologie basiert, hat kürzlich zu einem (vermeintlich nicht-perturbativen) Vorschlag

einer winkelgemittelten Konsistenzbedingung gleicher Zeiten für das Bispektrum der Dich-

tefluktuationen (fortan als VKPR-Vorschlag bezeichnet) geführt. Wir weisen explizit für ein
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Einstein-de-Sitter-Universum nach, dass die ‘time-flow’-Relationen ebenso wie der VKPR-

Vorschlag nur in Stöhrungstheorie erster Ordnung, nicht aber darüber hinaus, exakt sind. Da

der VKPR-Vorschlag jenseits der Störungstheorie erster Ordnung dennoch zu qualitativ kor-

rekten Vorhersagen für das Bispektrum der Dichtefluktuationen führt, kann er jedoch als eine

vernünftige empirische Näherung betrachtet werden. Wird der VKPR-Vorschlag allerdings

auf die Geschwindigkeitsfluktuationen übertragen, ergeben sich signifikante Abweichungen

jenseits der Störungstheorie erster Ordnung. Aufgrund dessen verallgemeinern wir die Hinter-

grundmethode, um den Effekt lokaler Krümmung auf die Dichte- und Geschwindigkeitsfluk-

tuationen auf kurzen Distanzskalen physikalisch richtig zu beschreiben. Dadurch ist es uns

möglich, nicht nur die Unstimmigkeiten des VKPR-Vorschlags auszumachen, sondern auch

eine geeignete Verallgemeinerung des letzteren, die sowohl Dichte- als auch Geschwindigkeits-

fluktuationen einbezieht, zu formulieren. Zusätzlich verwenden wir die Hintergrundmethode,

um eine generelle, nicht-perturbative winkelgemittelte Bispektrumkonsistenzbedingung herzu-

leiten, die vom Dichteleistungsspektrum harter Moden in Gegenwart von lokaler Krümmung

abhängt.

Wir fahren anschließend fort, indem wir eine nicht-perturbative Gleichung für das Leistungs-

spektrum im weichen Limes herleiten. Dafür führen wir einerseits eine Operator-Produkt-

Entwicklung durch und ermitteln andererseits eine nicht-perturbative winkelabhängige Bi-

spektrumkonsistenzbedingung. Wir erhalten diese, indem wir die Hintergrundmethode für den

Fall einer gerichteten weichen Mode, die in eine lokal gekrümmte anisotrope Hintergrundkos-

mologie absorbiert wird, erweitern. Die resultierende nicht-perturbative Leistungsspektrum-

gleichung beinhaltet die Kopplung an ultraviolette (UV-)Moden durch zwei zeitabhängige

Koeffizienten. Diese können am allgemeinsten durch Antwortfunktionen (‘response functions’)

bezüglich geometrischer Parameter, wie etwa räumlicher Krümmung, in der lokal gekrümmten

anisotropen Hintergrundkosmologie abgeleitet werden. Allerdings können wir einen Koeffizi-

enten mithilfe der winkelgemittelten Bispektrumkonsistenzbedingung sowie des verallgemei-

nerten VKPR-Vorschlags bestimmen. Wir zeigen zudem, dass der andere Koeffizienten nur

einen geringfügigen Einfluss hat. Daher vergleichen wir, unter Vernachlässigung des letzteren,

die nicht-perturbative Leistungsspektrumgleichung mit numerischen Simulationen und stel-

len in der Tat eine sehr gute Übereinstimmung innerhalb der erwarteten Fehlergrenzen fest.

Darüber hinaus erörtern wir, dass beide Koeffizienten und folglich das nicht-perturbative Leis-

tungsspektrum im weichen Limes nur schwach von UV-Moden weit im nicht-linearen Bereich

abhängen. Diese nicht-perturbative Erkenntnis ermöglicht es uns ihrerseits, wichtige Implika-

tionen für perturbative Methoden der kosmologischen Strukturbildung abzuleiten. Zum einen

führt sie zu der Schlussfolgerung, dass die UV-Abhängigkeit des Leistungsspektrums, die in

expliziten Berechnungen innerhalb der perturabtiven Standardmethode (‘standard perturba-
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tion theory’) auftritt, ein Artefakt ist. Zum anderen impliziert sie, dass in der Eulerschen

(Lagrangeschen) Methode der effektiven Feldtheorie (EFT), in der die UV-Divergenzen durch

Gegenterme (‘counter-terms’) aufgehoben werden, die renormierten Koeffizient(en) führender

Ordnung die größten Beiträge von Moden nahe des nicht-linearen Bereiches erhalten. Die

von uns entwickelte nicht-perturbative Methode kann im Prinzip verwendet werden, um die

Größe der renormierten EFT-Koeffizient(en) präzise mithilfe von numerischen Simulationen

eines anisotropen unabhängigen Unversums (‘separate universe’) zu bestimmen. Unsere Er-

gebnissen nach entspricht die Relevanz dieser Koeffizient(en) allenfalls einem ∼ 10%-Effekt.
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